| // Copyright 2010 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Package json implements encoding and decoding of JSON as defined in |
| // RFC 4627. The mapping between JSON and Go values is described |
| // in the documentation for the Marshal and Unmarshal functions. |
| // |
| // See "JSON and Go" for an introduction to this package: |
| // https://golang.org/doc/articles/json_and_go.html |
| package json |
| |
| import ( |
| "bytes" |
| "encoding" |
| "encoding/base64" |
| "fmt" |
| "math" |
| "reflect" |
| "runtime" |
| "sort" |
| "strconv" |
| "strings" |
| "sync" |
| "sync/atomic" |
| "unicode" |
| "unicode/utf8" |
| ) |
| |
| // Marshal returns the JSON encoding of v. |
| // |
| // Marshal traverses the value v recursively. |
| // If an encountered value implements the Marshaler interface |
| // and is not a nil pointer, Marshal calls its MarshalJSON method |
| // to produce JSON. If no MarshalJSON method is present but the |
| // value implements encoding.TextMarshaler instead, Marshal calls |
| // its MarshalText method and encodes the result as a JSON string. |
| // The nil pointer exception is not strictly necessary |
| // but mimics a similar, necessary exception in the behavior of |
| // UnmarshalJSON. |
| // |
| // Otherwise, Marshal uses the following type-dependent default encodings: |
| // |
| // Boolean values encode as JSON booleans. |
| // |
| // Floating point, integer, and Number values encode as JSON numbers. |
| // |
| // String values encode as JSON strings coerced to valid UTF-8, |
| // replacing invalid bytes with the Unicode replacement rune. |
| // The angle brackets "<" and ">" are escaped to "\u003c" and "\u003e" |
| // to keep some browsers from misinterpreting JSON output as HTML. |
| // Ampersand "&" is also escaped to "\u0026" for the same reason. |
| // This escaping can be disabled using an Encoder that had SetEscapeHTML(false) |
| // called on it. |
| // |
| // Array and slice values encode as JSON arrays, except that |
| // []byte encodes as a base64-encoded string, and a nil slice |
| // encodes as the null JSON value. |
| // |
| // Struct values encode as JSON objects. |
| // Each exported struct field becomes a member of the object, using the |
| // field name as the object key, unless the field is omitted for one of the |
| // reasons given below. |
| // |
| // The encoding of each struct field can be customized by the format string |
| // stored under the "json" key in the struct field's tag. |
| // The format string gives the name of the field, possibly followed by a |
| // comma-separated list of options. The name may be empty in order to |
| // specify options without overriding the default field name. |
| // |
| // The "omitempty" option specifies that the field should be omitted |
| // from the encoding if the field has an empty value, defined as |
| // false, 0, a nil pointer, a nil interface value, and any empty array, |
| // slice, map, or string. |
| // |
| // As a special case, if the field tag is "-", the field is always omitted. |
| // Note that a field with name "-" can still be generated using the tag "-,". |
| // |
| // Examples of struct field tags and their meanings: |
| // |
| // // Field appears in JSON as key "myName". |
| // Field int `json:"myName"` |
| // |
| // // Field appears in JSON as key "myName" and |
| // // the field is omitted from the object if its value is empty, |
| // // as defined above. |
| // Field int `json:"myName,omitempty"` |
| // |
| // // Field appears in JSON as key "Field" (the default), but |
| // // the field is skipped if empty. |
| // // Note the leading comma. |
| // Field int `json:",omitempty"` |
| // |
| // // Field is ignored by this package. |
| // Field int `json:"-"` |
| // |
| // // Field appears in JSON as key "-". |
| // Field int `json:"-,"` |
| // |
| // The "string" option signals that a field is stored as JSON inside a |
| // JSON-encoded string. It applies only to fields of string, floating point, |
| // integer, or boolean types. This extra level of encoding is sometimes used |
| // when communicating with JavaScript programs: |
| // |
| // Int64String int64 `json:",string"` |
| // |
| // The key name will be used if it's a non-empty string consisting of |
| // only Unicode letters, digits, and ASCII punctuation except quotation |
| // marks, backslash, and comma. |
| // |
| // Anonymous struct fields are usually marshaled as if their inner exported fields |
| // were fields in the outer struct, subject to the usual Go visibility rules amended |
| // as described in the next paragraph. |
| // An anonymous struct field with a name given in its JSON tag is treated as |
| // having that name, rather than being anonymous. |
| // An anonymous struct field of interface type is treated the same as having |
| // that type as its name, rather than being anonymous. |
| // |
| // The Go visibility rules for struct fields are amended for JSON when |
| // deciding which field to marshal or unmarshal. If there are |
| // multiple fields at the same level, and that level is the least |
| // nested (and would therefore be the nesting level selected by the |
| // usual Go rules), the following extra rules apply: |
| // |
| // 1) Of those fields, if any are JSON-tagged, only tagged fields are considered, |
| // even if there are multiple untagged fields that would otherwise conflict. |
| // |
| // 2) If there is exactly one field (tagged or not according to the first rule), that is selected. |
| // |
| // 3) Otherwise there are multiple fields, and all are ignored; no error occurs. |
| // |
| // Handling of anonymous struct fields is new in Go 1.1. |
| // Prior to Go 1.1, anonymous struct fields were ignored. To force ignoring of |
| // an anonymous struct field in both current and earlier versions, give the field |
| // a JSON tag of "-". |
| // |
| // Map values encode as JSON objects. The map's key type must either be a |
| // string, an integer type, or implement encoding.TextMarshaler. The map keys |
| // are sorted and used as JSON object keys by applying the following rules, |
| // subject to the UTF-8 coercion described for string values above: |
| // - string keys are used directly |
| // - encoding.TextMarshalers are marshaled |
| // - integer keys are converted to strings |
| // |
| // Pointer values encode as the value pointed to. |
| // A nil pointer encodes as the null JSON value. |
| // |
| // Interface values encode as the value contained in the interface. |
| // A nil interface value encodes as the null JSON value. |
| // |
| // Channel, complex, and function values cannot be encoded in JSON. |
| // Attempting to encode such a value causes Marshal to return |
| // an UnsupportedTypeError. |
| // |
| // JSON cannot represent cyclic data structures and Marshal does not |
| // handle them. Passing cyclic structures to Marshal will result in |
| // an infinite recursion. |
| // |
| func Marshal(v interface{}) ([]byte, error) { |
| e := &encodeState{} |
| err := e.marshal(v, encOpts{escapeHTML: true}) |
| if err != nil { |
| return nil, err |
| } |
| return e.Bytes(), nil |
| } |
| |
| // MarshalIndent is like Marshal but applies Indent to format the output. |
| func MarshalIndent(v interface{}, prefix, indent string) ([]byte, error) { |
| b, err := Marshal(v) |
| if err != nil { |
| return nil, err |
| } |
| var buf bytes.Buffer |
| err = Indent(&buf, b, prefix, indent) |
| if err != nil { |
| return nil, err |
| } |
| return buf.Bytes(), nil |
| } |
| |
| // HTMLEscape appends to dst the JSON-encoded src with <, >, &, U+2028 and U+2029 |
| // characters inside string literals changed to \u003c, \u003e, \u0026, \u2028, \u2029 |
| // so that the JSON will be safe to embed inside HTML <script> tags. |
| // For historical reasons, web browsers don't honor standard HTML |
| // escaping within <script> tags, so an alternative JSON encoding must |
| // be used. |
| func HTMLEscape(dst *bytes.Buffer, src []byte) { |
| // The characters can only appear in string literals, |
| // so just scan the string one byte at a time. |
| start := 0 |
| for i, c := range src { |
| if c == '<' || c == '>' || c == '&' { |
| if start < i { |
| dst.Write(src[start:i]) |
| } |
| dst.WriteString(`\u00`) |
| dst.WriteByte(hex[c>>4]) |
| dst.WriteByte(hex[c&0xF]) |
| start = i + 1 |
| } |
| // Convert U+2028 and U+2029 (E2 80 A8 and E2 80 A9). |
| if c == 0xE2 && i+2 < len(src) && src[i+1] == 0x80 && src[i+2]&^1 == 0xA8 { |
| if start < i { |
| dst.Write(src[start:i]) |
| } |
| dst.WriteString(`\u202`) |
| dst.WriteByte(hex[src[i+2]&0xF]) |
| start = i + 3 |
| } |
| } |
| if start < len(src) { |
| dst.Write(src[start:]) |
| } |
| } |
| |
| // Marshaler is the interface implemented by types that |
| // can marshal themselves into valid JSON. |
| type Marshaler interface { |
| MarshalJSON() ([]byte, error) |
| } |
| |
| // An UnsupportedTypeError is returned by Marshal when attempting |
| // to encode an unsupported value type. |
| type UnsupportedTypeError struct { |
| Type reflect.Type |
| } |
| |
| func (e *UnsupportedTypeError) Error() string { |
| return "json: unsupported type: " + e.Type.String() |
| } |
| |
| type UnsupportedValueError struct { |
| Value reflect.Value |
| Str string |
| } |
| |
| func (e *UnsupportedValueError) Error() string { |
| return "json: unsupported value: " + e.Str |
| } |
| |
| // Before Go 1.2, an InvalidUTF8Error was returned by Marshal when |
| // attempting to encode a string value with invalid UTF-8 sequences. |
| // As of Go 1.2, Marshal instead coerces the string to valid UTF-8 by |
| // replacing invalid bytes with the Unicode replacement rune U+FFFD. |
| // This error is no longer generated but is kept for backwards compatibility |
| // with programs that might mention it. |
| type InvalidUTF8Error struct { |
| S string // the whole string value that caused the error |
| } |
| |
| func (e *InvalidUTF8Error) Error() string { |
| return "json: invalid UTF-8 in string: " + strconv.Quote(e.S) |
| } |
| |
| type MarshalerError struct { |
| Type reflect.Type |
| Err error |
| } |
| |
| func (e *MarshalerError) Error() string { |
| return "json: error calling MarshalJSON for type " + e.Type.String() + ": " + e.Err.Error() |
| } |
| |
| var hex = "0123456789abcdef" |
| |
| // An encodeState encodes JSON into a bytes.Buffer. |
| type encodeState struct { |
| bytes.Buffer // accumulated output |
| scratch [64]byte |
| } |
| |
| var encodeStatePool sync.Pool |
| |
| func newEncodeState() *encodeState { |
| if v := encodeStatePool.Get(); v != nil { |
| e := v.(*encodeState) |
| e.Reset() |
| return e |
| } |
| return new(encodeState) |
| } |
| |
| func (e *encodeState) marshal(v interface{}, opts encOpts) (err error) { |
| defer func() { |
| if r := recover(); r != nil { |
| if _, ok := r.(runtime.Error); ok { |
| panic(r) |
| } |
| if s, ok := r.(string); ok { |
| panic(s) |
| } |
| err = r.(error) |
| } |
| }() |
| e.reflectValue(reflect.ValueOf(v), opts) |
| return nil |
| } |
| |
| func (e *encodeState) error(err error) { |
| panic(err) |
| } |
| |
| func isEmptyValue(v reflect.Value) bool { |
| switch v.Kind() { |
| case reflect.Array, reflect.Map, reflect.Slice, reflect.String: |
| return v.Len() == 0 |
| case reflect.Bool: |
| return !v.Bool() |
| case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: |
| return v.Int() == 0 |
| case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: |
| return v.Uint() == 0 |
| case reflect.Float32, reflect.Float64: |
| return v.Float() == 0 |
| case reflect.Interface, reflect.Ptr: |
| return v.IsNil() |
| } |
| return false |
| } |
| |
| func (e *encodeState) reflectValue(v reflect.Value, opts encOpts) { |
| valueEncoder(v)(e, v, opts) |
| } |
| |
| type encOpts struct { |
| // quoted causes primitive fields to be encoded inside JSON strings. |
| quoted bool |
| // escapeHTML causes '<', '>', and '&' to be escaped in JSON strings. |
| escapeHTML bool |
| } |
| |
| type encoderFunc func(e *encodeState, v reflect.Value, opts encOpts) |
| |
| var encoderCache struct { |
| sync.RWMutex |
| m map[reflect.Type]encoderFunc |
| } |
| |
| func valueEncoder(v reflect.Value) encoderFunc { |
| if !v.IsValid() { |
| return invalidValueEncoder |
| } |
| return typeEncoder(v.Type()) |
| } |
| |
| func typeEncoder(t reflect.Type) encoderFunc { |
| encoderCache.RLock() |
| f := encoderCache.m[t] |
| encoderCache.RUnlock() |
| if f != nil { |
| return f |
| } |
| |
| // To deal with recursive types, populate the map with an |
| // indirect func before we build it. This type waits on the |
| // real func (f) to be ready and then calls it. This indirect |
| // func is only used for recursive types. |
| encoderCache.Lock() |
| if encoderCache.m == nil { |
| encoderCache.m = make(map[reflect.Type]encoderFunc) |
| } |
| var wg sync.WaitGroup |
| wg.Add(1) |
| encoderCache.m[t] = func(e *encodeState, v reflect.Value, opts encOpts) { |
| wg.Wait() |
| f(e, v, opts) |
| } |
| encoderCache.Unlock() |
| |
| // Compute fields without lock. |
| // Might duplicate effort but won't hold other computations back. |
| f = newTypeEncoder(t, true) |
| wg.Done() |
| encoderCache.Lock() |
| encoderCache.m[t] = f |
| encoderCache.Unlock() |
| return f |
| } |
| |
| var ( |
| marshalerType = reflect.TypeOf(new(Marshaler)).Elem() |
| textMarshalerType = reflect.TypeOf(new(encoding.TextMarshaler)).Elem() |
| ) |
| |
| // newTypeEncoder constructs an encoderFunc for a type. |
| // The returned encoder only checks CanAddr when allowAddr is true. |
| func newTypeEncoder(t reflect.Type, allowAddr bool) encoderFunc { |
| if t.Implements(marshalerType) { |
| return marshalerEncoder |
| } |
| if t.Kind() != reflect.Ptr && allowAddr { |
| if reflect.PtrTo(t).Implements(marshalerType) { |
| return newCondAddrEncoder(addrMarshalerEncoder, newTypeEncoder(t, false)) |
| } |
| } |
| |
| if t.Implements(textMarshalerType) { |
| return textMarshalerEncoder |
| } |
| if t.Kind() != reflect.Ptr && allowAddr { |
| if reflect.PtrTo(t).Implements(textMarshalerType) { |
| return newCondAddrEncoder(addrTextMarshalerEncoder, newTypeEncoder(t, false)) |
| } |
| } |
| |
| switch t.Kind() { |
| case reflect.Bool: |
| return boolEncoder |
| case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: |
| return intEncoder |
| case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: |
| return uintEncoder |
| case reflect.Float32: |
| return float32Encoder |
| case reflect.Float64: |
| return float64Encoder |
| case reflect.String: |
| return stringEncoder |
| case reflect.Interface: |
| return interfaceEncoder |
| case reflect.Struct: |
| return newStructEncoder(t) |
| case reflect.Map: |
| return newMapEncoder(t) |
| case reflect.Slice: |
| return newSliceEncoder(t) |
| case reflect.Array: |
| return newArrayEncoder(t) |
| case reflect.Ptr: |
| return newPtrEncoder(t) |
| default: |
| return unsupportedTypeEncoder |
| } |
| } |
| |
| func invalidValueEncoder(e *encodeState, v reflect.Value, _ encOpts) { |
| e.WriteString("null") |
| } |
| |
| func marshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) { |
| if v.Kind() == reflect.Ptr && v.IsNil() { |
| e.WriteString("null") |
| return |
| } |
| m, ok := v.Interface().(Marshaler) |
| if !ok { |
| e.WriteString("null") |
| return |
| } |
| b, err := m.MarshalJSON() |
| if err == nil { |
| // copy JSON into buffer, checking validity. |
| err = compact(&e.Buffer, b, opts.escapeHTML) |
| } |
| if err != nil { |
| e.error(&MarshalerError{v.Type(), err}) |
| } |
| } |
| |
| func addrMarshalerEncoder(e *encodeState, v reflect.Value, _ encOpts) { |
| va := v.Addr() |
| if va.IsNil() { |
| e.WriteString("null") |
| return |
| } |
| m := va.Interface().(Marshaler) |
| b, err := m.MarshalJSON() |
| if err == nil { |
| // copy JSON into buffer, checking validity. |
| err = compact(&e.Buffer, b, true) |
| } |
| if err != nil { |
| e.error(&MarshalerError{v.Type(), err}) |
| } |
| } |
| |
| func textMarshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) { |
| if v.Kind() == reflect.Ptr && v.IsNil() { |
| e.WriteString("null") |
| return |
| } |
| m := v.Interface().(encoding.TextMarshaler) |
| b, err := m.MarshalText() |
| if err != nil { |
| e.error(&MarshalerError{v.Type(), err}) |
| } |
| e.stringBytes(b, opts.escapeHTML) |
| } |
| |
| func addrTextMarshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) { |
| va := v.Addr() |
| if va.IsNil() { |
| e.WriteString("null") |
| return |
| } |
| m := va.Interface().(encoding.TextMarshaler) |
| b, err := m.MarshalText() |
| if err != nil { |
| e.error(&MarshalerError{v.Type(), err}) |
| } |
| e.stringBytes(b, opts.escapeHTML) |
| } |
| |
| func boolEncoder(e *encodeState, v reflect.Value, opts encOpts) { |
| if opts.quoted { |
| e.WriteByte('"') |
| } |
| if v.Bool() { |
| e.WriteString("true") |
| } else { |
| e.WriteString("false") |
| } |
| if opts.quoted { |
| e.WriteByte('"') |
| } |
| } |
| |
| func intEncoder(e *encodeState, v reflect.Value, opts encOpts) { |
| b := strconv.AppendInt(e.scratch[:0], v.Int(), 10) |
| if opts.quoted { |
| e.WriteByte('"') |
| } |
| e.Write(b) |
| if opts.quoted { |
| e.WriteByte('"') |
| } |
| } |
| |
| func uintEncoder(e *encodeState, v reflect.Value, opts encOpts) { |
| b := strconv.AppendUint(e.scratch[:0], v.Uint(), 10) |
| if opts.quoted { |
| e.WriteByte('"') |
| } |
| e.Write(b) |
| if opts.quoted { |
| e.WriteByte('"') |
| } |
| } |
| |
| type floatEncoder int // number of bits |
| |
| func (bits floatEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) { |
| f := v.Float() |
| if math.IsInf(f, 0) || math.IsNaN(f) { |
| e.error(&UnsupportedValueError{v, strconv.FormatFloat(f, 'g', -1, int(bits))}) |
| } |
| |
| // Convert as if by ES6 number to string conversion. |
| // This matches most other JSON generators. |
| // See golang.org/issue/6384 and golang.org/issue/14135. |
| // Like fmt %g, but the exponent cutoffs are different |
| // and exponents themselves are not padded to two digits. |
| b := e.scratch[:0] |
| abs := math.Abs(f) |
| fmt := byte('f') |
| // Note: Must use float32 comparisons for underlying float32 value to get precise cutoffs right. |
| if abs != 0 { |
| if bits == 64 && (abs < 1e-6 || abs >= 1e21) || bits == 32 && (float32(abs) < 1e-6 || float32(abs) >= 1e21) { |
| fmt = 'e' |
| } |
| } |
| b = strconv.AppendFloat(b, f, fmt, -1, int(bits)) |
| if fmt == 'e' { |
| // clean up e-09 to e-9 |
| n := len(b) |
| if n >= 4 && b[n-4] == 'e' && b[n-3] == '-' && b[n-2] == '0' { |
| b[n-2] = b[n-1] |
| b = b[:n-1] |
| } |
| } |
| |
| if opts.quoted { |
| e.WriteByte('"') |
| } |
| e.Write(b) |
| if opts.quoted { |
| e.WriteByte('"') |
| } |
| } |
| |
| var ( |
| float32Encoder = (floatEncoder(32)).encode |
| float64Encoder = (floatEncoder(64)).encode |
| ) |
| |
| func stringEncoder(e *encodeState, v reflect.Value, opts encOpts) { |
| if v.Type() == numberType { |
| numStr := v.String() |
| // In Go1.5 the empty string encodes to "0", while this is not a valid number literal |
| // we keep compatibility so check validity after this. |
| if numStr == "" { |
| numStr = "0" // Number's zero-val |
| } |
| if !isValidNumber(numStr) { |
| e.error(fmt.Errorf("json: invalid number literal %q", numStr)) |
| } |
| e.WriteString(numStr) |
| return |
| } |
| if opts.quoted { |
| sb, err := Marshal(v.String()) |
| if err != nil { |
| e.error(err) |
| } |
| e.string(string(sb), opts.escapeHTML) |
| } else { |
| e.string(v.String(), opts.escapeHTML) |
| } |
| } |
| |
| func interfaceEncoder(e *encodeState, v reflect.Value, opts encOpts) { |
| if v.IsNil() { |
| e.WriteString("null") |
| return |
| } |
| e.reflectValue(v.Elem(), opts) |
| } |
| |
| func unsupportedTypeEncoder(e *encodeState, v reflect.Value, _ encOpts) { |
| e.error(&UnsupportedTypeError{v.Type()}) |
| } |
| |
| type structEncoder struct { |
| fields []field |
| fieldEncs []encoderFunc |
| } |
| |
| func (se *structEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) { |
| e.WriteByte('{') |
| first := true |
| for i, f := range se.fields { |
| fv := fieldByIndex(v, f.index) |
| if !fv.IsValid() || f.omitEmpty && isEmptyValue(fv) { |
| continue |
| } |
| if first { |
| first = false |
| } else { |
| e.WriteByte(',') |
| } |
| e.string(f.name, opts.escapeHTML) |
| e.WriteByte(':') |
| opts.quoted = f.quoted |
| se.fieldEncs[i](e, fv, opts) |
| } |
| e.WriteByte('}') |
| } |
| |
| func newStructEncoder(t reflect.Type) encoderFunc { |
| fields := cachedTypeFields(t) |
| se := &structEncoder{ |
| fields: fields, |
| fieldEncs: make([]encoderFunc, len(fields)), |
| } |
| for i, f := range fields { |
| se.fieldEncs[i] = typeEncoder(typeByIndex(t, f.index)) |
| } |
| return se.encode |
| } |
| |
| type mapEncoder struct { |
| elemEnc encoderFunc |
| } |
| |
| func (me *mapEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) { |
| if v.IsNil() { |
| e.WriteString("null") |
| return |
| } |
| e.WriteByte('{') |
| |
| // Extract and sort the keys. |
| keys := v.MapKeys() |
| sv := make([]reflectWithString, len(keys)) |
| for i, v := range keys { |
| sv[i].v = v |
| if err := sv[i].resolve(); err != nil { |
| e.error(&MarshalerError{v.Type(), err}) |
| } |
| } |
| sort.Slice(sv, func(i, j int) bool { return sv[i].s < sv[j].s }) |
| |
| for i, kv := range sv { |
| if i > 0 { |
| e.WriteByte(',') |
| } |
| e.string(kv.s, opts.escapeHTML) |
| e.WriteByte(':') |
| me.elemEnc(e, v.MapIndex(kv.v), opts) |
| } |
| e.WriteByte('}') |
| } |
| |
| func newMapEncoder(t reflect.Type) encoderFunc { |
| switch t.Key().Kind() { |
| case reflect.String, |
| reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, |
| reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: |
| default: |
| if !t.Key().Implements(textMarshalerType) { |
| return unsupportedTypeEncoder |
| } |
| } |
| me := &mapEncoder{typeEncoder(t.Elem())} |
| return me.encode |
| } |
| |
| func encodeByteSlice(e *encodeState, v reflect.Value, _ encOpts) { |
| if v.IsNil() { |
| e.WriteString("null") |
| return |
| } |
| s := v.Bytes() |
| e.WriteByte('"') |
| if len(s) < 1024 { |
| // for small buffers, using Encode directly is much faster. |
| dst := make([]byte, base64.StdEncoding.EncodedLen(len(s))) |
| base64.StdEncoding.Encode(dst, s) |
| e.Write(dst) |
| } else { |
| // for large buffers, avoid unnecessary extra temporary |
| // buffer space. |
| enc := base64.NewEncoder(base64.StdEncoding, e) |
| enc.Write(s) |
| enc.Close() |
| } |
| e.WriteByte('"') |
| } |
| |
| // sliceEncoder just wraps an arrayEncoder, checking to make sure the value isn't nil. |
| type sliceEncoder struct { |
| arrayEnc encoderFunc |
| } |
| |
| func (se *sliceEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) { |
| if v.IsNil() { |
| e.WriteString("null") |
| return |
| } |
| se.arrayEnc(e, v, opts) |
| } |
| |
| func newSliceEncoder(t reflect.Type) encoderFunc { |
| // Byte slices get special treatment; arrays don't. |
| if t.Elem().Kind() == reflect.Uint8 { |
| p := reflect.PtrTo(t.Elem()) |
| if !p.Implements(marshalerType) && !p.Implements(textMarshalerType) { |
| return encodeByteSlice |
| } |
| } |
| enc := &sliceEncoder{newArrayEncoder(t)} |
| return enc.encode |
| } |
| |
| type arrayEncoder struct { |
| elemEnc encoderFunc |
| } |
| |
| func (ae *arrayEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) { |
| e.WriteByte('[') |
| n := v.Len() |
| for i := 0; i < n; i++ { |
| if i > 0 { |
| e.WriteByte(',') |
| } |
| ae.elemEnc(e, v.Index(i), opts) |
| } |
| e.WriteByte(']') |
| } |
| |
| func newArrayEncoder(t reflect.Type) encoderFunc { |
| enc := &arrayEncoder{typeEncoder(t.Elem())} |
| return enc.encode |
| } |
| |
| type ptrEncoder struct { |
| elemEnc encoderFunc |
| } |
| |
| func (pe *ptrEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) { |
| if v.IsNil() { |
| e.WriteString("null") |
| return |
| } |
| pe.elemEnc(e, v.Elem(), opts) |
| } |
| |
| func newPtrEncoder(t reflect.Type) encoderFunc { |
| enc := &ptrEncoder{typeEncoder(t.Elem())} |
| return enc.encode |
| } |
| |
| type condAddrEncoder struct { |
| canAddrEnc, elseEnc encoderFunc |
| } |
| |
| func (ce *condAddrEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) { |
| if v.CanAddr() { |
| ce.canAddrEnc(e, v, opts) |
| } else { |
| ce.elseEnc(e, v, opts) |
| } |
| } |
| |
| // newCondAddrEncoder returns an encoder that checks whether its value |
| // CanAddr and delegates to canAddrEnc if so, else to elseEnc. |
| func newCondAddrEncoder(canAddrEnc, elseEnc encoderFunc) encoderFunc { |
| enc := &condAddrEncoder{canAddrEnc: canAddrEnc, elseEnc: elseEnc} |
| return enc.encode |
| } |
| |
| func isValidTag(s string) bool { |
| if s == "" { |
| return false |
| } |
| for _, c := range s { |
| switch { |
| case strings.ContainsRune("!#$%&()*+-./:<=>?@[]^_{|}~ ", c): |
| // Backslash and quote chars are reserved, but |
| // otherwise any punctuation chars are allowed |
| // in a tag name. |
| default: |
| if !unicode.IsLetter(c) && !unicode.IsDigit(c) { |
| return false |
| } |
| } |
| } |
| return true |
| } |
| |
| func fieldByIndex(v reflect.Value, index []int) reflect.Value { |
| for _, i := range index { |
| if v.Kind() == reflect.Ptr { |
| if v.IsNil() { |
| return reflect.Value{} |
| } |
| v = v.Elem() |
| } |
| v = v.Field(i) |
| } |
| return v |
| } |
| |
| func typeByIndex(t reflect.Type, index []int) reflect.Type { |
| for _, i := range index { |
| if t.Kind() == reflect.Ptr { |
| t = t.Elem() |
| } |
| t = t.Field(i).Type |
| } |
| return t |
| } |
| |
| type reflectWithString struct { |
| v reflect.Value |
| s string |
| } |
| |
| func (w *reflectWithString) resolve() error { |
| if w.v.Kind() == reflect.String { |
| w.s = w.v.String() |
| return nil |
| } |
| if tm, ok := w.v.Interface().(encoding.TextMarshaler); ok { |
| buf, err := tm.MarshalText() |
| w.s = string(buf) |
| return err |
| } |
| switch w.v.Kind() { |
| case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: |
| w.s = strconv.FormatInt(w.v.Int(), 10) |
| return nil |
| case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: |
| w.s = strconv.FormatUint(w.v.Uint(), 10) |
| return nil |
| } |
| panic("unexpected map key type") |
| } |
| |
| // NOTE: keep in sync with stringBytes below. |
| func (e *encodeState) string(s string, escapeHTML bool) int { |
| len0 := e.Len() |
| e.WriteByte('"') |
| start := 0 |
| for i := 0; i < len(s); { |
| if b := s[i]; b < utf8.RuneSelf { |
| if htmlSafeSet[b] || (!escapeHTML && safeSet[b]) { |
| i++ |
| continue |
| } |
| if start < i { |
| e.WriteString(s[start:i]) |
| } |
| switch b { |
| case '\\', '"': |
| e.WriteByte('\\') |
| e.WriteByte(b) |
| case '\n': |
| e.WriteByte('\\') |
| e.WriteByte('n') |
| case '\r': |
| e.WriteByte('\\') |
| e.WriteByte('r') |
| case '\t': |
| e.WriteByte('\\') |
| e.WriteByte('t') |
| default: |
| // This encodes bytes < 0x20 except for \t, \n and \r. |
| // If escapeHTML is set, it also escapes <, >, and & |
| // because they can lead to security holes when |
| // user-controlled strings are rendered into JSON |
| // and served to some browsers. |
| e.WriteString(`\u00`) |
| e.WriteByte(hex[b>>4]) |
| e.WriteByte(hex[b&0xF]) |
| } |
| i++ |
| start = i |
| continue |
| } |
| c, size := utf8.DecodeRuneInString(s[i:]) |
| if c == utf8.RuneError && size == 1 { |
| if start < i { |
| e.WriteString(s[start:i]) |
| } |
| e.WriteString(`\ufffd`) |
| i += size |
| start = i |
| continue |
| } |
| // U+2028 is LINE SEPARATOR. |
| // U+2029 is PARAGRAPH SEPARATOR. |
| // They are both technically valid characters in JSON strings, |
| // but don't work in JSONP, which has to be evaluated as JavaScript, |
| // and can lead to security holes there. It is valid JSON to |
| // escape them, so we do so unconditionally. |
| // See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion. |
| if c == '\u2028' || c == '\u2029' { |
| if start < i { |
| e.WriteString(s[start:i]) |
| } |
| e.WriteString(`\u202`) |
| e.WriteByte(hex[c&0xF]) |
| i += size |
| start = i |
| continue |
| } |
| i += size |
| } |
| if start < len(s) { |
| e.WriteString(s[start:]) |
| } |
| e.WriteByte('"') |
| return e.Len() - len0 |
| } |
| |
| // NOTE: keep in sync with string above. |
| func (e *encodeState) stringBytes(s []byte, escapeHTML bool) int { |
| len0 := e.Len() |
| e.WriteByte('"') |
| start := 0 |
| for i := 0; i < len(s); { |
| if b := s[i]; b < utf8.RuneSelf { |
| if htmlSafeSet[b] || (!escapeHTML && safeSet[b]) { |
| i++ |
| continue |
| } |
| if start < i { |
| e.Write(s[start:i]) |
| } |
| switch b { |
| case '\\', '"': |
| e.WriteByte('\\') |
| e.WriteByte(b) |
| case '\n': |
| e.WriteByte('\\') |
| e.WriteByte('n') |
| case '\r': |
| e.WriteByte('\\') |
| e.WriteByte('r') |
| case '\t': |
| e.WriteByte('\\') |
| e.WriteByte('t') |
| default: |
| // This encodes bytes < 0x20 except for \t, \n and \r. |
| // If escapeHTML is set, it also escapes <, >, and & |
| // because they can lead to security holes when |
| // user-controlled strings are rendered into JSON |
| // and served to some browsers. |
| e.WriteString(`\u00`) |
| e.WriteByte(hex[b>>4]) |
| e.WriteByte(hex[b&0xF]) |
| } |
| i++ |
| start = i |
| continue |
| } |
| c, size := utf8.DecodeRune(s[i:]) |
| if c == utf8.RuneError && size == 1 { |
| if start < i { |
| e.Write(s[start:i]) |
| } |
| e.WriteString(`\ufffd`) |
| i += size |
| start = i |
| continue |
| } |
| // U+2028 is LINE SEPARATOR. |
| // U+2029 is PARAGRAPH SEPARATOR. |
| // They are both technically valid characters in JSON strings, |
| // but don't work in JSONP, which has to be evaluated as JavaScript, |
| // and can lead to security holes there. It is valid JSON to |
| // escape them, so we do so unconditionally. |
| // See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion. |
| if c == '\u2028' || c == '\u2029' { |
| if start < i { |
| e.Write(s[start:i]) |
| } |
| e.WriteString(`\u202`) |
| e.WriteByte(hex[c&0xF]) |
| i += size |
| start = i |
| continue |
| } |
| i += size |
| } |
| if start < len(s) { |
| e.Write(s[start:]) |
| } |
| e.WriteByte('"') |
| return e.Len() - len0 |
| } |
| |
| // A field represents a single field found in a struct. |
| type field struct { |
| name string |
| nameBytes []byte // []byte(name) |
| equalFold func(s, t []byte) bool // bytes.EqualFold or equivalent |
| |
| tag bool |
| index []int |
| typ reflect.Type |
| omitEmpty bool |
| quoted bool |
| } |
| |
| func fillField(f field) field { |
| f.nameBytes = []byte(f.name) |
| f.equalFold = foldFunc(f.nameBytes) |
| return f |
| } |
| |
| // byIndex sorts field by index sequence. |
| type byIndex []field |
| |
| func (x byIndex) Len() int { return len(x) } |
| |
| func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] } |
| |
| func (x byIndex) Less(i, j int) bool { |
| for k, xik := range x[i].index { |
| if k >= len(x[j].index) { |
| return false |
| } |
| if xik != x[j].index[k] { |
| return xik < x[j].index[k] |
| } |
| } |
| return len(x[i].index) < len(x[j].index) |
| } |
| |
| // typeFields returns a list of fields that JSON should recognize for the given type. |
| // The algorithm is breadth-first search over the set of structs to include - the top struct |
| // and then any reachable anonymous structs. |
| func typeFields(t reflect.Type) []field { |
| // Anonymous fields to explore at the current level and the next. |
| current := []field{} |
| next := []field{{typ: t}} |
| |
| // Count of queued names for current level and the next. |
| count := map[reflect.Type]int{} |
| nextCount := map[reflect.Type]int{} |
| |
| // Types already visited at an earlier level. |
| visited := map[reflect.Type]bool{} |
| |
| // Fields found. |
| var fields []field |
| |
| for len(next) > 0 { |
| current, next = next, current[:0] |
| count, nextCount = nextCount, map[reflect.Type]int{} |
| |
| for _, f := range current { |
| if visited[f.typ] { |
| continue |
| } |
| visited[f.typ] = true |
| |
| // Scan f.typ for fields to include. |
| for i := 0; i < f.typ.NumField(); i++ { |
| sf := f.typ.Field(i) |
| if sf.PkgPath != "" && !sf.Anonymous { // unexported |
| continue |
| } |
| tag := sf.Tag.Get("json") |
| if tag == "-" { |
| continue |
| } |
| name, opts := parseTag(tag) |
| if !isValidTag(name) { |
| name = "" |
| } |
| index := make([]int, len(f.index)+1) |
| copy(index, f.index) |
| index[len(f.index)] = i |
| |
| ft := sf.Type |
| if ft.Name() == "" && ft.Kind() == reflect.Ptr { |
| // Follow pointer. |
| ft = ft.Elem() |
| } |
| |
| // Only strings, floats, integers, and booleans can be quoted. |
| quoted := false |
| if opts.Contains("string") { |
| switch ft.Kind() { |
| case reflect.Bool, |
| reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, |
| reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, |
| reflect.Float32, reflect.Float64, |
| reflect.String: |
| quoted = true |
| } |
| } |
| |
| // Record found field and index sequence. |
| if name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct { |
| tagged := name != "" |
| if name == "" { |
| name = sf.Name |
| } |
| fields = append(fields, fillField(field{ |
| name: name, |
| tag: tagged, |
| index: index, |
| typ: ft, |
| omitEmpty: opts.Contains("omitempty"), |
| quoted: quoted, |
| })) |
| if count[f.typ] > 1 { |
| // If there were multiple instances, add a second, |
| // so that the annihilation code will see a duplicate. |
| // It only cares about the distinction between 1 or 2, |
| // so don't bother generating any more copies. |
| fields = append(fields, fields[len(fields)-1]) |
| } |
| continue |
| } |
| |
| // Record new anonymous struct to explore in next round. |
| nextCount[ft]++ |
| if nextCount[ft] == 1 { |
| next = append(next, fillField(field{name: ft.Name(), index: index, typ: ft})) |
| } |
| } |
| } |
| } |
| |
| sort.Slice(fields, func(i, j int) bool { |
| x := fields |
| // sort field by name, breaking ties with depth, then |
| // breaking ties with "name came from json tag", then |
| // breaking ties with index sequence. |
| if x[i].name != x[j].name { |
| return x[i].name < x[j].name |
| } |
| if len(x[i].index) != len(x[j].index) { |
| return len(x[i].index) < len(x[j].index) |
| } |
| if x[i].tag != x[j].tag { |
| return x[i].tag |
| } |
| return byIndex(x).Less(i, j) |
| }) |
| |
| // Delete all fields that are hidden by the Go rules for embedded fields, |
| // except that fields with JSON tags are promoted. |
| |
| // The fields are sorted in primary order of name, secondary order |
| // of field index length. Loop over names; for each name, delete |
| // hidden fields by choosing the one dominant field that survives. |
| out := fields[:0] |
| for advance, i := 0, 0; i < len(fields); i += advance { |
| // One iteration per name. |
| // Find the sequence of fields with the name of this first field. |
| fi := fields[i] |
| name := fi.name |
| for advance = 1; i+advance < len(fields); advance++ { |
| fj := fields[i+advance] |
| if fj.name != name { |
| break |
| } |
| } |
| if advance == 1 { // Only one field with this name |
| out = append(out, fi) |
| continue |
| } |
| dominant, ok := dominantField(fields[i : i+advance]) |
| if ok { |
| out = append(out, dominant) |
| } |
| } |
| |
| fields = out |
| sort.Sort(byIndex(fields)) |
| |
| return fields |
| } |
| |
| // dominantField looks through the fields, all of which are known to |
| // have the same name, to find the single field that dominates the |
| // others using Go's embedding rules, modified by the presence of |
| // JSON tags. If there are multiple top-level fields, the boolean |
| // will be false: This condition is an error in Go and we skip all |
| // the fields. |
| func dominantField(fields []field) (field, bool) { |
| // The fields are sorted in increasing index-length order. The winner |
| // must therefore be one with the shortest index length. Drop all |
| // longer entries, which is easy: just truncate the slice. |
| length := len(fields[0].index) |
| tagged := -1 // Index of first tagged field. |
| for i, f := range fields { |
| if len(f.index) > length { |
| fields = fields[:i] |
| break |
| } |
| if f.tag { |
| if tagged >= 0 { |
| // Multiple tagged fields at the same level: conflict. |
| // Return no field. |
| return field{}, false |
| } |
| tagged = i |
| } |
| } |
| if tagged >= 0 { |
| return fields[tagged], true |
| } |
| // All remaining fields have the same length. If there's more than one, |
| // we have a conflict (two fields named "X" at the same level) and we |
| // return no field. |
| if len(fields) > 1 { |
| return field{}, false |
| } |
| return fields[0], true |
| } |
| |
| var fieldCache struct { |
| value atomic.Value // map[reflect.Type][]field |
| mu sync.Mutex // used only by writers |
| } |
| |
| // cachedTypeFields is like typeFields but uses a cache to avoid repeated work. |
| func cachedTypeFields(t reflect.Type) []field { |
| m, _ := fieldCache.value.Load().(map[reflect.Type][]field) |
| f := m[t] |
| if f != nil { |
| return f |
| } |
| |
| // Compute fields without lock. |
| // Might duplicate effort but won't hold other computations back. |
| f = typeFields(t) |
| if f == nil { |
| f = []field{} |
| } |
| |
| fieldCache.mu.Lock() |
| m, _ = fieldCache.value.Load().(map[reflect.Type][]field) |
| newM := make(map[reflect.Type][]field, len(m)+1) |
| for k, v := range m { |
| newM[k] = v |
| } |
| newM[t] = f |
| fieldCache.value.Store(newM) |
| fieldCache.mu.Unlock() |
| return f |
| } |