blob: 0be06d124e508664a2a6364116e689f9f165347f [file] [log] [blame]
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "go_asm.h"
#include "go_tls.h"
#include "tls_arm64.h"
#include "funcdata.h"
#include "textflag.h"
TEXT runtime·rt0_go(SB),NOSPLIT,$0
// SP = stack; R0 = argc; R1 = argv
SUB $32, RSP
MOVW R0, 8(RSP) // argc
MOVD R1, 16(RSP) // argv
// create istack out of the given (operating system) stack.
// _cgo_init may update stackguard.
MOVD $runtime·g0(SB), g
MOVD RSP, R7
MOVD $(-64*1024)(R7), R0
MOVD R0, g_stackguard0(g)
MOVD R0, g_stackguard1(g)
MOVD R0, (g_stack+stack_lo)(g)
MOVD R7, (g_stack+stack_hi)(g)
// if there is a _cgo_init, call it using the gcc ABI.
MOVD _cgo_init(SB), R12
CMP $0, R12
BEQ nocgo
MRS_TPIDR_R0 // load TLS base pointer
MOVD R0, R3 // arg 3: TLS base pointer
#ifdef TLSG_IS_VARIABLE
MOVD $runtime·tls_g(SB), R2 // arg 2: &tls_g
#else
MOVD $0, R2 // arg 2: not used when using platform's TLS
#endif
MOVD $setg_gcc<>(SB), R1 // arg 1: setg
MOVD g, R0 // arg 0: G
SUB $16, RSP // reserve 16 bytes for sp-8 where fp may be saved.
BL (R12)
ADD $16, RSP
nocgo:
BL runtime·save_g(SB)
// update stackguard after _cgo_init
MOVD (g_stack+stack_lo)(g), R0
ADD $const__StackGuard, R0
MOVD R0, g_stackguard0(g)
MOVD R0, g_stackguard1(g)
// set the per-goroutine and per-mach "registers"
MOVD $runtime·m0(SB), R0
// save m->g0 = g0
MOVD g, m_g0(R0)
// save m0 to g0->m
MOVD R0, g_m(g)
BL runtime·check(SB)
MOVW 8(RSP), R0 // copy argc
MOVW R0, -8(RSP)
MOVD 16(RSP), R0 // copy argv
MOVD R0, 0(RSP)
BL runtime·args(SB)
BL runtime·osinit(SB)
BL runtime·schedinit(SB)
// create a new goroutine to start program
MOVD $runtime·mainPC(SB), R0 // entry
MOVD RSP, R7
MOVD.W $0, -8(R7)
MOVD.W R0, -8(R7)
MOVD.W $0, -8(R7)
MOVD.W $0, -8(R7)
MOVD R7, RSP
BL runtime·newproc(SB)
ADD $32, RSP
// start this M
BL runtime·mstart(SB)
MOVD $0, R0
MOVD R0, (R0) // boom
UNDEF
DATA runtime·mainPC+0(SB)/8,$runtime·main(SB)
GLOBL runtime·mainPC(SB),RODATA,$8
TEXT runtime·breakpoint(SB),NOSPLIT|NOFRAME,$0-0
BRK
RET
TEXT runtime·asminit(SB),NOSPLIT|NOFRAME,$0-0
RET
/*
* go-routine
*/
// void gosave(Gobuf*)
// save state in Gobuf; setjmp
TEXT runtime·gosave(SB), NOSPLIT|NOFRAME, $0-8
MOVD buf+0(FP), R3
MOVD RSP, R0
MOVD R0, gobuf_sp(R3)
MOVD R29, gobuf_bp(R3)
MOVD LR, gobuf_pc(R3)
MOVD g, gobuf_g(R3)
MOVD ZR, gobuf_lr(R3)
MOVD ZR, gobuf_ret(R3)
// Assert ctxt is zero. See func save.
MOVD gobuf_ctxt(R3), R0
CMP $0, R0
BEQ 2(PC)
CALL runtime·badctxt(SB)
RET
// void gogo(Gobuf*)
// restore state from Gobuf; longjmp
TEXT runtime·gogo(SB), NOSPLIT, $24-8
MOVD buf+0(FP), R5
MOVD gobuf_g(R5), g
BL runtime·save_g(SB)
MOVD 0(g), R4 // make sure g is not nil
MOVD gobuf_sp(R5), R0
MOVD R0, RSP
MOVD gobuf_bp(R5), R29
MOVD gobuf_lr(R5), LR
MOVD gobuf_ret(R5), R0
MOVD gobuf_ctxt(R5), R26
MOVD $0, gobuf_sp(R5)
MOVD $0, gobuf_bp(R5)
MOVD $0, gobuf_ret(R5)
MOVD $0, gobuf_lr(R5)
MOVD $0, gobuf_ctxt(R5)
CMP ZR, ZR // set condition codes for == test, needed by stack split
MOVD gobuf_pc(R5), R6
B (R6)
// void mcall(fn func(*g))
// Switch to m->g0's stack, call fn(g).
// Fn must never return. It should gogo(&g->sched)
// to keep running g.
TEXT runtime·mcall(SB), NOSPLIT|NOFRAME, $0-8
// Save caller state in g->sched
MOVD RSP, R0
MOVD R0, (g_sched+gobuf_sp)(g)
MOVD R29, (g_sched+gobuf_bp)(g)
MOVD LR, (g_sched+gobuf_pc)(g)
MOVD $0, (g_sched+gobuf_lr)(g)
MOVD g, (g_sched+gobuf_g)(g)
// Switch to m->g0 & its stack, call fn.
MOVD g, R3
MOVD g_m(g), R8
MOVD m_g0(R8), g
BL runtime·save_g(SB)
CMP g, R3
BNE 2(PC)
B runtime·badmcall(SB)
MOVD fn+0(FP), R26 // context
MOVD 0(R26), R4 // code pointer
MOVD (g_sched+gobuf_sp)(g), R0
MOVD R0, RSP // sp = m->g0->sched.sp
MOVD (g_sched+gobuf_bp)(g), R29
MOVD R3, -8(RSP)
MOVD $0, -16(RSP)
SUB $16, RSP
BL (R4)
B runtime·badmcall2(SB)
// systemstack_switch is a dummy routine that systemstack leaves at the bottom
// of the G stack. We need to distinguish the routine that
// lives at the bottom of the G stack from the one that lives
// at the top of the system stack because the one at the top of
// the system stack terminates the stack walk (see topofstack()).
TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0
UNDEF
BL (LR) // make sure this function is not leaf
RET
// func systemstack(fn func())
TEXT runtime·systemstack(SB), NOSPLIT, $0-8
MOVD fn+0(FP), R3 // R3 = fn
MOVD R3, R26 // context
MOVD g_m(g), R4 // R4 = m
MOVD m_gsignal(R4), R5 // R5 = gsignal
CMP g, R5
BEQ noswitch
MOVD m_g0(R4), R5 // R5 = g0
CMP g, R5
BEQ noswitch
MOVD m_curg(R4), R6
CMP g, R6
BEQ switch
// Bad: g is not gsignal, not g0, not curg. What is it?
// Hide call from linker nosplit analysis.
MOVD $runtime·badsystemstack(SB), R3
BL (R3)
B runtime·abort(SB)
switch:
// save our state in g->sched. Pretend to
// be systemstack_switch if the G stack is scanned.
MOVD $runtime·systemstack_switch(SB), R6
ADD $8, R6 // get past prologue
MOVD R6, (g_sched+gobuf_pc)(g)
MOVD RSP, R0
MOVD R0, (g_sched+gobuf_sp)(g)
MOVD R29, (g_sched+gobuf_bp)(g)
MOVD $0, (g_sched+gobuf_lr)(g)
MOVD g, (g_sched+gobuf_g)(g)
// switch to g0
MOVD R5, g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R3
// make it look like mstart called systemstack on g0, to stop traceback
SUB $16, R3
AND $~15, R3
MOVD $runtime·mstart(SB), R4
MOVD R4, 0(R3)
MOVD R3, RSP
MOVD (g_sched+gobuf_bp)(g), R29
// call target function
MOVD 0(R26), R3 // code pointer
BL (R3)
// switch back to g
MOVD g_m(g), R3
MOVD m_curg(R3), g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R0
MOVD R0, RSP
MOVD (g_sched+gobuf_bp)(g), R29
MOVD $0, (g_sched+gobuf_sp)(g)
MOVD $0, (g_sched+gobuf_bp)(g)
RET
noswitch:
// already on m stack, just call directly
// Using a tail call here cleans up tracebacks since we won't stop
// at an intermediate systemstack.
MOVD 0(R26), R3 // code pointer
MOVD.P 16(RSP), R30 // restore LR
SUB $8, RSP, R29 // restore FP
B (R3)
/*
* support for morestack
*/
// Called during function prolog when more stack is needed.
// Caller has already loaded:
// R3 prolog's LR (R30)
//
// The traceback routines see morestack on a g0 as being
// the top of a stack (for example, morestack calling newstack
// calling the scheduler calling newm calling gc), so we must
// record an argument size. For that purpose, it has no arguments.
TEXT runtime·morestack(SB),NOSPLIT|NOFRAME,$0-0
// Cannot grow scheduler stack (m->g0).
MOVD g_m(g), R8
MOVD m_g0(R8), R4
CMP g, R4
BNE 3(PC)
BL runtime·badmorestackg0(SB)
B runtime·abort(SB)
// Cannot grow signal stack (m->gsignal).
MOVD m_gsignal(R8), R4
CMP g, R4
BNE 3(PC)
BL runtime·badmorestackgsignal(SB)
B runtime·abort(SB)
// Called from f.
// Set g->sched to context in f
MOVD RSP, R0
MOVD R0, (g_sched+gobuf_sp)(g)
MOVD R29, (g_sched+gobuf_bp)(g)
MOVD LR, (g_sched+gobuf_pc)(g)
MOVD R3, (g_sched+gobuf_lr)(g)
MOVD R26, (g_sched+gobuf_ctxt)(g)
// Called from f.
// Set m->morebuf to f's callers.
MOVD R3, (m_morebuf+gobuf_pc)(R8) // f's caller's PC
MOVD RSP, R0
MOVD R0, (m_morebuf+gobuf_sp)(R8) // f's caller's RSP
MOVD g, (m_morebuf+gobuf_g)(R8)
// Call newstack on m->g0's stack.
MOVD m_g0(R8), g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R0
MOVD R0, RSP
MOVD (g_sched+gobuf_bp)(g), R29
MOVD.W $0, -16(RSP) // create a call frame on g0 (saved LR; keep 16-aligned)
BL runtime·newstack(SB)
// Not reached, but make sure the return PC from the call to newstack
// is still in this function, and not the beginning of the next.
UNDEF
TEXT runtime·morestack_noctxt(SB),NOSPLIT|NOFRAME,$0-0
MOVW $0, R26
B runtime·morestack(SB)
// reflectcall: call a function with the given argument list
// func call(argtype *_type, f *FuncVal, arg *byte, argsize, retoffset uint32).
// we don't have variable-sized frames, so we use a small number
// of constant-sized-frame functions to encode a few bits of size in the pc.
// Caution: ugly multiline assembly macros in your future!
#define DISPATCH(NAME,MAXSIZE) \
MOVD $MAXSIZE, R27; \
CMP R27, R16; \
BGT 3(PC); \
MOVD $NAME(SB), R27; \
B (R27)
// Note: can't just "B NAME(SB)" - bad inlining results.
TEXT ·reflectcall(SB), NOSPLIT|NOFRAME, $0-32
MOVWU argsize+24(FP), R16
DISPATCH(runtime·call32, 32)
DISPATCH(runtime·call64, 64)
DISPATCH(runtime·call128, 128)
DISPATCH(runtime·call256, 256)
DISPATCH(runtime·call512, 512)
DISPATCH(runtime·call1024, 1024)
DISPATCH(runtime·call2048, 2048)
DISPATCH(runtime·call4096, 4096)
DISPATCH(runtime·call8192, 8192)
DISPATCH(runtime·call16384, 16384)
DISPATCH(runtime·call32768, 32768)
DISPATCH(runtime·call65536, 65536)
DISPATCH(runtime·call131072, 131072)
DISPATCH(runtime·call262144, 262144)
DISPATCH(runtime·call524288, 524288)
DISPATCH(runtime·call1048576, 1048576)
DISPATCH(runtime·call2097152, 2097152)
DISPATCH(runtime·call4194304, 4194304)
DISPATCH(runtime·call8388608, 8388608)
DISPATCH(runtime·call16777216, 16777216)
DISPATCH(runtime·call33554432, 33554432)
DISPATCH(runtime·call67108864, 67108864)
DISPATCH(runtime·call134217728, 134217728)
DISPATCH(runtime·call268435456, 268435456)
DISPATCH(runtime·call536870912, 536870912)
DISPATCH(runtime·call1073741824, 1073741824)
MOVD $runtime·badreflectcall(SB), R0
B (R0)
#define CALLFN(NAME,MAXSIZE) \
TEXT NAME(SB), WRAPPER, $MAXSIZE-24; \
NO_LOCAL_POINTERS; \
/* copy arguments to stack */ \
MOVD arg+16(FP), R3; \
MOVWU argsize+24(FP), R4; \
ADD $8, RSP, R5; \
BIC $0xf, R4, R6; \
CBZ R6, 6(PC); \
/* if R6=(argsize&~15) != 0 */ \
ADD R6, R5, R6; \
/* copy 16 bytes a time */ \
LDP.P 16(R3), (R7, R8); \
STP.P (R7, R8), 16(R5); \
CMP R5, R6; \
BNE -3(PC); \
AND $0xf, R4, R6; \
CBZ R6, 6(PC); \
/* if R6=(argsize&15) != 0 */ \
ADD R6, R5, R6; \
/* copy 1 byte a time for the rest */ \
MOVBU.P 1(R3), R7; \
MOVBU.P R7, 1(R5); \
CMP R5, R6; \
BNE -3(PC); \
/* call function */ \
MOVD f+8(FP), R26; \
MOVD (R26), R0; \
PCDATA $PCDATA_StackMapIndex, $0; \
BL (R0); \
/* copy return values back */ \
MOVD argtype+0(FP), R7; \
MOVD arg+16(FP), R3; \
MOVWU n+24(FP), R4; \
MOVWU retoffset+28(FP), R6; \
ADD $8, RSP, R5; \
ADD R6, R5; \
ADD R6, R3; \
SUB R6, R4; \
BL callRet<>(SB); \
RET
// callRet copies return values back at the end of call*. This is a
// separate function so it can allocate stack space for the arguments
// to reflectcallmove. It does not follow the Go ABI; it expects its
// arguments in registers.
TEXT callRet<>(SB), NOSPLIT, $40-0
MOVD R7, 8(RSP)
MOVD R3, 16(RSP)
MOVD R5, 24(RSP)
MOVD R4, 32(RSP)
BL runtime·reflectcallmove(SB)
RET
// These have 8 added to make the overall frame size a multiple of 16,
// as required by the ABI. (There is another +8 for the saved LR.)
CALLFN(·call32, 40 )
CALLFN(·call64, 72 )
CALLFN(·call128, 136 )
CALLFN(·call256, 264 )
CALLFN(·call512, 520 )
CALLFN(·call1024, 1032 )
CALLFN(·call2048, 2056 )
CALLFN(·call4096, 4104 )
CALLFN(·call8192, 8200 )
CALLFN(·call16384, 16392 )
CALLFN(·call32768, 32776 )
CALLFN(·call65536, 65544 )
CALLFN(·call131072, 131080 )
CALLFN(·call262144, 262152 )
CALLFN(·call524288, 524296 )
CALLFN(·call1048576, 1048584 )
CALLFN(·call2097152, 2097160 )
CALLFN(·call4194304, 4194312 )
CALLFN(·call8388608, 8388616 )
CALLFN(·call16777216, 16777224 )
CALLFN(·call33554432, 33554440 )
CALLFN(·call67108864, 67108872 )
CALLFN(·call134217728, 134217736 )
CALLFN(·call268435456, 268435464 )
CALLFN(·call536870912, 536870920 )
CALLFN(·call1073741824, 1073741832 )
// func memhash32(p unsafe.Pointer, h uintptr) uintptr
TEXT runtime·memhash32(SB),NOSPLIT|NOFRAME,$0-24
MOVB runtime·useAeshash(SB), R0
CMP $0, R0
BEQ noaes
MOVD p+0(FP), R0
MOVD h+8(FP), R1
MOVD $ret+16(FP), R2
MOVD $runtime·aeskeysched+0(SB), R3
VEOR V0.B16, V0.B16, V0.B16
VLD1 (R3), [V2.B16]
VLD1 (R0), V0.S[1]
VMOV R1, V0.S[0]
AESE V2.B16, V0.B16
AESMC V0.B16, V0.B16
AESE V2.B16, V0.B16
AESMC V0.B16, V0.B16
AESE V2.B16, V0.B16
VST1 [V0.D1], (R2)
RET
noaes:
B runtime·memhash32Fallback(SB)
// func memhash64(p unsafe.Pointer, h uintptr) uintptr
TEXT runtime·memhash64(SB),NOSPLIT|NOFRAME,$0-24
MOVB runtime·useAeshash(SB), R0
CMP $0, R0
BEQ noaes
MOVD p+0(FP), R0
MOVD h+8(FP), R1
MOVD $ret+16(FP), R2
MOVD $runtime·aeskeysched+0(SB), R3
VEOR V0.B16, V0.B16, V0.B16
VLD1 (R3), [V2.B16]
VLD1 (R0), V0.D[1]
VMOV R1, V0.D[0]
AESE V2.B16, V0.B16
AESMC V0.B16, V0.B16
AESE V2.B16, V0.B16
AESMC V0.B16, V0.B16
AESE V2.B16, V0.B16
VST1 [V0.D1], (R2)
RET
noaes:
B runtime·memhash64Fallback(SB)
// func memhash(p unsafe.Pointer, h, size uintptr) uintptr
TEXT runtime·memhash(SB),NOSPLIT|NOFRAME,$0-32
MOVB runtime·useAeshash(SB), R0
CMP $0, R0
BEQ noaes
MOVD p+0(FP), R0
MOVD s+16(FP), R1
MOVD h+8(FP), R3
MOVD $ret+24(FP), R2
B aeshashbody<>(SB)
noaes:
B runtime·memhashFallback(SB)
// func strhash(p unsafe.Pointer, h uintptr) uintptr
TEXT runtime·strhash(SB),NOSPLIT|NOFRAME,$0-24
MOVB runtime·useAeshash(SB), R0
CMP $0, R0
BEQ noaes
MOVD p+0(FP), R10 // string pointer
LDP (R10), (R0, R1) //string data/ length
MOVD h+8(FP), R3
MOVD $ret+16(FP), R2 // return adddress
B aeshashbody<>(SB)
noaes:
B runtime·strhashFallback(SB)
// R0: data
// R1: length
// R2: address to put return value
// R3: seed data
TEXT aeshashbody<>(SB),NOSPLIT|NOFRAME,$0
VEOR V30.B16, V30.B16, V30.B16
VMOV R3, V30.D[0]
VMOV R1, V30.D[1] // load length into seed
MOVD $runtime·aeskeysched+0(SB), R4
VLD1.P 16(R4), [V0.B16]
AESE V30.B16, V0.B16
AESMC V0.B16, V0.B16
CMP $16, R1
BLO aes0to15
BEQ aes16
CMP $32, R1
BLS aes17to32
CMP $64, R1
BLS aes33to64
CMP $128, R1
BLS aes65to128
B aes129plus
aes0to15:
CMP $0, R1
BEQ aes0
VEOR V2.B16, V2.B16, V2.B16
TBZ $3, R1, less_than_8
VLD1.P 8(R0), V2.D[0]
less_than_8:
TBZ $2, R1, less_than_4
VLD1.P 4(R0), V2.S[2]
less_than_4:
TBZ $1, R1, less_than_2
VLD1.P 2(R0), V2.H[6]
less_than_2:
TBZ $0, R1, done
VLD1 (R0), V2.B[14]
done:
AESE V0.B16, V2.B16
AESMC V2.B16, V2.B16
AESE V0.B16, V2.B16
AESMC V2.B16, V2.B16
AESE V0.B16, V2.B16
VST1 [V2.D1], (R2)
RET
aes0:
VST1 [V0.D1], (R2)
RET
aes16:
VLD1 (R0), [V2.B16]
B done
aes17to32:
// make second seed
VLD1 (R4), [V1.B16]
AESE V30.B16, V1.B16
AESMC V1.B16, V1.B16
SUB $16, R1, R10
VLD1.P (R0)(R10), [V2.B16]
VLD1 (R0), [V3.B16]
AESE V0.B16, V2.B16
AESMC V2.B16, V2.B16
AESE V1.B16, V3.B16
AESMC V3.B16, V3.B16
AESE V0.B16, V2.B16
AESMC V2.B16, V2.B16
AESE V1.B16, V3.B16
AESMC V3.B16, V3.B16
AESE V0.B16, V2.B16
AESE V1.B16, V3.B16
VEOR V3.B16, V2.B16, V2.B16
VST1 [V2.D1], (R2)
RET
aes33to64:
VLD1 (R4), [V1.B16, V2.B16, V3.B16]
AESE V30.B16, V1.B16
AESMC V1.B16, V1.B16
AESE V30.B16, V2.B16
AESMC V2.B16, V2.B16
AESE V30.B16, V3.B16
AESMC V3.B16, V3.B16
SUB $32, R1, R10
VLD1.P (R0)(R10), [V4.B16, V5.B16]
VLD1 (R0), [V6.B16, V7.B16]
AESE V0.B16, V4.B16
AESMC V4.B16, V4.B16
AESE V1.B16, V5.B16
AESMC V5.B16, V5.B16
AESE V2.B16, V6.B16
AESMC V6.B16, V6.B16
AESE V3.B16, V7.B16
AESMC V7.B16, V7.B16
AESE V0.B16, V4.B16
AESMC V4.B16, V4.B16
AESE V1.B16, V5.B16
AESMC V5.B16, V5.B16
AESE V2.B16, V6.B16
AESMC V6.B16, V6.B16
AESE V3.B16, V7.B16
AESMC V7.B16, V7.B16
AESE V0.B16, V4.B16
AESE V1.B16, V5.B16
AESE V2.B16, V6.B16
AESE V3.B16, V7.B16
VEOR V6.B16, V4.B16, V4.B16
VEOR V7.B16, V5.B16, V5.B16
VEOR V5.B16, V4.B16, V4.B16
VST1 [V4.D1], (R2)
RET
aes65to128:
VLD1.P 64(R4), [V1.B16, V2.B16, V3.B16, V4.B16]
VLD1 (R4), [V5.B16, V6.B16, V7.B16]
AESE V30.B16, V1.B16
AESMC V1.B16, V1.B16
AESE V30.B16, V2.B16
AESMC V2.B16, V2.B16
AESE V30.B16, V3.B16
AESMC V3.B16, V3.B16
AESE V30.B16, V4.B16
AESMC V4.B16, V4.B16
AESE V30.B16, V5.B16
AESMC V5.B16, V5.B16
AESE V30.B16, V6.B16
AESMC V6.B16, V6.B16
AESE V30.B16, V7.B16
AESMC V7.B16, V7.B16
SUB $64, R1, R10
VLD1.P (R0)(R10), [V8.B16, V9.B16, V10.B16, V11.B16]
VLD1 (R0), [V12.B16, V13.B16, V14.B16, V15.B16]
AESE V0.B16, V8.B16
AESMC V8.B16, V8.B16
AESE V1.B16, V9.B16
AESMC V9.B16, V9.B16
AESE V2.B16, V10.B16
AESMC V10.B16, V10.B16
AESE V3.B16, V11.B16
AESMC V11.B16, V11.B16
AESE V4.B16, V12.B16
AESMC V12.B16, V12.B16
AESE V5.B16, V13.B16
AESMC V13.B16, V13.B16
AESE V6.B16, V14.B16
AESMC V14.B16, V14.B16
AESE V7.B16, V15.B16
AESMC V15.B16, V15.B16
AESE V0.B16, V8.B16
AESMC V8.B16, V8.B16
AESE V1.B16, V9.B16
AESMC V9.B16, V9.B16
AESE V2.B16, V10.B16
AESMC V10.B16, V10.B16
AESE V3.B16, V11.B16
AESMC V11.B16, V11.B16
AESE V4.B16, V12.B16
AESMC V12.B16, V12.B16
AESE V5.B16, V13.B16
AESMC V13.B16, V13.B16
AESE V6.B16, V14.B16
AESMC V14.B16, V14.B16
AESE V7.B16, V15.B16
AESMC V15.B16, V15.B16
AESE V0.B16, V8.B16
AESE V1.B16, V9.B16
AESE V2.B16, V10.B16
AESE V3.B16, V11.B16
AESE V4.B16, V12.B16
AESE V5.B16, V13.B16
AESE V6.B16, V14.B16
AESE V7.B16, V15.B16
VEOR V12.B16, V8.B16, V8.B16
VEOR V13.B16, V9.B16, V9.B16
VEOR V14.B16, V10.B16, V10.B16
VEOR V15.B16, V11.B16, V11.B16
VEOR V10.B16, V8.B16, V8.B16
VEOR V11.B16, V9.B16, V9.B16
VEOR V9.B16, V8.B16, V8.B16
VST1 [V8.D1], (R2)
RET
aes129plus:
PRFM (R0), PLDL1KEEP
VLD1.P 64(R4), [V1.B16, V2.B16, V3.B16, V4.B16]
VLD1 (R4), [V5.B16, V6.B16, V7.B16]
AESE V30.B16, V1.B16
AESMC V1.B16, V1.B16
AESE V30.B16, V2.B16
AESMC V2.B16, V2.B16
AESE V30.B16, V3.B16
AESMC V3.B16, V3.B16
AESE V30.B16, V4.B16
AESMC V4.B16, V4.B16
AESE V30.B16, V5.B16
AESMC V5.B16, V5.B16
AESE V30.B16, V6.B16
AESMC V6.B16, V6.B16
AESE V30.B16, V7.B16
AESMC V7.B16, V7.B16
ADD R0, R1, R10
SUB $128, R10, R10
VLD1.P 64(R10), [V8.B16, V9.B16, V10.B16, V11.B16]
VLD1 (R10), [V12.B16, V13.B16, V14.B16, V15.B16]
SUB $1, R1, R1
LSR $7, R1, R1
aesloop:
AESE V8.B16, V0.B16
AESMC V0.B16, V0.B16
AESE V9.B16, V1.B16
AESMC V1.B16, V1.B16
AESE V10.B16, V2.B16
AESMC V2.B16, V2.B16
AESE V11.B16, V3.B16
AESMC V3.B16, V3.B16
AESE V12.B16, V4.B16
AESMC V4.B16, V4.B16
AESE V13.B16, V5.B16
AESMC V5.B16, V5.B16
AESE V14.B16, V6.B16
AESMC V6.B16, V6.B16
AESE V15.B16, V7.B16
AESMC V7.B16, V7.B16
VLD1.P 64(R0), [V8.B16, V9.B16, V10.B16, V11.B16]
AESE V8.B16, V0.B16
AESMC V0.B16, V0.B16
AESE V9.B16, V1.B16
AESMC V1.B16, V1.B16
AESE V10.B16, V2.B16
AESMC V2.B16, V2.B16
AESE V11.B16, V3.B16
AESMC V3.B16, V3.B16
VLD1.P 64(R0), [V12.B16, V13.B16, V14.B16, V15.B16]
AESE V12.B16, V4.B16
AESMC V4.B16, V4.B16
AESE V13.B16, V5.B16
AESMC V5.B16, V5.B16
AESE V14.B16, V6.B16
AESMC V6.B16, V6.B16
AESE V15.B16, V7.B16
AESMC V7.B16, V7.B16
SUB $1, R1, R1
CBNZ R1, aesloop
AESE V8.B16, V0.B16
AESMC V0.B16, V0.B16
AESE V9.B16, V1.B16
AESMC V1.B16, V1.B16
AESE V10.B16, V2.B16
AESMC V2.B16, V2.B16
AESE V11.B16, V3.B16
AESMC V3.B16, V3.B16
AESE V12.B16, V4.B16
AESMC V4.B16, V4.B16
AESE V13.B16, V5.B16
AESMC V5.B16, V5.B16
AESE V14.B16, V6.B16
AESMC V6.B16, V6.B16
AESE V15.B16, V7.B16
AESMC V7.B16, V7.B16
AESE V8.B16, V0.B16
AESMC V0.B16, V0.B16
AESE V9.B16, V1.B16
AESMC V1.B16, V1.B16
AESE V10.B16, V2.B16
AESMC V2.B16, V2.B16
AESE V11.B16, V3.B16
AESMC V3.B16, V3.B16
AESE V12.B16, V4.B16
AESMC V4.B16, V4.B16
AESE V13.B16, V5.B16
AESMC V5.B16, V5.B16
AESE V14.B16, V6.B16
AESMC V6.B16, V6.B16
AESE V15.B16, V7.B16
AESMC V7.B16, V7.B16
AESE V8.B16, V0.B16
AESE V9.B16, V1.B16
AESE V10.B16, V2.B16
AESE V11.B16, V3.B16
AESE V12.B16, V4.B16
AESE V13.B16, V5.B16
AESE V14.B16, V6.B16
AESE V15.B16, V7.B16
VEOR V0.B16, V1.B16, V0.B16
VEOR V2.B16, V3.B16, V2.B16
VEOR V4.B16, V5.B16, V4.B16
VEOR V6.B16, V7.B16, V6.B16
VEOR V0.B16, V2.B16, V0.B16
VEOR V4.B16, V6.B16, V4.B16
VEOR V4.B16, V0.B16, V0.B16
VST1 [V0.D1], (R2)
RET
TEXT runtime·procyield(SB),NOSPLIT,$0-0
MOVWU cycles+0(FP), R0
again:
YIELD
SUBW $1, R0
CBNZ R0, again
RET
// void jmpdefer(fv, sp);
// called from deferreturn.
// 1. grab stored LR for caller
// 2. sub 4 bytes to get back to BL deferreturn
// 3. BR to fn
TEXT runtime·jmpdefer(SB), NOSPLIT|NOFRAME, $0-16
MOVD 0(RSP), R0
SUB $4, R0
MOVD R0, LR
MOVD fv+0(FP), R26
MOVD argp+8(FP), R0
MOVD R0, RSP
SUB $8, RSP
MOVD 0(R26), R3
B (R3)
// Save state of caller into g->sched. Smashes R0.
TEXT gosave<>(SB),NOSPLIT|NOFRAME,$0
MOVD LR, (g_sched+gobuf_pc)(g)
MOVD RSP, R0
MOVD R0, (g_sched+gobuf_sp)(g)
MOVD R29, (g_sched+gobuf_bp)(g)
MOVD $0, (g_sched+gobuf_lr)(g)
MOVD $0, (g_sched+gobuf_ret)(g)
// Assert ctxt is zero. See func save.
MOVD (g_sched+gobuf_ctxt)(g), R0
CMP $0, R0
BEQ 2(PC)
CALL runtime·badctxt(SB)
RET
// func asmcgocall(fn, arg unsafe.Pointer) int32
// Call fn(arg) on the scheduler stack,
// aligned appropriately for the gcc ABI.
// See cgocall.go for more details.
TEXT ·asmcgocall(SB),NOSPLIT,$0-20
MOVD fn+0(FP), R1
MOVD arg+8(FP), R0
MOVD RSP, R2 // save original stack pointer
CMP $0, g
BEQ nosave
MOVD g, R4
// Figure out if we need to switch to m->g0 stack.
// We get called to create new OS threads too, and those
// come in on the m->g0 stack already.
MOVD g_m(g), R8
MOVD m_gsignal(R8), R3
CMP R3, g
BEQ nosave
MOVD m_g0(R8), R3
CMP R3, g
BEQ nosave
// Switch to system stack.
MOVD R0, R9 // gosave<> and save_g might clobber R0
BL gosave<>(SB)
MOVD R3, g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R0
MOVD R0, RSP
MOVD (g_sched+gobuf_bp)(g), R29
MOVD R9, R0
// Now on a scheduling stack (a pthread-created stack).
// Save room for two of our pointers /*, plus 32 bytes of callee
// save area that lives on the caller stack. */
MOVD RSP, R13
SUB $16, R13
MOVD R13, RSP
MOVD R4, 0(RSP) // save old g on stack
MOVD (g_stack+stack_hi)(R4), R4
SUB R2, R4
MOVD R4, 8(RSP) // save depth in old g stack (can't just save SP, as stack might be copied during a callback)
BL (R1)
MOVD R0, R9
// Restore g, stack pointer. R0 is errno, so don't touch it
MOVD 0(RSP), g
BL runtime·save_g(SB)
MOVD (g_stack+stack_hi)(g), R5
MOVD 8(RSP), R6
SUB R6, R5
MOVD R9, R0
MOVD R5, RSP
MOVW R0, ret+16(FP)
RET
nosave:
// Running on a system stack, perhaps even without a g.
// Having no g can happen during thread creation or thread teardown
// (see needm/dropm on Solaris, for example).
// This code is like the above sequence but without saving/restoring g
// and without worrying about the stack moving out from under us
// (because we're on a system stack, not a goroutine stack).
// The above code could be used directly if already on a system stack,
// but then the only path through this code would be a rare case on Solaris.
// Using this code for all "already on system stack" calls exercises it more,
// which should help keep it correct.
MOVD RSP, R13
SUB $16, R13
MOVD R13, RSP
MOVD $0, R4
MOVD R4, 0(RSP) // Where above code stores g, in case someone looks during debugging.
MOVD R2, 8(RSP) // Save original stack pointer.
BL (R1)
// Restore stack pointer.
MOVD 8(RSP), R2
MOVD R2, RSP
MOVD R0, ret+16(FP)
RET
// cgocallback(void (*fn)(void*), void *frame, uintptr framesize, uintptr ctxt)
// Turn the fn into a Go func (by taking its address) and call
// cgocallback_gofunc.
TEXT runtime·cgocallback(SB),NOSPLIT,$40-32
MOVD $fn+0(FP), R0
MOVD R0, 8(RSP)
MOVD frame+8(FP), R0
MOVD R0, 16(RSP)
MOVD framesize+16(FP), R0
MOVD R0, 24(RSP)
MOVD ctxt+24(FP), R0
MOVD R0, 32(RSP)
MOVD $runtime·cgocallback_gofunc(SB), R0
BL (R0)
RET
// cgocallback_gofunc(FuncVal*, void *frame, uintptr framesize, uintptr ctxt)
// See cgocall.go for more details.
TEXT ·cgocallback_gofunc(SB),NOSPLIT,$24-32
NO_LOCAL_POINTERS
// Load g from thread-local storage.
MOVB runtime·iscgo(SB), R3
CMP $0, R3
BEQ nocgo
BL runtime·load_g(SB)
nocgo:
// If g is nil, Go did not create the current thread.
// Call needm to obtain one for temporary use.
// In this case, we're running on the thread stack, so there's
// lots of space, but the linker doesn't know. Hide the call from
// the linker analysis by using an indirect call.
CMP $0, g
BEQ needm
MOVD g_m(g), R8
MOVD R8, savedm-8(SP)
B havem
needm:
MOVD g, savedm-8(SP) // g is zero, so is m.
MOVD $runtime·needm(SB), R0
BL (R0)
// Set m->sched.sp = SP, so that if a panic happens
// during the function we are about to execute, it will
// have a valid SP to run on the g0 stack.
// The next few lines (after the havem label)
// will save this SP onto the stack and then write
// the same SP back to m->sched.sp. That seems redundant,
// but if an unrecovered panic happens, unwindm will
// restore the g->sched.sp from the stack location
// and then systemstack will try to use it. If we don't set it here,
// that restored SP will be uninitialized (typically 0) and
// will not be usable.
MOVD g_m(g), R8
MOVD m_g0(R8), R3
MOVD RSP, R0
MOVD R0, (g_sched+gobuf_sp)(R3)
MOVD R29, (g_sched+gobuf_bp)(R3)
havem:
// Now there's a valid m, and we're running on its m->g0.
// Save current m->g0->sched.sp on stack and then set it to SP.
// Save current sp in m->g0->sched.sp in preparation for
// switch back to m->curg stack.
// NOTE: unwindm knows that the saved g->sched.sp is at 16(RSP) aka savedsp-16(SP).
// Beware that the frame size is actually 32+16.
MOVD m_g0(R8), R3
MOVD (g_sched+gobuf_sp)(R3), R4
MOVD R4, savedsp-16(SP)
MOVD RSP, R0
MOVD R0, (g_sched+gobuf_sp)(R3)
// Switch to m->curg stack and call runtime.cgocallbackg.
// Because we are taking over the execution of m->curg
// but *not* resuming what had been running, we need to
// save that information (m->curg->sched) so we can restore it.
// We can restore m->curg->sched.sp easily, because calling
// runtime.cgocallbackg leaves SP unchanged upon return.
// To save m->curg->sched.pc, we push it onto the stack.
// This has the added benefit that it looks to the traceback
// routine like cgocallbackg is going to return to that
// PC (because the frame we allocate below has the same
// size as cgocallback_gofunc's frame declared above)
// so that the traceback will seamlessly trace back into
// the earlier calls.
//
// In the new goroutine, -8(SP) is unused (where SP refers to
// m->curg's SP while we're setting it up, before we've adjusted it).
MOVD m_curg(R8), g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R4 // prepare stack as R4
MOVD (g_sched+gobuf_pc)(g), R5
MOVD R5, -48(R4)
MOVD (g_sched+gobuf_bp)(g), R5
MOVD R5, -56(R4)
MOVD ctxt+24(FP), R0
MOVD R0, -40(R4)
MOVD $-48(R4), R0 // maintain 16-byte SP alignment
MOVD R0, RSP
BL runtime·cgocallbackg(SB)
// Restore g->sched (== m->curg->sched) from saved values.
MOVD 0(RSP), R5
MOVD R5, (g_sched+gobuf_pc)(g)
MOVD RSP, R4
ADD $48, R4, R4
MOVD R4, (g_sched+gobuf_sp)(g)
// Switch back to m->g0's stack and restore m->g0->sched.sp.
// (Unlike m->curg, the g0 goroutine never uses sched.pc,
// so we do not have to restore it.)
MOVD g_m(g), R8
MOVD m_g0(R8), g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R0
MOVD R0, RSP
MOVD savedsp-16(SP), R4
MOVD R4, (g_sched+gobuf_sp)(g)
// If the m on entry was nil, we called needm above to borrow an m
// for the duration of the call. Since the call is over, return it with dropm.
MOVD savedm-8(SP), R6
CMP $0, R6
BNE droppedm
MOVD $runtime·dropm(SB), R0
BL (R0)
droppedm:
// Done!
RET
// Called from cgo wrappers, this function returns g->m->curg.stack.hi.
// Must obey the gcc calling convention.
TEXT _cgo_topofstack(SB),NOSPLIT,$24
// g (R28) and REGTMP (R27) might be clobbered by load_g. They
// are callee-save in the gcc calling convention, so save them.
MOVD R27, savedR27-8(SP)
MOVD g, saveG-16(SP)
BL runtime·load_g(SB)
MOVD g_m(g), R0
MOVD m_curg(R0), R0
MOVD (g_stack+stack_hi)(R0), R0
MOVD saveG-16(SP), g
MOVD savedR28-8(SP), R27
RET
// void setg(G*); set g. for use by needm.
TEXT runtime·setg(SB), NOSPLIT, $0-8
MOVD gg+0(FP), g
// This only happens if iscgo, so jump straight to save_g
BL runtime·save_g(SB)
RET
// void setg_gcc(G*); set g called from gcc
TEXT setg_gcc<>(SB),NOSPLIT,$8
MOVD R0, g
MOVD R27, savedR27-8(SP)
BL runtime·save_g(SB)
MOVD savedR27-8(SP), R27
RET
TEXT runtime·abort(SB),NOSPLIT|NOFRAME,$0-0
MOVD ZR, R0
MOVD (R0), R0
UNDEF
TEXT runtime·return0(SB), NOSPLIT, $0
MOVW $0, R0
RET
// The top-most function running on a goroutine
// returns to goexit+PCQuantum.
TEXT runtime·goexit(SB),NOSPLIT|NOFRAME|TOPFRAME,$0-0
MOVD R0, R0 // NOP
BL runtime·goexit1(SB) // does not return
// This is called from .init_array and follows the platform, not Go, ABI.
TEXT runtime·addmoduledata(SB),NOSPLIT,$0-0
SUB $0x10, RSP
MOVD R27, 8(RSP) // The access to global variables below implicitly uses R27, which is callee-save
MOVD runtime·lastmoduledatap(SB), R1
MOVD R0, moduledata_next(R1)
MOVD R0, runtime·lastmoduledatap(SB)
MOVD 8(RSP), R27
ADD $0x10, RSP
RET
TEXT ·checkASM(SB),NOSPLIT,$0-1
MOVW $1, R3
MOVB R3, ret+0(FP)
RET
// gcWriteBarrier performs a heap pointer write and informs the GC.
//
// gcWriteBarrier does NOT follow the Go ABI. It takes two arguments:
// - R2 is the destination of the write
// - R3 is the value being written at R2
// It clobbers condition codes.
// It does not clobber any general-purpose registers,
// but may clobber others (e.g., floating point registers)
// The act of CALLing gcWriteBarrier will clobber R30 (LR).
TEXT runtime·gcWriteBarrier(SB),NOSPLIT,$216
// Save the registers clobbered by the fast path.
MOVD R0, 200(RSP)
MOVD R1, 208(RSP)
MOVD g_m(g), R0
MOVD m_p(R0), R0
MOVD (p_wbBuf+wbBuf_next)(R0), R1
// Increment wbBuf.next position.
ADD $16, R1
MOVD R1, (p_wbBuf+wbBuf_next)(R0)
MOVD (p_wbBuf+wbBuf_end)(R0), R0
CMP R1, R0
// Record the write.
MOVD R3, -16(R1) // Record value
MOVD (R2), R0 // TODO: This turns bad writes into bad reads.
MOVD R0, -8(R1) // Record *slot
// Is the buffer full? (flags set in CMP above)
BEQ flush
ret:
MOVD 200(RSP), R0
MOVD 208(RSP), R1
// Do the write.
MOVD R3, (R2)
RET
flush:
// Save all general purpose registers since these could be
// clobbered by wbBufFlush and were not saved by the caller.
MOVD R2, 8(RSP) // Also first argument to wbBufFlush
MOVD R3, 16(RSP) // Also second argument to wbBufFlush
// R0 already saved
// R1 already saved
MOVD R4, 24(RSP)
MOVD R5, 32(RSP)
MOVD R6, 40(RSP)
MOVD R7, 48(RSP)
MOVD R8, 56(RSP)
MOVD R9, 64(RSP)
MOVD R10, 72(RSP)
MOVD R11, 80(RSP)
MOVD R12, 88(RSP)
MOVD R13, 96(RSP)
MOVD R14, 104(RSP)
MOVD R15, 112(RSP)
MOVD R16, 120(RSP)
MOVD R17, 128(RSP)
// R18 is unused.
MOVD R19, 136(RSP)
MOVD R20, 144(RSP)
MOVD R21, 152(RSP)
MOVD R22, 160(RSP)
MOVD R23, 168(RSP)
MOVD R24, 176(RSP)
MOVD R25, 184(RSP)
MOVD R26, 192(RSP)
// R27 is temp register.
// R28 is g.
// R29 is frame pointer (unused).
// R30 is LR, which was saved by the prologue.
// R31 is SP.
// This takes arguments R2 and R3.
CALL runtime·wbBufFlush(SB)
MOVD 8(RSP), R2
MOVD 16(RSP), R3
MOVD 24(RSP), R4
MOVD 32(RSP), R5
MOVD 40(RSP), R6
MOVD 48(RSP), R7
MOVD 56(RSP), R8
MOVD 64(RSP), R9
MOVD 72(RSP), R10
MOVD 80(RSP), R11
MOVD 88(RSP), R12
MOVD 96(RSP), R13
MOVD 104(RSP), R14
MOVD 112(RSP), R15
MOVD 120(RSP), R16
MOVD 128(RSP), R17
MOVD 136(RSP), R19
MOVD 144(RSP), R20
MOVD 152(RSP), R21
MOVD 160(RSP), R22
MOVD 168(RSP), R23
MOVD 176(RSP), R24
MOVD 184(RSP), R25
MOVD 192(RSP), R26
JMP ret
// Note: these functions use a special calling convention to save generated code space.
// Arguments are passed in registers, but the space for those arguments are allocated
// in the caller's stack frame. These stubs write the args into that stack space and
// then tail call to the corresponding runtime handler.
// The tail call makes these stubs disappear in backtraces.
TEXT runtime·panicIndex(SB),NOSPLIT,$0-16
MOVD R0, x+0(FP)
MOVD R1, y+8(FP)
JMP runtime·goPanicIndex(SB)
TEXT runtime·panicIndexU(SB),NOSPLIT,$0-16
MOVD R0, x+0(FP)
MOVD R1, y+8(FP)
JMP runtime·goPanicIndexU(SB)
TEXT runtime·panicSliceAlen(SB),NOSPLIT,$0-16
MOVD R1, x+0(FP)
MOVD R2, y+8(FP)
JMP runtime·goPanicSliceAlen(SB)
TEXT runtime·panicSliceAlenU(SB),NOSPLIT,$0-16
MOVD R1, x+0(FP)
MOVD R2, y+8(FP)
JMP runtime·goPanicSliceAlenU(SB)
TEXT runtime·panicSliceAcap(SB),NOSPLIT,$0-16
MOVD R1, x+0(FP)
MOVD R2, y+8(FP)
JMP runtime·goPanicSliceAcap(SB)
TEXT runtime·panicSliceAcapU(SB),NOSPLIT,$0-16
MOVD R1, x+0(FP)
MOVD R2, y+8(FP)
JMP runtime·goPanicSliceAcapU(SB)
TEXT runtime·panicSliceB(SB),NOSPLIT,$0-16
MOVD R0, x+0(FP)
MOVD R1, y+8(FP)
JMP runtime·goPanicSliceB(SB)
TEXT runtime·panicSliceBU(SB),NOSPLIT,$0-16
MOVD R0, x+0(FP)
MOVD R1, y+8(FP)
JMP runtime·goPanicSliceBU(SB)
TEXT runtime·panicSlice3Alen(SB),NOSPLIT,$0-16
MOVD R2, x+0(FP)
MOVD R3, y+8(FP)
JMP runtime·goPanicSlice3Alen(SB)
TEXT runtime·panicSlice3AlenU(SB),NOSPLIT,$0-16
MOVD R2, x+0(FP)
MOVD R3, y+8(FP)
JMP runtime·goPanicSlice3AlenU(SB)
TEXT runtime·panicSlice3Acap(SB),NOSPLIT,$0-16
MOVD R2, x+0(FP)
MOVD R3, y+8(FP)
JMP runtime·goPanicSlice3Acap(SB)
TEXT runtime·panicSlice3AcapU(SB),NOSPLIT,$0-16
MOVD R2, x+0(FP)
MOVD R3, y+8(FP)
JMP runtime·goPanicSlice3AcapU(SB)
TEXT runtime·panicSlice3B(SB),NOSPLIT,$0-16
MOVD R1, x+0(FP)
MOVD R2, y+8(FP)
JMP runtime·goPanicSlice3B(SB)
TEXT runtime·panicSlice3BU(SB),NOSPLIT,$0-16
MOVD R1, x+0(FP)
MOVD R2, y+8(FP)
JMP runtime·goPanicSlice3BU(SB)
TEXT runtime·panicSlice3C(SB),NOSPLIT,$0-16
MOVD R0, x+0(FP)
MOVD R1, y+8(FP)
JMP runtime·goPanicSlice3C(SB)
TEXT runtime·panicSlice3CU(SB),NOSPLIT,$0-16
MOVD R0, x+0(FP)
MOVD R1, y+8(FP)
JMP runtime·goPanicSlice3CU(SB)