blob: 23362bf76651b0da1073cb9f102e02d0df1aeaf3 [file] [log] [blame]
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements type unification.
//
// Type unification attempts to make two types x and y structurally
// identical by determining the types for a given list of (bound)
// type parameters which may occur within x and y. If x and y are
// are structurally different (say []T vs chan T), or conflicting
// types are determined for type parameters, unification fails.
// If unification succeeds, as a side-effect, the types of the
// bound type parameters may be determined.
//
// Unification typically requires multiple calls u.unify(x, y) to
// a given unifier u, with various combinations of types x and y.
// In each call, additional type parameter types may be determined
// as a side effect. If a call fails (returns false), unification
// fails.
//
// In the unification context, structural identity ignores the
// difference between a defined type and its underlying type.
// It also ignores the difference between an (external, unbound)
// type parameter and its core type.
// If two types are not structurally identical, they cannot be Go
// identical types. On the other hand, if they are structurally
// identical, they may be Go identical or at least assignable, or
// they may be in the type set of a constraint.
// Whether they indeed are identical or assignable is determined
// upon instantiation and function argument passing.
package types2
import (
"bytes"
"fmt"
"sort"
"strings"
)
const (
// Upper limit for recursion depth. Used to catch infinite recursions
// due to implementation issues (e.g., see issues go.dev/issue/48619, go.dev/issue/48656).
unificationDepthLimit = 50
// Whether to panic when unificationDepthLimit is reached.
// If disabled, a recursion depth overflow results in a (quiet)
// unification failure.
panicAtUnificationDepthLimit = true
// If enableCoreTypeUnification is set, unification will consider
// the core types, if any, of non-local (unbound) type parameters.
enableCoreTypeUnification = true
// If traceInference is set, unification will print a trace of its operation.
// Interpretation of trace:
// x ≡ y attempt to unify types x and y
// p ➞ y type parameter p is set to type y (p is inferred to be y)
// p ⇄ q type parameters p and q match (p is inferred to be q and vice versa)
// x ≢ y types x and y cannot be unified
// [p, q, ...] ➞ [x, y, ...] mapping from type parameters to types
traceInference = false
)
// A unifier maintains a list of type parameters and
// corresponding types inferred for each type parameter.
// A unifier is created by calling newUnifier.
type unifier struct {
// handles maps each type parameter to its inferred type through
// an indirection *Type called (inferred type) "handle".
// Initially, each type parameter has its own, separate handle,
// with a nil (i.e., not yet inferred) type.
// After a type parameter P is unified with a type parameter Q,
// P and Q share the same handle (and thus type). This ensures
// that inferring the type for a given type parameter P will
// automatically infer the same type for all other parameters
// unified (joined) with P.
handles map[*TypeParam]*Type
depth int // recursion depth during unification
}
// newUnifier returns a new unifier initialized with the given type parameter
// and corresponding type argument lists. The type argument list may be shorter
// than the type parameter list, and it may contain nil types. Matching type
// parameters and arguments must have the same index.
func newUnifier(tparams []*TypeParam, targs []Type) *unifier {
assert(len(tparams) >= len(targs))
handles := make(map[*TypeParam]*Type, len(tparams))
// Allocate all handles up-front: in a correct program, all type parameters
// must be resolved and thus eventually will get a handle.
// Also, sharing of handles caused by unified type parameters is rare and
// so it's ok to not optimize for that case (and delay handle allocation).
for i, x := range tparams {
var t Type
if i < len(targs) {
t = targs[i]
}
handles[x] = &t
}
return &unifier{handles, 0}
}
// unify attempts to unify x and y and reports whether it succeeded.
// As a side-effect, types may be inferred for type parameters.
func (u *unifier) unify(x, y Type) bool {
return u.nify(x, y, nil)
}
func (u *unifier) tracef(format string, args ...interface{}) {
fmt.Println(strings.Repeat(". ", u.depth) + sprintf(nil, true, format, args...))
}
// String returns a string representation of the current mapping
// from type parameters to types.
func (u *unifier) String() string {
// sort type parameters for reproducible strings
tparams := make(typeParamsById, len(u.handles))
i := 0
for tpar := range u.handles {
tparams[i] = tpar
i++
}
sort.Sort(tparams)
var buf bytes.Buffer
w := newTypeWriter(&buf, nil)
w.byte('[')
for i, x := range tparams {
if i > 0 {
w.string(", ")
}
w.typ(x)
w.string(": ")
w.typ(u.at(x))
}
w.byte(']')
return buf.String()
}
type typeParamsById []*TypeParam
func (s typeParamsById) Len() int { return len(s) }
func (s typeParamsById) Less(i, j int) bool { return s[i].id < s[j].id }
func (s typeParamsById) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
// join unifies the given type parameters x and y.
// If both type parameters already have a type associated with them
// and they are not joined, join fails and returns false.
func (u *unifier) join(x, y *TypeParam) bool {
if traceInference {
u.tracef("%s ⇄ %s", x, y)
}
switch hx, hy := u.handles[x], u.handles[y]; {
case hx == hy:
// Both type parameters already share the same handle. Nothing to do.
case *hx != nil && *hy != nil:
// Both type parameters have (possibly different) inferred types. Cannot join.
return false
case *hx != nil:
// Only type parameter x has an inferred type. Use handle of x.
u.setHandle(y, hx)
// This case is treated like the default case.
// case *hy != nil:
// // Only type parameter y has an inferred type. Use handle of y.
// u.setHandle(x, hy)
default:
// Neither type parameter has an inferred type. Use handle of y.
u.setHandle(x, hy)
}
return true
}
// asTypeParam returns x.(*TypeParam) if x is a type parameter recorded with u.
// Otherwise, the result is nil.
func (u *unifier) asTypeParam(x Type) *TypeParam {
if x, _ := x.(*TypeParam); x != nil {
if _, found := u.handles[x]; found {
return x
}
}
return nil
}
// setHandle sets the handle for type parameter x
// (and all its joined type parameters) to h.
func (u *unifier) setHandle(x *TypeParam, h *Type) {
hx := u.handles[x]
assert(hx != nil)
for y, hy := range u.handles {
if hy == hx {
u.handles[y] = h
}
}
}
// at returns the (possibly nil) type for type parameter x.
func (u *unifier) at(x *TypeParam) Type {
return *u.handles[x]
}
// set sets the type t for type parameter x;
// t must not be nil.
func (u *unifier) set(x *TypeParam, t Type) {
assert(t != nil)
if traceInference {
u.tracef("%s ➞ %s", x, t)
}
*u.handles[x] = t
}
// unknowns returns the number of type parameters for which no type has been set yet.
func (u *unifier) unknowns() int {
n := 0
for _, h := range u.handles {
if *h == nil {
n++
}
}
return n
}
// inferred returns the list of inferred types for the given type parameter list.
// The result is never nil and has the same length as tparams; result types that
// could not be inferred are nil. Corresponding type parameters and result types
// have identical indices.
func (u *unifier) inferred(tparams []*TypeParam) []Type {
list := make([]Type, len(tparams))
for i, x := range tparams {
list[i] = u.at(x)
}
return list
}
// nify implements the core unification algorithm which is an
// adapted version of Checker.identical. For changes to that
// code the corresponding changes should be made here.
// Must not be called directly from outside the unifier.
func (u *unifier) nify(x, y Type, p *ifacePair) (result bool) {
u.depth++
if traceInference {
u.tracef("%s ≡ %s", x, y)
}
defer func() {
if traceInference && !result {
u.tracef("%s ≢ %s", x, y)
}
u.depth--
}()
// nothing to do if x == y
if x == y {
return true
}
// Stop gap for cases where unification fails.
if u.depth > unificationDepthLimit {
if traceInference {
u.tracef("depth %d >= %d", u.depth, unificationDepthLimit)
}
if panicAtUnificationDepthLimit {
panic("unification reached recursion depth limit")
}
return false
}
// Unification is symmetric, so we can swap the operands.
// Ensure that if we have at least one
// - defined type, make sure one is in y
// - type parameter recorded with u, make sure one is in x
if _, ok := x.(*Named); ok || u.asTypeParam(y) != nil {
if traceInference {
u.tracef("%s ≡ %s (swap)", y, x)
}
x, y = y, x
}
// Unification will fail if we match a defined type against a type literal.
// Per the (spec) assignment rules, assignments of values to variables with
// the same type structure are permitted as long as at least one of them
// is not a defined type. To accomodate for that possibility, we continue
// unification with the underlying type of a defined type if the other type
// is a type literal.
// We also continue if the other type is a basic type because basic types
// are valid underlying types and may appear as core types of type constraints.
// If we exclude them, inferred defined types for type parameters may not
// match against the core types of their constraints (even though they might
// correctly match against some of the types in the constraint's type set).
// Finally, if unification (incorrectly) succeeds by matching the underlying
// type of a defined type against a basic type (because we include basic types
// as type literals here), and if that leads to an incorrectly inferred type,
// we will fail at function instantiation or argument assignment time.
//
// If we have at least one defined type, there is one in y.
if ny, _ := y.(*Named); ny != nil && isTypeLit(x) {
if traceInference {
u.tracef("%s ≡ under %s", x, ny)
}
y = ny.under()
// Per the spec, a defined type cannot have an underlying type
// that is a type parameter.
assert(!isTypeParam(y))
// x and y may be identical now
if x == y {
return true
}
}
// Cases where at least one of x or y is a type parameter recorded with u.
// If we have at least one type parameter, there is one in x.
// If we have exactly one type parameter, because it is in x,
// isTypeLit(x) is false and y was not changed above. In other
// words, if y was a defined type, it is still a defined type
// (relevant for the logic below).
switch px, py := u.asTypeParam(x), u.asTypeParam(y); {
case px != nil && py != nil:
// both x and y are type parameters
if u.join(px, py) {
return true
}
// both x and y have an inferred type - they must match
return u.nify(u.at(px), u.at(py), p)
case px != nil:
// x is a type parameter, y is not
if x := u.at(px); x != nil {
// x has an inferred type which must match y
if u.nify(x, y, p) {
// If we have a match, possibly through underlying types,
// and y is a defined type, make sure we record that type
// for type parameter x, which may have until now only
// recorded an underlying type (go.dev/issue/43056).
if _, ok := y.(*Named); ok {
u.set(px, y)
}
return true
}
return false
}
// otherwise, infer type from y
u.set(px, y)
return true
}
// x != y if we get here
assert(x != y)
// If we get here and x or y is a type parameter, they are unbound
// (not recorded with the unifier).
// Ensure that if we have at least one type parameter, it is in x
// (the earlier swap checks for _recorded_ type parameters only).
if isTypeParam(y) {
if traceInference {
u.tracef("%s ≡ %s (swap)", y, x)
}
x, y = y, x
}
switch x := x.(type) {
case *Basic:
// Basic types are singletons except for the rune and byte
// aliases, thus we cannot solely rely on the x == y check
// above. See also comment in TypeName.IsAlias.
if y, ok := y.(*Basic); ok {
return x.kind == y.kind
}
case *Array:
// Two array types are identical if they have identical element types
// and the same array length.
if y, ok := y.(*Array); ok {
// If one or both array lengths are unknown (< 0) due to some error,
// assume they are the same to avoid spurious follow-on errors.
return (x.len < 0 || y.len < 0 || x.len == y.len) && u.nify(x.elem, y.elem, p)
}
case *Slice:
// Two slice types are identical if they have identical element types.
if y, ok := y.(*Slice); ok {
return u.nify(x.elem, y.elem, p)
}
case *Struct:
// Two struct types are identical if they have the same sequence of fields,
// and if corresponding fields have the same names, and identical types,
// and identical tags. Two embedded fields are considered to have the same
// name. Lower-case field names from different packages are always different.
if y, ok := y.(*Struct); ok {
if x.NumFields() == y.NumFields() {
for i, f := range x.fields {
g := y.fields[i]
if f.embedded != g.embedded ||
x.Tag(i) != y.Tag(i) ||
!f.sameId(g.pkg, g.name) ||
!u.nify(f.typ, g.typ, p) {
return false
}
}
return true
}
}
case *Pointer:
// Two pointer types are identical if they have identical base types.
if y, ok := y.(*Pointer); ok {
return u.nify(x.base, y.base, p)
}
case *Tuple:
// Two tuples types are identical if they have the same number of elements
// and corresponding elements have identical types.
if y, ok := y.(*Tuple); ok {
if x.Len() == y.Len() {
if x != nil {
for i, v := range x.vars {
w := y.vars[i]
if !u.nify(v.typ, w.typ, p) {
return false
}
}
}
return true
}
}
case *Signature:
// Two function types are identical if they have the same number of parameters
// and result values, corresponding parameter and result types are identical,
// and either both functions are variadic or neither is. Parameter and result
// names are not required to match.
// TODO(gri) handle type parameters or document why we can ignore them.
if y, ok := y.(*Signature); ok {
return x.variadic == y.variadic &&
u.nify(x.params, y.params, p) &&
u.nify(x.results, y.results, p)
}
case *Interface:
// Two interface types are identical if they have the same set of methods with
// the same names and identical function types. Lower-case method names from
// different packages are always different. The order of the methods is irrelevant.
if y, ok := y.(*Interface); ok {
xset := x.typeSet()
yset := y.typeSet()
if xset.comparable != yset.comparable {
return false
}
if !xset.terms.equal(yset.terms) {
return false
}
a := xset.methods
b := yset.methods
if len(a) == len(b) {
// Interface types are the only types where cycles can occur
// that are not "terminated" via named types; and such cycles
// can only be created via method parameter types that are
// anonymous interfaces (directly or indirectly) embedding
// the current interface. Example:
//
// type T interface {
// m() interface{T}
// }
//
// If two such (differently named) interfaces are compared,
// endless recursion occurs if the cycle is not detected.
//
// If x and y were compared before, they must be equal
// (if they were not, the recursion would have stopped);
// search the ifacePair stack for the same pair.
//
// This is a quadratic algorithm, but in practice these stacks
// are extremely short (bounded by the nesting depth of interface
// type declarations that recur via parameter types, an extremely
// rare occurrence). An alternative implementation might use a
// "visited" map, but that is probably less efficient overall.
q := &ifacePair{x, y, p}
for p != nil {
if p.identical(q) {
return true // same pair was compared before
}
p = p.prev
}
if debug {
assertSortedMethods(a)
assertSortedMethods(b)
}
for i, f := range a {
g := b[i]
if f.Id() != g.Id() || !u.nify(f.typ, g.typ, q) {
return false
}
}
return true
}
}
case *Map:
// Two map types are identical if they have identical key and value types.
if y, ok := y.(*Map); ok {
return u.nify(x.key, y.key, p) && u.nify(x.elem, y.elem, p)
}
case *Chan:
// Two channel types are identical if they have identical value types.
if y, ok := y.(*Chan); ok {
return u.nify(x.elem, y.elem, p)
}
case *Named:
// TODO(gri) This code differs now from the parallel code in Checker.identical. Investigate.
if y, ok := y.(*Named); ok {
xargs := x.TypeArgs().list()
yargs := y.TypeArgs().list()
if len(xargs) != len(yargs) {
return false
}
// TODO(gri) This is not always correct: two types may have the same names
// in the same package if one of them is nested in a function.
// Extremely unlikely but we need an always correct solution.
if x.obj.pkg == y.obj.pkg && x.obj.name == y.obj.name {
for i, x := range xargs {
if !u.nify(x, yargs[i], p) {
return false
}
}
return true
}
}
case *TypeParam:
// x must be an unbound type parameter (see comment above).
if debug {
assert(u.asTypeParam(x) == nil)
}
// By definition, a valid type argument must be in the type set of
// the respective type constraint. Therefore, the type argument's
// underlying type must be in the set of underlying types of that
// constraint. If there is a single such underlying type, it's the
// constraint's core type. It must match the type argument's under-
// lying type, irrespective of whether the actual type argument,
// which may be a defined type, is actually in the type set (that
// will be determined at instantiation time).
// Thus, if we have the core type of an unbound type parameter,
// we know the structure of the possible types satisfying such
// parameters. Use that core type for further unification
// (see go.dev/issue/50755 for a test case).
if enableCoreTypeUnification {
// Because the core type is always an underlying type,
// unification will take care of matching against a
// defined or literal type automatically.
// If y is also an unbound type parameter, we will end
// up here again with x and y swapped, so we don't
// need to take care of that case separately.
if cx := coreType(x); cx != nil {
if traceInference {
u.tracef("core %s ≡ %s", x, y)
}
return u.nify(cx, y, p)
}
}
// x != y and there's nothing to do
case nil:
// avoid a crash in case of nil type
default:
panic(sprintf(nil, true, "u.nify(%s, %s)", x, y))
}
return false
}