| // Copyright 2015 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Simplifications that apply to all backend architectures. As an example, this |
| // Go source code |
| // |
| // y := 0 * x |
| // |
| // can be translated into y := 0 without losing any information, which saves a |
| // pointless multiplication instruction. Other .rules files in this directory |
| // (for example AMD64.rules) contain rules specific to the architecture in the |
| // filename. The rules here apply to every architecture. |
| // |
| // The code for parsing this file lives in rulegen.go; this file generates |
| // ssa/rewritegeneric.go. |
| |
| // values are specified using the following format: |
| // (op <type> [auxint] {aux} arg0 arg1 ...) |
| // the type, aux, and auxint fields are optional |
| // on the matching side |
| // - the type, aux, and auxint fields must match if they are specified. |
| // - the first occurrence of a variable defines that variable. Subsequent |
| // uses must match (be == to) the first use. |
| // - v is defined to be the value matched. |
| // - an additional conditional can be provided after the match pattern with "&&". |
| // on the generated side |
| // - the type of the top-level expression is the same as the one on the left-hand side. |
| // - the type of any subexpressions must be specified explicitly (or |
| // be specified in the op's type field). |
| // - auxint will be 0 if not specified. |
| // - aux will be nil if not specified. |
| |
| // blocks are specified using the following format: |
| // (kind controlvalue succ0 succ1 ...) |
| // controlvalue must be "nil" or a value expression |
| // succ* fields must be variables |
| // For now, the generated successors must be a permutation of the matched successors. |
| |
| // constant folding |
| (Trunc16to8 (Const16 [c])) => (Const8 [int8(c)]) |
| (Trunc32to8 (Const32 [c])) => (Const8 [int8(c)]) |
| (Trunc32to16 (Const32 [c])) => (Const16 [int16(c)]) |
| (Trunc64to8 (Const64 [c])) => (Const8 [int8(c)]) |
| (Trunc64to16 (Const64 [c])) => (Const16 [int16(c)]) |
| (Trunc64to32 (Const64 [c])) => (Const32 [int32(c)]) |
| (Cvt64Fto32F (Const64F [c])) => (Const32F [float32(c)]) |
| (Cvt32Fto64F (Const32F [c])) => (Const64F [float64(c)]) |
| (Cvt32to32F (Const32 [c])) => (Const32F [float32(c)]) |
| (Cvt32to64F (Const32 [c])) => (Const64F [float64(c)]) |
| (Cvt64to32F (Const64 [c])) => (Const32F [float32(c)]) |
| (Cvt64to64F (Const64 [c])) => (Const64F [float64(c)]) |
| (Cvt32Fto32 (Const32F [c])) => (Const32 [int32(c)]) |
| (Cvt32Fto64 (Const32F [c])) => (Const64 [int64(c)]) |
| (Cvt64Fto32 (Const64F [c])) => (Const32 [int32(c)]) |
| (Cvt64Fto64 (Const64F [c])) => (Const64 [int64(c)]) |
| (Round32F x:(Const32F)) => x |
| (Round64F x:(Const64F)) => x |
| (CvtBoolToUint8 (ConstBool [false])) => (Const8 [0]) |
| (CvtBoolToUint8 (ConstBool [true])) => (Const8 [1]) |
| |
| (Trunc16to8 (ZeroExt8to16 x)) => x |
| (Trunc32to8 (ZeroExt8to32 x)) => x |
| (Trunc32to16 (ZeroExt8to32 x)) => (ZeroExt8to16 x) |
| (Trunc32to16 (ZeroExt16to32 x)) => x |
| (Trunc64to8 (ZeroExt8to64 x)) => x |
| (Trunc64to16 (ZeroExt8to64 x)) => (ZeroExt8to16 x) |
| (Trunc64to16 (ZeroExt16to64 x)) => x |
| (Trunc64to32 (ZeroExt8to64 x)) => (ZeroExt8to32 x) |
| (Trunc64to32 (ZeroExt16to64 x)) => (ZeroExt16to32 x) |
| (Trunc64to32 (ZeroExt32to64 x)) => x |
| (Trunc16to8 (SignExt8to16 x)) => x |
| (Trunc32to8 (SignExt8to32 x)) => x |
| (Trunc32to16 (SignExt8to32 x)) => (SignExt8to16 x) |
| (Trunc32to16 (SignExt16to32 x)) => x |
| (Trunc64to8 (SignExt8to64 x)) => x |
| (Trunc64to16 (SignExt8to64 x)) => (SignExt8to16 x) |
| (Trunc64to16 (SignExt16to64 x)) => x |
| (Trunc64to32 (SignExt8to64 x)) => (SignExt8to32 x) |
| (Trunc64to32 (SignExt16to64 x)) => (SignExt16to32 x) |
| (Trunc64to32 (SignExt32to64 x)) => x |
| |
| (ZeroExt8to16 (Const8 [c])) => (Const16 [int16( uint8(c))]) |
| (ZeroExt8to32 (Const8 [c])) => (Const32 [int32( uint8(c))]) |
| (ZeroExt8to64 (Const8 [c])) => (Const64 [int64( uint8(c))]) |
| (ZeroExt16to32 (Const16 [c])) => (Const32 [int32(uint16(c))]) |
| (ZeroExt16to64 (Const16 [c])) => (Const64 [int64(uint16(c))]) |
| (ZeroExt32to64 (Const32 [c])) => (Const64 [int64(uint32(c))]) |
| (SignExt8to16 (Const8 [c])) => (Const16 [int16(c)]) |
| (SignExt8to32 (Const8 [c])) => (Const32 [int32(c)]) |
| (SignExt8to64 (Const8 [c])) => (Const64 [int64(c)]) |
| (SignExt16to32 (Const16 [c])) => (Const32 [int32(c)]) |
| (SignExt16to64 (Const16 [c])) => (Const64 [int64(c)]) |
| (SignExt32to64 (Const32 [c])) => (Const64 [int64(c)]) |
| |
| (Neg8 (Const8 [c])) => (Const8 [-c]) |
| (Neg16 (Const16 [c])) => (Const16 [-c]) |
| (Neg32 (Const32 [c])) => (Const32 [-c]) |
| (Neg64 (Const64 [c])) => (Const64 [-c]) |
| (Neg32F (Const32F [c])) && c != 0 => (Const32F [-c]) |
| (Neg64F (Const64F [c])) && c != 0 => (Const64F [-c]) |
| |
| (Add8 (Const8 [c]) (Const8 [d])) => (Const8 [c+d]) |
| (Add16 (Const16 [c]) (Const16 [d])) => (Const16 [c+d]) |
| (Add32 (Const32 [c]) (Const32 [d])) => (Const32 [c+d]) |
| (Add64 (Const64 [c]) (Const64 [d])) => (Const64 [c+d]) |
| (Add32F (Const32F [c]) (Const32F [d])) && c+d == c+d => (Const32F [c+d]) |
| (Add64F (Const64F [c]) (Const64F [d])) && c+d == c+d => (Const64F [c+d]) |
| (AddPtr <t> x (Const64 [c])) => (OffPtr <t> x [c]) |
| (AddPtr <t> x (Const32 [c])) => (OffPtr <t> x [int64(c)]) |
| |
| (Sub8 (Const8 [c]) (Const8 [d])) => (Const8 [c-d]) |
| (Sub16 (Const16 [c]) (Const16 [d])) => (Const16 [c-d]) |
| (Sub32 (Const32 [c]) (Const32 [d])) => (Const32 [c-d]) |
| (Sub64 (Const64 [c]) (Const64 [d])) => (Const64 [c-d]) |
| (Sub32F (Const32F [c]) (Const32F [d])) && c-d == c-d => (Const32F [c-d]) |
| (Sub64F (Const64F [c]) (Const64F [d])) && c-d == c-d => (Const64F [c-d]) |
| |
| (Mul8 (Const8 [c]) (Const8 [d])) => (Const8 [c*d]) |
| (Mul16 (Const16 [c]) (Const16 [d])) => (Const16 [c*d]) |
| (Mul32 (Const32 [c]) (Const32 [d])) => (Const32 [c*d]) |
| (Mul64 (Const64 [c]) (Const64 [d])) => (Const64 [c*d]) |
| (Mul32F (Const32F [c]) (Const32F [d])) && c*d == c*d => (Const32F [c*d]) |
| (Mul64F (Const64F [c]) (Const64F [d])) && c*d == c*d => (Const64F [c*d]) |
| |
| (And8 (Const8 [c]) (Const8 [d])) => (Const8 [c&d]) |
| (And16 (Const16 [c]) (Const16 [d])) => (Const16 [c&d]) |
| (And32 (Const32 [c]) (Const32 [d])) => (Const32 [c&d]) |
| (And64 (Const64 [c]) (Const64 [d])) => (Const64 [c&d]) |
| |
| (Or8 (Const8 [c]) (Const8 [d])) => (Const8 [c|d]) |
| (Or16 (Const16 [c]) (Const16 [d])) => (Const16 [c|d]) |
| (Or32 (Const32 [c]) (Const32 [d])) => (Const32 [c|d]) |
| (Or64 (Const64 [c]) (Const64 [d])) => (Const64 [c|d]) |
| |
| (Xor8 (Const8 [c]) (Const8 [d])) => (Const8 [c^d]) |
| (Xor16 (Const16 [c]) (Const16 [d])) => (Const16 [c^d]) |
| (Xor32 (Const32 [c]) (Const32 [d])) => (Const32 [c^d]) |
| (Xor64 (Const64 [c]) (Const64 [d])) => (Const64 [c^d]) |
| |
| (Ctz64 (Const64 [c])) && config.PtrSize == 4 => (Const32 [int32(ntz64(c))]) |
| (Ctz32 (Const32 [c])) && config.PtrSize == 4 => (Const32 [int32(ntz32(c))]) |
| (Ctz16 (Const16 [c])) && config.PtrSize == 4 => (Const32 [int32(ntz16(c))]) |
| (Ctz8 (Const8 [c])) && config.PtrSize == 4 => (Const32 [int32(ntz8(c))]) |
| |
| (Ctz64 (Const64 [c])) && config.PtrSize == 8 => (Const64 [int64(ntz64(c))]) |
| (Ctz32 (Const32 [c])) && config.PtrSize == 8 => (Const64 [int64(ntz32(c))]) |
| (Ctz16 (Const16 [c])) && config.PtrSize == 8 => (Const64 [int64(ntz16(c))]) |
| (Ctz8 (Const8 [c])) && config.PtrSize == 8 => (Const64 [int64(ntz8(c))]) |
| |
| (Div8 (Const8 [c]) (Const8 [d])) && d != 0 => (Const8 [c/d]) |
| (Div16 (Const16 [c]) (Const16 [d])) && d != 0 => (Const16 [c/d]) |
| (Div32 (Const32 [c]) (Const32 [d])) && d != 0 => (Const32 [c/d]) |
| (Div64 (Const64 [c]) (Const64 [d])) && d != 0 => (Const64 [c/d]) |
| (Div8u (Const8 [c]) (Const8 [d])) && d != 0 => (Const8 [int8(uint8(c)/uint8(d))]) |
| (Div16u (Const16 [c]) (Const16 [d])) && d != 0 => (Const16 [int16(uint16(c)/uint16(d))]) |
| (Div32u (Const32 [c]) (Const32 [d])) && d != 0 => (Const32 [int32(uint32(c)/uint32(d))]) |
| (Div64u (Const64 [c]) (Const64 [d])) && d != 0 => (Const64 [int64(uint64(c)/uint64(d))]) |
| (Div32F (Const32F [c]) (Const32F [d])) && c/d == c/d => (Const32F [c/d]) |
| (Div64F (Const64F [c]) (Const64F [d])) && c/d == c/d => (Const64F [c/d]) |
| (Select0 (Div128u (Const64 [0]) lo y)) => (Div64u lo y) |
| (Select1 (Div128u (Const64 [0]) lo y)) => (Mod64u lo y) |
| |
| (Not (ConstBool [c])) => (ConstBool [!c]) |
| |
| // Convert x * 1 to x. |
| (Mul(8|16|32|64) (Const(8|16|32|64) [1]) x) => x |
| |
| // Convert x * -1 to -x. |
| (Mul(8|16|32|64) (Const(8|16|32|64) [-1]) x) => (Neg(8|16|32|64) x) |
| |
| // Convert multiplication by a power of two to a shift. |
| (Mul8 <t> n (Const8 [c])) && isPowerOfTwo8(c) => (Lsh8x64 <t> n (Const64 <typ.UInt64> [log8(c)])) |
| (Mul16 <t> n (Const16 [c])) && isPowerOfTwo16(c) => (Lsh16x64 <t> n (Const64 <typ.UInt64> [log16(c)])) |
| (Mul32 <t> n (Const32 [c])) && isPowerOfTwo32(c) => (Lsh32x64 <t> n (Const64 <typ.UInt64> [log32(c)])) |
| (Mul64 <t> n (Const64 [c])) && isPowerOfTwo64(c) => (Lsh64x64 <t> n (Const64 <typ.UInt64> [log64(c)])) |
| (Mul8 <t> n (Const8 [c])) && t.IsSigned() && isPowerOfTwo8(-c) => (Neg8 (Lsh8x64 <t> n (Const64 <typ.UInt64> [log8(-c)]))) |
| (Mul16 <t> n (Const16 [c])) && t.IsSigned() && isPowerOfTwo16(-c) => (Neg16 (Lsh16x64 <t> n (Const64 <typ.UInt64> [log16(-c)]))) |
| (Mul32 <t> n (Const32 [c])) && t.IsSigned() && isPowerOfTwo32(-c) => (Neg32 (Lsh32x64 <t> n (Const64 <typ.UInt64> [log32(-c)]))) |
| (Mul64 <t> n (Const64 [c])) && t.IsSigned() && isPowerOfTwo64(-c) => (Neg64 (Lsh64x64 <t> n (Const64 <typ.UInt64> [log64(-c)]))) |
| |
| (Mod8 (Const8 [c]) (Const8 [d])) && d != 0 => (Const8 [c % d]) |
| (Mod16 (Const16 [c]) (Const16 [d])) && d != 0 => (Const16 [c % d]) |
| (Mod32 (Const32 [c]) (Const32 [d])) && d != 0 => (Const32 [c % d]) |
| (Mod64 (Const64 [c]) (Const64 [d])) && d != 0 => (Const64 [c % d]) |
| |
| (Mod8u (Const8 [c]) (Const8 [d])) && d != 0 => (Const8 [int8(uint8(c) % uint8(d))]) |
| (Mod16u (Const16 [c]) (Const16 [d])) && d != 0 => (Const16 [int16(uint16(c) % uint16(d))]) |
| (Mod32u (Const32 [c]) (Const32 [d])) && d != 0 => (Const32 [int32(uint32(c) % uint32(d))]) |
| (Mod64u (Const64 [c]) (Const64 [d])) && d != 0 => (Const64 [int64(uint64(c) % uint64(d))]) |
| |
| (Lsh64x64 (Const64 [c]) (Const64 [d])) => (Const64 [c << uint64(d)]) |
| (Rsh64x64 (Const64 [c]) (Const64 [d])) => (Const64 [c >> uint64(d)]) |
| (Rsh64Ux64 (Const64 [c]) (Const64 [d])) => (Const64 [int64(uint64(c) >> uint64(d))]) |
| (Lsh32x64 (Const32 [c]) (Const64 [d])) => (Const32 [c << uint64(d)]) |
| (Rsh32x64 (Const32 [c]) (Const64 [d])) => (Const32 [c >> uint64(d)]) |
| (Rsh32Ux64 (Const32 [c]) (Const64 [d])) => (Const32 [int32(uint32(c) >> uint64(d))]) |
| (Lsh16x64 (Const16 [c]) (Const64 [d])) => (Const16 [c << uint64(d)]) |
| (Rsh16x64 (Const16 [c]) (Const64 [d])) => (Const16 [c >> uint64(d)]) |
| (Rsh16Ux64 (Const16 [c]) (Const64 [d])) => (Const16 [int16(uint16(c) >> uint64(d))]) |
| (Lsh8x64 (Const8 [c]) (Const64 [d])) => (Const8 [c << uint64(d)]) |
| (Rsh8x64 (Const8 [c]) (Const64 [d])) => (Const8 [c >> uint64(d)]) |
| (Rsh8Ux64 (Const8 [c]) (Const64 [d])) => (Const8 [int8(uint8(c) >> uint64(d))]) |
| |
| // Fold IsInBounds when the range of the index cannot exceed the limit. |
| (IsInBounds (ZeroExt8to32 _) (Const32 [c])) && (1 << 8) <= c => (ConstBool [true]) |
| (IsInBounds (ZeroExt8to64 _) (Const64 [c])) && (1 << 8) <= c => (ConstBool [true]) |
| (IsInBounds (ZeroExt16to32 _) (Const32 [c])) && (1 << 16) <= c => (ConstBool [true]) |
| (IsInBounds (ZeroExt16to64 _) (Const64 [c])) && (1 << 16) <= c => (ConstBool [true]) |
| (IsInBounds x x) => (ConstBool [false]) |
| (IsInBounds (And8 (Const8 [c]) _) (Const8 [d])) && 0 <= c && c < d => (ConstBool [true]) |
| (IsInBounds (ZeroExt8to16 (And8 (Const8 [c]) _)) (Const16 [d])) && 0 <= c && int16(c) < d => (ConstBool [true]) |
| (IsInBounds (ZeroExt8to32 (And8 (Const8 [c]) _)) (Const32 [d])) && 0 <= c && int32(c) < d => (ConstBool [true]) |
| (IsInBounds (ZeroExt8to64 (And8 (Const8 [c]) _)) (Const64 [d])) && 0 <= c && int64(c) < d => (ConstBool [true]) |
| (IsInBounds (And16 (Const16 [c]) _) (Const16 [d])) && 0 <= c && c < d => (ConstBool [true]) |
| (IsInBounds (ZeroExt16to32 (And16 (Const16 [c]) _)) (Const32 [d])) && 0 <= c && int32(c) < d => (ConstBool [true]) |
| (IsInBounds (ZeroExt16to64 (And16 (Const16 [c]) _)) (Const64 [d])) && 0 <= c && int64(c) < d => (ConstBool [true]) |
| (IsInBounds (And32 (Const32 [c]) _) (Const32 [d])) && 0 <= c && c < d => (ConstBool [true]) |
| (IsInBounds (ZeroExt32to64 (And32 (Const32 [c]) _)) (Const64 [d])) && 0 <= c && int64(c) < d => (ConstBool [true]) |
| (IsInBounds (And64 (Const64 [c]) _) (Const64 [d])) && 0 <= c && c < d => (ConstBool [true]) |
| (IsInBounds (Const32 [c]) (Const32 [d])) => (ConstBool [0 <= c && c < d]) |
| (IsInBounds (Const64 [c]) (Const64 [d])) => (ConstBool [0 <= c && c < d]) |
| // (Mod64u x y) is always between 0 (inclusive) and y (exclusive). |
| (IsInBounds (Mod32u _ y) y) => (ConstBool [true]) |
| (IsInBounds (Mod64u _ y) y) => (ConstBool [true]) |
| // Right shifting an unsigned number limits its value. |
| (IsInBounds (ZeroExt8to64 (Rsh8Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 8 && 1<<uint( 8-c)-1 < d => (ConstBool [true]) |
| (IsInBounds (ZeroExt8to32 (Rsh8Ux64 _ (Const64 [c]))) (Const32 [d])) && 0 < c && c < 8 && 1<<uint( 8-c)-1 < d => (ConstBool [true]) |
| (IsInBounds (ZeroExt8to16 (Rsh8Ux64 _ (Const64 [c]))) (Const16 [d])) && 0 < c && c < 8 && 1<<uint( 8-c)-1 < d => (ConstBool [true]) |
| (IsInBounds (Rsh8Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 8 && 1<<uint( 8-c)-1 < d => (ConstBool [true]) |
| (IsInBounds (ZeroExt16to64 (Rsh16Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d => (ConstBool [true]) |
| (IsInBounds (ZeroExt16to32 (Rsh16Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d => (ConstBool [true]) |
| (IsInBounds (Rsh16Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d => (ConstBool [true]) |
| (IsInBounds (ZeroExt32to64 (Rsh32Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 32 && 1<<uint(32-c)-1 < d => (ConstBool [true]) |
| (IsInBounds (Rsh32Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 32 && 1<<uint(32-c)-1 < d => (ConstBool [true]) |
| (IsInBounds (Rsh64Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 64 && 1<<uint(64-c)-1 < d => (ConstBool [true]) |
| |
| (IsSliceInBounds x x) => (ConstBool [true]) |
| (IsSliceInBounds (And32 (Const32 [c]) _) (Const32 [d])) && 0 <= c && c <= d => (ConstBool [true]) |
| (IsSliceInBounds (And64 (Const64 [c]) _) (Const64 [d])) && 0 <= c && c <= d => (ConstBool [true]) |
| (IsSliceInBounds (Const32 [0]) _) => (ConstBool [true]) |
| (IsSliceInBounds (Const64 [0]) _) => (ConstBool [true]) |
| (IsSliceInBounds (Const32 [c]) (Const32 [d])) => (ConstBool [0 <= c && c <= d]) |
| (IsSliceInBounds (Const64 [c]) (Const64 [d])) => (ConstBool [0 <= c && c <= d]) |
| (IsSliceInBounds (SliceLen x) (SliceCap x)) => (ConstBool [true]) |
| |
| (Eq(64|32|16|8) x x) => (ConstBool [true]) |
| (EqB (ConstBool [c]) (ConstBool [d])) => (ConstBool [c == d]) |
| (EqB (ConstBool [false]) x) => (Not x) |
| (EqB (ConstBool [true]) x) => x |
| |
| (Neq(64|32|16|8) x x) => (ConstBool [false]) |
| (NeqB (ConstBool [c]) (ConstBool [d])) => (ConstBool [c != d]) |
| (NeqB (ConstBool [false]) x) => x |
| (NeqB (ConstBool [true]) x) => (Not x) |
| (NeqB (Not x) (Not y)) => (NeqB x y) |
| |
| (Eq64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) => (Eq64 (Const64 <t> [c-d]) x) |
| (Eq32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) => (Eq32 (Const32 <t> [c-d]) x) |
| (Eq16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) => (Eq16 (Const16 <t> [c-d]) x) |
| (Eq8 (Const8 <t> [c]) (Add8 (Const8 <t> [d]) x)) => (Eq8 (Const8 <t> [c-d]) x) |
| |
| (Neq64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) => (Neq64 (Const64 <t> [c-d]) x) |
| (Neq32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) => (Neq32 (Const32 <t> [c-d]) x) |
| (Neq16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) => (Neq16 (Const16 <t> [c-d]) x) |
| (Neq8 (Const8 <t> [c]) (Add8 (Const8 <t> [d]) x)) => (Neq8 (Const8 <t> [c-d]) x) |
| |
| // signed integer range: ( c <= x && x (<|<=) d ) -> ( unsigned(x-c) (<|<=) unsigned(d-c) ) |
| (AndB (Leq64 (Const64 [c]) x) ((Less|Leq)64 x (Const64 [d]))) && d >= c => ((Less|Leq)64U (Sub64 <x.Type> x (Const64 <x.Type> [c])) (Const64 <x.Type> [d-c])) |
| (AndB (Leq32 (Const32 [c]) x) ((Less|Leq)32 x (Const32 [d]))) && d >= c => ((Less|Leq)32U (Sub32 <x.Type> x (Const32 <x.Type> [c])) (Const32 <x.Type> [d-c])) |
| (AndB (Leq16 (Const16 [c]) x) ((Less|Leq)16 x (Const16 [d]))) && d >= c => ((Less|Leq)16U (Sub16 <x.Type> x (Const16 <x.Type> [c])) (Const16 <x.Type> [d-c])) |
| (AndB (Leq8 (Const8 [c]) x) ((Less|Leq)8 x (Const8 [d]))) && d >= c => ((Less|Leq)8U (Sub8 <x.Type> x (Const8 <x.Type> [c])) (Const8 <x.Type> [d-c])) |
| |
| // signed integer range: ( c < x && x (<|<=) d ) -> ( unsigned(x-(c+1)) (<|<=) unsigned(d-(c+1)) ) |
| (AndB (Less64 (Const64 [c]) x) ((Less|Leq)64 x (Const64 [d]))) && d >= c+1 && c+1 > c => ((Less|Leq)64U (Sub64 <x.Type> x (Const64 <x.Type> [c+1])) (Const64 <x.Type> [d-c-1])) |
| (AndB (Less32 (Const32 [c]) x) ((Less|Leq)32 x (Const32 [d]))) && d >= c+1 && c+1 > c => ((Less|Leq)32U (Sub32 <x.Type> x (Const32 <x.Type> [c+1])) (Const32 <x.Type> [d-c-1])) |
| (AndB (Less16 (Const16 [c]) x) ((Less|Leq)16 x (Const16 [d]))) && d >= c+1 && c+1 > c => ((Less|Leq)16U (Sub16 <x.Type> x (Const16 <x.Type> [c+1])) (Const16 <x.Type> [d-c-1])) |
| (AndB (Less8 (Const8 [c]) x) ((Less|Leq)8 x (Const8 [d]))) && d >= c+1 && c+1 > c => ((Less|Leq)8U (Sub8 <x.Type> x (Const8 <x.Type> [c+1])) (Const8 <x.Type> [d-c-1])) |
| |
| // unsigned integer range: ( c <= x && x (<|<=) d ) -> ( x-c (<|<=) d-c ) |
| (AndB (Leq64U (Const64 [c]) x) ((Less|Leq)64U x (Const64 [d]))) && uint64(d) >= uint64(c) => ((Less|Leq)64U (Sub64 <x.Type> x (Const64 <x.Type> [c])) (Const64 <x.Type> [d-c])) |
| (AndB (Leq32U (Const32 [c]) x) ((Less|Leq)32U x (Const32 [d]))) && uint32(d) >= uint32(c) => ((Less|Leq)32U (Sub32 <x.Type> x (Const32 <x.Type> [c])) (Const32 <x.Type> [d-c])) |
| (AndB (Leq16U (Const16 [c]) x) ((Less|Leq)16U x (Const16 [d]))) && uint16(d) >= uint16(c) => ((Less|Leq)16U (Sub16 <x.Type> x (Const16 <x.Type> [c])) (Const16 <x.Type> [d-c])) |
| (AndB (Leq8U (Const8 [c]) x) ((Less|Leq)8U x (Const8 [d]))) && uint8(d) >= uint8(c) => ((Less|Leq)8U (Sub8 <x.Type> x (Const8 <x.Type> [c])) (Const8 <x.Type> [d-c])) |
| |
| // unsigned integer range: ( c < x && x (<|<=) d ) -> ( x-(c+1) (<|<=) d-(c+1) ) |
| (AndB (Less64U (Const64 [c]) x) ((Less|Leq)64U x (Const64 [d]))) && uint64(d) >= uint64(c+1) && uint64(c+1) > uint64(c) => ((Less|Leq)64U (Sub64 <x.Type> x (Const64 <x.Type> [c+1])) (Const64 <x.Type> [d-c-1])) |
| (AndB (Less32U (Const32 [c]) x) ((Less|Leq)32U x (Const32 [d]))) && uint32(d) >= uint32(c+1) && uint32(c+1) > uint32(c) => ((Less|Leq)32U (Sub32 <x.Type> x (Const32 <x.Type> [c+1])) (Const32 <x.Type> [d-c-1])) |
| (AndB (Less16U (Const16 [c]) x) ((Less|Leq)16U x (Const16 [d]))) && uint16(d) >= uint16(c+1) && uint16(c+1) > uint16(c) => ((Less|Leq)16U (Sub16 <x.Type> x (Const16 <x.Type> [c+1])) (Const16 <x.Type> [d-c-1])) |
| (AndB (Less8U (Const8 [c]) x) ((Less|Leq)8U x (Const8 [d]))) && uint8(d) >= uint8(c+1) && uint8(c+1) > uint8(c) => ((Less|Leq)8U (Sub8 <x.Type> x (Const8 <x.Type> [c+1])) (Const8 <x.Type> [d-c-1])) |
| |
| // signed integer range: ( c (<|<=) x || x < d ) -> ( unsigned(c-d) (<|<=) unsigned(x-d) ) |
| (OrB ((Less|Leq)64 (Const64 [c]) x) (Less64 x (Const64 [d]))) && c >= d => ((Less|Leq)64U (Const64 <x.Type> [c-d]) (Sub64 <x.Type> x (Const64 <x.Type> [d]))) |
| (OrB ((Less|Leq)32 (Const32 [c]) x) (Less32 x (Const32 [d]))) && c >= d => ((Less|Leq)32U (Const32 <x.Type> [c-d]) (Sub32 <x.Type> x (Const32 <x.Type> [d]))) |
| (OrB ((Less|Leq)16 (Const16 [c]) x) (Less16 x (Const16 [d]))) && c >= d => ((Less|Leq)16U (Const16 <x.Type> [c-d]) (Sub16 <x.Type> x (Const16 <x.Type> [d]))) |
| (OrB ((Less|Leq)8 (Const8 [c]) x) (Less8 x (Const8 [d]))) && c >= d => ((Less|Leq)8U (Const8 <x.Type> [c-d]) (Sub8 <x.Type> x (Const8 <x.Type> [d]))) |
| |
| // signed integer range: ( c (<|<=) x || x <= d ) -> ( unsigned(c-(d+1)) (<|<=) unsigned(x-(d+1)) ) |
| (OrB ((Less|Leq)64 (Const64 [c]) x) (Leq64 x (Const64 [d]))) && c >= d+1 && d+1 > d => ((Less|Leq)64U (Const64 <x.Type> [c-d-1]) (Sub64 <x.Type> x (Const64 <x.Type> [d+1]))) |
| (OrB ((Less|Leq)32 (Const32 [c]) x) (Leq32 x (Const32 [d]))) && c >= d+1 && d+1 > d => ((Less|Leq)32U (Const32 <x.Type> [c-d-1]) (Sub32 <x.Type> x (Const32 <x.Type> [d+1]))) |
| (OrB ((Less|Leq)16 (Const16 [c]) x) (Leq16 x (Const16 [d]))) && c >= d+1 && d+1 > d => ((Less|Leq)16U (Const16 <x.Type> [c-d-1]) (Sub16 <x.Type> x (Const16 <x.Type> [d+1]))) |
| (OrB ((Less|Leq)8 (Const8 [c]) x) (Leq8 x (Const8 [d]))) && c >= d+1 && d+1 > d => ((Less|Leq)8U (Const8 <x.Type> [c-d-1]) (Sub8 <x.Type> x (Const8 <x.Type> [d+1]))) |
| |
| // unsigned integer range: ( c (<|<=) x || x < d ) -> ( c-d (<|<=) x-d ) |
| (OrB ((Less|Leq)64U (Const64 [c]) x) (Less64U x (Const64 [d]))) && uint64(c) >= uint64(d) => ((Less|Leq)64U (Const64 <x.Type> [c-d]) (Sub64 <x.Type> x (Const64 <x.Type> [d]))) |
| (OrB ((Less|Leq)32U (Const32 [c]) x) (Less32U x (Const32 [d]))) && uint32(c) >= uint32(d) => ((Less|Leq)32U (Const32 <x.Type> [c-d]) (Sub32 <x.Type> x (Const32 <x.Type> [d]))) |
| (OrB ((Less|Leq)16U (Const16 [c]) x) (Less16U x (Const16 [d]))) && uint16(c) >= uint16(d) => ((Less|Leq)16U (Const16 <x.Type> [c-d]) (Sub16 <x.Type> x (Const16 <x.Type> [d]))) |
| (OrB ((Less|Leq)8U (Const8 [c]) x) (Less8U x (Const8 [d]))) && uint8(c) >= uint8(d) => ((Less|Leq)8U (Const8 <x.Type> [c-d]) (Sub8 <x.Type> x (Const8 <x.Type> [d]))) |
| |
| // unsigned integer range: ( c (<|<=) x || x <= d ) -> ( c-(d+1) (<|<=) x-(d+1) ) |
| (OrB ((Less|Leq)64U (Const64 [c]) x) (Leq64U x (Const64 [d]))) && uint64(c) >= uint64(d+1) && uint64(d+1) > uint64(d) => ((Less|Leq)64U (Const64 <x.Type> [c-d-1]) (Sub64 <x.Type> x (Const64 <x.Type> [d+1]))) |
| (OrB ((Less|Leq)32U (Const32 [c]) x) (Leq32U x (Const32 [d]))) && uint32(c) >= uint32(d+1) && uint32(d+1) > uint32(d) => ((Less|Leq)32U (Const32 <x.Type> [c-d-1]) (Sub32 <x.Type> x (Const32 <x.Type> [d+1]))) |
| (OrB ((Less|Leq)16U (Const16 [c]) x) (Leq16U x (Const16 [d]))) && uint16(c) >= uint16(d+1) && uint16(d+1) > uint16(d) => ((Less|Leq)16U (Const16 <x.Type> [c-d-1]) (Sub16 <x.Type> x (Const16 <x.Type> [d+1]))) |
| (OrB ((Less|Leq)8U (Const8 [c]) x) (Leq8U x (Const8 [d]))) && uint8(c) >= uint8(d+1) && uint8(d+1) > uint8(d) => ((Less|Leq)8U (Const8 <x.Type> [c-d-1]) (Sub8 <x.Type> x (Const8 <x.Type> [d+1]))) |
| |
| // Canonicalize x-const to x+(-const) |
| (Sub64 x (Const64 <t> [c])) && x.Op != OpConst64 => (Add64 (Const64 <t> [-c]) x) |
| (Sub32 x (Const32 <t> [c])) && x.Op != OpConst32 => (Add32 (Const32 <t> [-c]) x) |
| (Sub16 x (Const16 <t> [c])) && x.Op != OpConst16 => (Add16 (Const16 <t> [-c]) x) |
| (Sub8 x (Const8 <t> [c])) && x.Op != OpConst8 => (Add8 (Const8 <t> [-c]) x) |
| |
| // fold negation into comparison operators |
| (Not (Eq(64|32|16|8|B|Ptr|64F|32F) x y)) => (Neq(64|32|16|8|B|Ptr|64F|32F) x y) |
| (Not (Neq(64|32|16|8|B|Ptr|64F|32F) x y)) => (Eq(64|32|16|8|B|Ptr|64F|32F) x y) |
| |
| (Not (Less(64|32|16|8) x y)) => (Leq(64|32|16|8) y x) |
| (Not (Less(64|32|16|8)U x y)) => (Leq(64|32|16|8)U y x) |
| (Not (Leq(64|32|16|8) x y)) => (Less(64|32|16|8) y x) |
| (Not (Leq(64|32|16|8)U x y)) => (Less(64|32|16|8)U y x) |
| |
| // Distribute multiplication c * (d+x) -> c*d + c*x. Useful for: |
| // a[i].b = ...; a[i+1].b = ... |
| (Mul64 (Const64 <t> [c]) (Add64 <t> (Const64 <t> [d]) x)) => |
| (Add64 (Const64 <t> [c*d]) (Mul64 <t> (Const64 <t> [c]) x)) |
| (Mul32 (Const32 <t> [c]) (Add32 <t> (Const32 <t> [d]) x)) => |
| (Add32 (Const32 <t> [c*d]) (Mul32 <t> (Const32 <t> [c]) x)) |
| |
| // Rewrite x*y ± x*z to x*(y±z) |
| (Add(64|32|16|8) <t> (Mul(64|32|16|8) x y) (Mul(64|32|16|8) x z)) |
| => (Mul(64|32|16|8) x (Add(64|32|16|8) <t> y z)) |
| (Sub(64|32|16|8) <t> (Mul(64|32|16|8) x y) (Mul(64|32|16|8) x z)) |
| => (Mul(64|32|16|8) x (Sub(64|32|16|8) <t> y z)) |
| |
| // rewrite shifts of 8/16/32 bit consts into 64 bit consts to reduce |
| // the number of the other rewrite rules for const shifts |
| (Lsh64x32 <t> x (Const32 [c])) => (Lsh64x64 x (Const64 <t> [int64(uint32(c))])) |
| (Lsh64x16 <t> x (Const16 [c])) => (Lsh64x64 x (Const64 <t> [int64(uint16(c))])) |
| (Lsh64x8 <t> x (Const8 [c])) => (Lsh64x64 x (Const64 <t> [int64(uint8(c))])) |
| (Rsh64x32 <t> x (Const32 [c])) => (Rsh64x64 x (Const64 <t> [int64(uint32(c))])) |
| (Rsh64x16 <t> x (Const16 [c])) => (Rsh64x64 x (Const64 <t> [int64(uint16(c))])) |
| (Rsh64x8 <t> x (Const8 [c])) => (Rsh64x64 x (Const64 <t> [int64(uint8(c))])) |
| (Rsh64Ux32 <t> x (Const32 [c])) => (Rsh64Ux64 x (Const64 <t> [int64(uint32(c))])) |
| (Rsh64Ux16 <t> x (Const16 [c])) => (Rsh64Ux64 x (Const64 <t> [int64(uint16(c))])) |
| (Rsh64Ux8 <t> x (Const8 [c])) => (Rsh64Ux64 x (Const64 <t> [int64(uint8(c))])) |
| |
| (Lsh32x32 <t> x (Const32 [c])) => (Lsh32x64 x (Const64 <t> [int64(uint32(c))])) |
| (Lsh32x16 <t> x (Const16 [c])) => (Lsh32x64 x (Const64 <t> [int64(uint16(c))])) |
| (Lsh32x8 <t> x (Const8 [c])) => (Lsh32x64 x (Const64 <t> [int64(uint8(c))])) |
| (Rsh32x32 <t> x (Const32 [c])) => (Rsh32x64 x (Const64 <t> [int64(uint32(c))])) |
| (Rsh32x16 <t> x (Const16 [c])) => (Rsh32x64 x (Const64 <t> [int64(uint16(c))])) |
| (Rsh32x8 <t> x (Const8 [c])) => (Rsh32x64 x (Const64 <t> [int64(uint8(c))])) |
| (Rsh32Ux32 <t> x (Const32 [c])) => (Rsh32Ux64 x (Const64 <t> [int64(uint32(c))])) |
| (Rsh32Ux16 <t> x (Const16 [c])) => (Rsh32Ux64 x (Const64 <t> [int64(uint16(c))])) |
| (Rsh32Ux8 <t> x (Const8 [c])) => (Rsh32Ux64 x (Const64 <t> [int64(uint8(c))])) |
| |
| (Lsh16x32 <t> x (Const32 [c])) => (Lsh16x64 x (Const64 <t> [int64(uint32(c))])) |
| (Lsh16x16 <t> x (Const16 [c])) => (Lsh16x64 x (Const64 <t> [int64(uint16(c))])) |
| (Lsh16x8 <t> x (Const8 [c])) => (Lsh16x64 x (Const64 <t> [int64(uint8(c))])) |
| (Rsh16x32 <t> x (Const32 [c])) => (Rsh16x64 x (Const64 <t> [int64(uint32(c))])) |
| (Rsh16x16 <t> x (Const16 [c])) => (Rsh16x64 x (Const64 <t> [int64(uint16(c))])) |
| (Rsh16x8 <t> x (Const8 [c])) => (Rsh16x64 x (Const64 <t> [int64(uint8(c))])) |
| (Rsh16Ux32 <t> x (Const32 [c])) => (Rsh16Ux64 x (Const64 <t> [int64(uint32(c))])) |
| (Rsh16Ux16 <t> x (Const16 [c])) => (Rsh16Ux64 x (Const64 <t> [int64(uint16(c))])) |
| (Rsh16Ux8 <t> x (Const8 [c])) => (Rsh16Ux64 x (Const64 <t> [int64(uint8(c))])) |
| |
| (Lsh8x32 <t> x (Const32 [c])) => (Lsh8x64 x (Const64 <t> [int64(uint32(c))])) |
| (Lsh8x16 <t> x (Const16 [c])) => (Lsh8x64 x (Const64 <t> [int64(uint16(c))])) |
| (Lsh8x8 <t> x (Const8 [c])) => (Lsh8x64 x (Const64 <t> [int64(uint8(c))])) |
| (Rsh8x32 <t> x (Const32 [c])) => (Rsh8x64 x (Const64 <t> [int64(uint32(c))])) |
| (Rsh8x16 <t> x (Const16 [c])) => (Rsh8x64 x (Const64 <t> [int64(uint16(c))])) |
| (Rsh8x8 <t> x (Const8 [c])) => (Rsh8x64 x (Const64 <t> [int64(uint8(c))])) |
| (Rsh8Ux32 <t> x (Const32 [c])) => (Rsh8Ux64 x (Const64 <t> [int64(uint32(c))])) |
| (Rsh8Ux16 <t> x (Const16 [c])) => (Rsh8Ux64 x (Const64 <t> [int64(uint16(c))])) |
| (Rsh8Ux8 <t> x (Const8 [c])) => (Rsh8Ux64 x (Const64 <t> [int64(uint8(c))])) |
| |
| // shifts by zero |
| (Lsh(64|32|16|8)x64 x (Const64 [0])) => x |
| (Rsh(64|32|16|8)x64 x (Const64 [0])) => x |
| (Rsh(64|32|16|8)Ux64 x (Const64 [0])) => x |
| |
| // rotates by multiples of register width |
| (RotateLeft64 x (Const64 [c])) && c%64 == 0 => x |
| (RotateLeft32 x (Const32 [c])) && c%32 == 0 => x |
| (RotateLeft16 x (Const16 [c])) && c%16 == 0 => x |
| (RotateLeft8 x (Const8 [c])) && c%8 == 0 => x |
| |
| // zero shifted |
| (Lsh64x(64|32|16|8) (Const64 [0]) _) => (Const64 [0]) |
| (Rsh64x(64|32|16|8) (Const64 [0]) _) => (Const64 [0]) |
| (Rsh64Ux(64|32|16|8) (Const64 [0]) _) => (Const64 [0]) |
| (Lsh32x(64|32|16|8) (Const32 [0]) _) => (Const32 [0]) |
| (Rsh32x(64|32|16|8) (Const32 [0]) _) => (Const32 [0]) |
| (Rsh32Ux(64|32|16|8) (Const32 [0]) _) => (Const32 [0]) |
| (Lsh16x(64|32|16|8) (Const16 [0]) _) => (Const16 [0]) |
| (Rsh16x(64|32|16|8) (Const16 [0]) _) => (Const16 [0]) |
| (Rsh16Ux(64|32|16|8) (Const16 [0]) _) => (Const16 [0]) |
| (Lsh8x(64|32|16|8) (Const8 [0]) _) => (Const8 [0]) |
| (Rsh8x(64|32|16|8) (Const8 [0]) _) => (Const8 [0]) |
| (Rsh8Ux(64|32|16|8) (Const8 [0]) _) => (Const8 [0]) |
| |
| // large left shifts of all values, and right shifts of unsigned values |
| ((Lsh64|Rsh64U)x64 _ (Const64 [c])) && uint64(c) >= 64 => (Const64 [0]) |
| ((Lsh32|Rsh32U)x64 _ (Const64 [c])) && uint64(c) >= 32 => (Const32 [0]) |
| ((Lsh16|Rsh16U)x64 _ (Const64 [c])) && uint64(c) >= 16 => (Const16 [0]) |
| ((Lsh8|Rsh8U)x64 _ (Const64 [c])) && uint64(c) >= 8 => (Const8 [0]) |
| |
| // combine const shifts |
| (Lsh64x64 <t> (Lsh64x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Lsh64x64 x (Const64 <t> [c+d])) |
| (Lsh32x64 <t> (Lsh32x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Lsh32x64 x (Const64 <t> [c+d])) |
| (Lsh16x64 <t> (Lsh16x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Lsh16x64 x (Const64 <t> [c+d])) |
| (Lsh8x64 <t> (Lsh8x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Lsh8x64 x (Const64 <t> [c+d])) |
| |
| (Rsh64x64 <t> (Rsh64x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh64x64 x (Const64 <t> [c+d])) |
| (Rsh32x64 <t> (Rsh32x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh32x64 x (Const64 <t> [c+d])) |
| (Rsh16x64 <t> (Rsh16x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh16x64 x (Const64 <t> [c+d])) |
| (Rsh8x64 <t> (Rsh8x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh8x64 x (Const64 <t> [c+d])) |
| |
| (Rsh64Ux64 <t> (Rsh64Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh64Ux64 x (Const64 <t> [c+d])) |
| (Rsh32Ux64 <t> (Rsh32Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh32Ux64 x (Const64 <t> [c+d])) |
| (Rsh16Ux64 <t> (Rsh16Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh16Ux64 x (Const64 <t> [c+d])) |
| (Rsh8Ux64 <t> (Rsh8Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh8Ux64 x (Const64 <t> [c+d])) |
| |
| // Remove signed right shift before an unsigned right shift that extracts the sign bit. |
| (Rsh8Ux64 (Rsh8x64 x _) (Const64 <t> [7] )) => (Rsh8Ux64 x (Const64 <t> [7] )) |
| (Rsh16Ux64 (Rsh16x64 x _) (Const64 <t> [15])) => (Rsh16Ux64 x (Const64 <t> [15])) |
| (Rsh32Ux64 (Rsh32x64 x _) (Const64 <t> [31])) => (Rsh32Ux64 x (Const64 <t> [31])) |
| (Rsh64Ux64 (Rsh64x64 x _) (Const64 <t> [63])) => (Rsh64Ux64 x (Const64 <t> [63])) |
| |
| // ((x >> c1) << c2) >> c3 |
| (Rsh(64|32|16|8)Ux64 (Lsh(64|32|16|8)x64 (Rsh(64|32|16|8)Ux64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) |
| && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) |
| => (Rsh(64|32|16|8)Ux64 x (Const64 <typ.UInt64> [c1-c2+c3])) |
| |
| // ((x << c1) >> c2) << c3 |
| (Lsh(64|32|16|8)x64 (Rsh(64|32|16|8)Ux64 (Lsh(64|32|16|8)x64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) |
| && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) |
| => (Lsh(64|32|16|8)x64 x (Const64 <typ.UInt64> [c1-c2+c3])) |
| |
| // (x >> c) & uppermask = 0 |
| (And64 (Const64 [m]) (Rsh64Ux64 _ (Const64 [c]))) && c >= int64(64-ntz64(m)) => (Const64 [0]) |
| (And32 (Const32 [m]) (Rsh32Ux64 _ (Const64 [c]))) && c >= int64(32-ntz32(m)) => (Const32 [0]) |
| (And16 (Const16 [m]) (Rsh16Ux64 _ (Const64 [c]))) && c >= int64(16-ntz16(m)) => (Const16 [0]) |
| (And8 (Const8 [m]) (Rsh8Ux64 _ (Const64 [c]))) && c >= int64(8-ntz8(m)) => (Const8 [0]) |
| |
| // (x << c) & lowermask = 0 |
| (And64 (Const64 [m]) (Lsh64x64 _ (Const64 [c]))) && c >= int64(64-nlz64(m)) => (Const64 [0]) |
| (And32 (Const32 [m]) (Lsh32x64 _ (Const64 [c]))) && c >= int64(32-nlz32(m)) => (Const32 [0]) |
| (And16 (Const16 [m]) (Lsh16x64 _ (Const64 [c]))) && c >= int64(16-nlz16(m)) => (Const16 [0]) |
| (And8 (Const8 [m]) (Lsh8x64 _ (Const64 [c]))) && c >= int64(8-nlz8(m)) => (Const8 [0]) |
| |
| // replace shifts with zero extensions |
| (Rsh16Ux64 (Lsh16x64 x (Const64 [8])) (Const64 [8])) => (ZeroExt8to16 (Trunc16to8 <typ.UInt8> x)) |
| (Rsh32Ux64 (Lsh32x64 x (Const64 [24])) (Const64 [24])) => (ZeroExt8to32 (Trunc32to8 <typ.UInt8> x)) |
| (Rsh64Ux64 (Lsh64x64 x (Const64 [56])) (Const64 [56])) => (ZeroExt8to64 (Trunc64to8 <typ.UInt8> x)) |
| (Rsh32Ux64 (Lsh32x64 x (Const64 [16])) (Const64 [16])) => (ZeroExt16to32 (Trunc32to16 <typ.UInt16> x)) |
| (Rsh64Ux64 (Lsh64x64 x (Const64 [48])) (Const64 [48])) => (ZeroExt16to64 (Trunc64to16 <typ.UInt16> x)) |
| (Rsh64Ux64 (Lsh64x64 x (Const64 [32])) (Const64 [32])) => (ZeroExt32to64 (Trunc64to32 <typ.UInt32> x)) |
| |
| // replace shifts with sign extensions |
| (Rsh16x64 (Lsh16x64 x (Const64 [8])) (Const64 [8])) => (SignExt8to16 (Trunc16to8 <typ.Int8> x)) |
| (Rsh32x64 (Lsh32x64 x (Const64 [24])) (Const64 [24])) => (SignExt8to32 (Trunc32to8 <typ.Int8> x)) |
| (Rsh64x64 (Lsh64x64 x (Const64 [56])) (Const64 [56])) => (SignExt8to64 (Trunc64to8 <typ.Int8> x)) |
| (Rsh32x64 (Lsh32x64 x (Const64 [16])) (Const64 [16])) => (SignExt16to32 (Trunc32to16 <typ.Int16> x)) |
| (Rsh64x64 (Lsh64x64 x (Const64 [48])) (Const64 [48])) => (SignExt16to64 (Trunc64to16 <typ.Int16> x)) |
| (Rsh64x64 (Lsh64x64 x (Const64 [32])) (Const64 [32])) => (SignExt32to64 (Trunc64to32 <typ.Int32> x)) |
| |
| // constant comparisons |
| (Eq(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) => (ConstBool [c == d]) |
| (Neq(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) => (ConstBool [c != d]) |
| (Less(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) => (ConstBool [c < d]) |
| (Leq(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) => (ConstBool [c <= d]) |
| |
| (Less64U (Const64 [c]) (Const64 [d])) => (ConstBool [uint64(c) < uint64(d)]) |
| (Less32U (Const32 [c]) (Const32 [d])) => (ConstBool [uint32(c) < uint32(d)]) |
| (Less16U (Const16 [c]) (Const16 [d])) => (ConstBool [uint16(c) < uint16(d)]) |
| (Less8U (Const8 [c]) (Const8 [d])) => (ConstBool [ uint8(c) < uint8(d)]) |
| |
| (Leq64U (Const64 [c]) (Const64 [d])) => (ConstBool [uint64(c) <= uint64(d)]) |
| (Leq32U (Const32 [c]) (Const32 [d])) => (ConstBool [uint32(c) <= uint32(d)]) |
| (Leq16U (Const16 [c]) (Const16 [d])) => (ConstBool [uint16(c) <= uint16(d)]) |
| (Leq8U (Const8 [c]) (Const8 [d])) => (ConstBool [ uint8(c) <= uint8(d)]) |
| |
| (Leq8 (Const8 [0]) (And8 _ (Const8 [c]))) && c >= 0 => (ConstBool [true]) |
| (Leq16 (Const16 [0]) (And16 _ (Const16 [c]))) && c >= 0 => (ConstBool [true]) |
| (Leq32 (Const32 [0]) (And32 _ (Const32 [c]))) && c >= 0 => (ConstBool [true]) |
| (Leq64 (Const64 [0]) (And64 _ (Const64 [c]))) && c >= 0 => (ConstBool [true]) |
| |
| (Leq8 (Const8 [0]) (Rsh8Ux64 _ (Const64 [c]))) && c > 0 => (ConstBool [true]) |
| (Leq16 (Const16 [0]) (Rsh16Ux64 _ (Const64 [c]))) && c > 0 => (ConstBool [true]) |
| (Leq32 (Const32 [0]) (Rsh32Ux64 _ (Const64 [c]))) && c > 0 => (ConstBool [true]) |
| (Leq64 (Const64 [0]) (Rsh64Ux64 _ (Const64 [c]))) && c > 0 => (ConstBool [true]) |
| |
| // constant floating point comparisons |
| (Eq32F (Const32F [c]) (Const32F [d])) => (ConstBool [c == d]) |
| (Eq64F (Const64F [c]) (Const64F [d])) => (ConstBool [c == d]) |
| (Neq32F (Const32F [c]) (Const32F [d])) => (ConstBool [c != d]) |
| (Neq64F (Const64F [c]) (Const64F [d])) => (ConstBool [c != d]) |
| (Less32F (Const32F [c]) (Const32F [d])) => (ConstBool [c < d]) |
| (Less64F (Const64F [c]) (Const64F [d])) => (ConstBool [c < d]) |
| (Leq32F (Const32F [c]) (Const32F [d])) => (ConstBool [c <= d]) |
| (Leq64F (Const64F [c]) (Const64F [d])) => (ConstBool [c <= d]) |
| |
| // simplifications |
| (Or(64|32|16|8) x x) => x |
| (Or(64|32|16|8) (Const(64|32|16|8) [0]) x) => x |
| (Or(64|32|16|8) (Const(64|32|16|8) [-1]) _) => (Const(64|32|16|8) [-1]) |
| |
| (And(64|32|16|8) x x) => x |
| (And(64|32|16|8) (Const(64|32|16|8) [-1]) x) => x |
| (And(64|32|16|8) (Const(64|32|16|8) [0]) _) => (Const(64|32|16|8) [0]) |
| |
| (Xor(64|32|16|8) x x) => (Const(64|32|16|8) [0]) |
| (Xor(64|32|16|8) (Const(64|32|16|8) [0]) x) => x |
| |
| (Add(64|32|16|8) (Const(64|32|16|8) [0]) x) => x |
| (Sub(64|32|16|8) x x) => (Const(64|32|16|8) [0]) |
| (Mul(64|32|16|8) (Const(64|32|16|8) [0]) _) => (Const(64|32|16|8) [0]) |
| |
| (Com(64|32|16|8) (Com(64|32|16|8) x)) => x |
| (Com(64|32|16|8) (Const(64|32|16|8) [c])) => (Const(64|32|16|8) [^c]) |
| |
| (Neg(64|32|16|8) (Sub(64|32|16|8) x y)) => (Sub(64|32|16|8) y x) |
| |
| // ^(x-1) == ^x+1 == -x |
| (Add(64|32|16|8) (Const(64|32|16|8) [1]) (Com(64|32|16|8) x)) => (Neg(64|32|16|8) x) |
| (Com(64|32|16|8) (Add(64|32|16|8) (Const(64|32|16|8) [-1]) x)) => (Neg(64|32|16|8) x) |
| |
| // -(-x) == x |
| (Neg(64|32|16|8) (Neg(64|32|16|8) x)) => x |
| |
| // -^x == x+1 |
| (Neg(64|32|16|8) <t> (Com(64|32|16|8) x)) => (Add(64|32|16|8) (Const(64|32|16|8) <t> [1]) x) |
| |
| (And(64|32|16|8) x (And(64|32|16|8) x y)) => (And(64|32|16|8) x y) |
| (Or(64|32|16|8) x (Or(64|32|16|8) x y)) => (Or(64|32|16|8) x y) |
| (Xor(64|32|16|8) x (Xor(64|32|16|8) x y)) => y |
| |
| // Unsigned comparisons to zero. |
| (Less(64U|32U|16U|8U) _ (Const(64|32|16|8) [0])) => (ConstBool [false]) |
| (Leq(64U|32U|16U|8U) (Const(64|32|16|8) [0]) _) => (ConstBool [true]) |
| |
| // Ands clear bits. Ors set bits. |
| // If a subsequent Or will set all the bits |
| // that an And cleared, we can skip the And. |
| // This happens in bitmasking code like: |
| // x &^= 3 << shift // clear two old bits |
| // x |= v << shift // set two new bits |
| // when shift is a small constant and v ends up a constant 3. |
| (Or8 (And8 x (Const8 [c2])) (Const8 <t> [c1])) && ^(c1 | c2) == 0 => (Or8 (Const8 <t> [c1]) x) |
| (Or16 (And16 x (Const16 [c2])) (Const16 <t> [c1])) && ^(c1 | c2) == 0 => (Or16 (Const16 <t> [c1]) x) |
| (Or32 (And32 x (Const32 [c2])) (Const32 <t> [c1])) && ^(c1 | c2) == 0 => (Or32 (Const32 <t> [c1]) x) |
| (Or64 (And64 x (Const64 [c2])) (Const64 <t> [c1])) && ^(c1 | c2) == 0 => (Or64 (Const64 <t> [c1]) x) |
| |
| (Trunc64to8 (And64 (Const64 [y]) x)) && y&0xFF == 0xFF => (Trunc64to8 x) |
| (Trunc64to16 (And64 (Const64 [y]) x)) && y&0xFFFF == 0xFFFF => (Trunc64to16 x) |
| (Trunc64to32 (And64 (Const64 [y]) x)) && y&0xFFFFFFFF == 0xFFFFFFFF => (Trunc64to32 x) |
| (Trunc32to8 (And32 (Const32 [y]) x)) && y&0xFF == 0xFF => (Trunc32to8 x) |
| (Trunc32to16 (And32 (Const32 [y]) x)) && y&0xFFFF == 0xFFFF => (Trunc32to16 x) |
| (Trunc16to8 (And16 (Const16 [y]) x)) && y&0xFF == 0xFF => (Trunc16to8 x) |
| |
| (ZeroExt8to64 (Trunc64to8 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 56 => x |
| (ZeroExt16to64 (Trunc64to16 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 48 => x |
| (ZeroExt32to64 (Trunc64to32 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 32 => x |
| (ZeroExt8to32 (Trunc32to8 x:(Rsh32Ux64 _ (Const64 [s])))) && s >= 24 => x |
| (ZeroExt16to32 (Trunc32to16 x:(Rsh32Ux64 _ (Const64 [s])))) && s >= 16 => x |
| (ZeroExt8to16 (Trunc16to8 x:(Rsh16Ux64 _ (Const64 [s])))) && s >= 8 => x |
| |
| (SignExt8to64 (Trunc64to8 x:(Rsh64x64 _ (Const64 [s])))) && s >= 56 => x |
| (SignExt16to64 (Trunc64to16 x:(Rsh64x64 _ (Const64 [s])))) && s >= 48 => x |
| (SignExt32to64 (Trunc64to32 x:(Rsh64x64 _ (Const64 [s])))) && s >= 32 => x |
| (SignExt8to32 (Trunc32to8 x:(Rsh32x64 _ (Const64 [s])))) && s >= 24 => x |
| (SignExt16to32 (Trunc32to16 x:(Rsh32x64 _ (Const64 [s])))) && s >= 16 => x |
| (SignExt8to16 (Trunc16to8 x:(Rsh16x64 _ (Const64 [s])))) && s >= 8 => x |
| |
| (Slicemask (Const32 [x])) && x > 0 => (Const32 [-1]) |
| (Slicemask (Const32 [0])) => (Const32 [0]) |
| (Slicemask (Const64 [x])) && x > 0 => (Const64 [-1]) |
| (Slicemask (Const64 [0])) => (Const64 [0]) |
| |
| // simplifications often used for lengths. e.g. len(s[i:i+5])==5 |
| (Sub(64|32|16|8) (Add(64|32|16|8) x y) x) => y |
| (Sub(64|32|16|8) (Add(64|32|16|8) x y) y) => x |
| |
| // basic phi simplifications |
| (Phi (Const8 [c]) (Const8 [c])) => (Const8 [c]) |
| (Phi (Const16 [c]) (Const16 [c])) => (Const16 [c]) |
| (Phi (Const32 [c]) (Const32 [c])) => (Const32 [c]) |
| (Phi (Const64 [c]) (Const64 [c])) => (Const64 [c]) |
| |
| // slice and interface comparisons |
| // The frontend ensures that we can only compare against nil, |
| // so we need only compare the first word (interface type or slice ptr). |
| (EqInter x y) => (EqPtr (ITab x) (ITab y)) |
| (NeqInter x y) => (NeqPtr (ITab x) (ITab y)) |
| (EqSlice x y) => (EqPtr (SlicePtr x) (SlicePtr y)) |
| (NeqSlice x y) => (NeqPtr (SlicePtr x) (SlicePtr y)) |
| |
| // Load of store of same address, with compatibly typed value and same size |
| (Load <t1> p1 (Store {t2} p2 x _)) |
| && isSamePtr(p1, p2) |
| && t1.Compare(x.Type) == types.CMPeq |
| && t1.Size() == t2.Size() |
| => x |
| (Load <t1> p1 (Store {t2} p2 _ (Store {t3} p3 x _))) |
| && isSamePtr(p1, p3) |
| && t1.Compare(x.Type) == types.CMPeq |
| && t1.Size() == t2.Size() |
| && disjoint(p3, t3.Size(), p2, t2.Size()) |
| => x |
| (Load <t1> p1 (Store {t2} p2 _ (Store {t3} p3 _ (Store {t4} p4 x _)))) |
| && isSamePtr(p1, p4) |
| && t1.Compare(x.Type) == types.CMPeq |
| && t1.Size() == t2.Size() |
| && disjoint(p4, t4.Size(), p2, t2.Size()) |
| && disjoint(p4, t4.Size(), p3, t3.Size()) |
| => x |
| (Load <t1> p1 (Store {t2} p2 _ (Store {t3} p3 _ (Store {t4} p4 _ (Store {t5} p5 x _))))) |
| && isSamePtr(p1, p5) |
| && t1.Compare(x.Type) == types.CMPeq |
| && t1.Size() == t2.Size() |
| && disjoint(p5, t5.Size(), p2, t2.Size()) |
| && disjoint(p5, t5.Size(), p3, t3.Size()) |
| && disjoint(p5, t5.Size(), p4, t4.Size()) |
| => x |
| |
| // Pass constants through math.Float{32,64}bits and math.Float{32,64}frombits |
| (Load <t1> p1 (Store {t2} p2 (Const64 [x]) _)) && isSamePtr(p1,p2) && sizeof(t2) == 8 && is64BitFloat(t1) && !math.IsNaN(math.Float64frombits(uint64(x))) => (Const64F [math.Float64frombits(uint64(x))]) |
| (Load <t1> p1 (Store {t2} p2 (Const32 [x]) _)) && isSamePtr(p1,p2) && sizeof(t2) == 4 && is32BitFloat(t1) && !math.IsNaN(float64(math.Float32frombits(uint32(x)))) => (Const32F [math.Float32frombits(uint32(x))]) |
| (Load <t1> p1 (Store {t2} p2 (Const64F [x]) _)) && isSamePtr(p1,p2) && sizeof(t2) == 8 && is64BitInt(t1) => (Const64 [int64(math.Float64bits(x))]) |
| (Load <t1> p1 (Store {t2} p2 (Const32F [x]) _)) && isSamePtr(p1,p2) && sizeof(t2) == 4 && is32BitInt(t1) => (Const32 [int32(math.Float32bits(x))]) |
| |
| // Float Loads up to Zeros so they can be constant folded. |
| (Load <t1> op:(OffPtr [o1] p1) |
| (Store {t2} p2 _ |
| mem:(Zero [n] p3 _))) |
| && o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p3) |
| && fe.CanSSA(t1) |
| && disjoint(op, t1.Size(), p2, t2.Size()) |
| => @mem.Block (Load <t1> (OffPtr <op.Type> [o1] p3) mem) |
| (Load <t1> op:(OffPtr [o1] p1) |
| (Store {t2} p2 _ |
| (Store {t3} p3 _ |
| mem:(Zero [n] p4 _)))) |
| && o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p4) |
| && fe.CanSSA(t1) |
| && disjoint(op, t1.Size(), p2, t2.Size()) |
| && disjoint(op, t1.Size(), p3, t3.Size()) |
| => @mem.Block (Load <t1> (OffPtr <op.Type> [o1] p4) mem) |
| (Load <t1> op:(OffPtr [o1] p1) |
| (Store {t2} p2 _ |
| (Store {t3} p3 _ |
| (Store {t4} p4 _ |
| mem:(Zero [n] p5 _))))) |
| && o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p5) |
| && fe.CanSSA(t1) |
| && disjoint(op, t1.Size(), p2, t2.Size()) |
| && disjoint(op, t1.Size(), p3, t3.Size()) |
| && disjoint(op, t1.Size(), p4, t4.Size()) |
| => @mem.Block (Load <t1> (OffPtr <op.Type> [o1] p5) mem) |
| (Load <t1> op:(OffPtr [o1] p1) |
| (Store {t2} p2 _ |
| (Store {t3} p3 _ |
| (Store {t4} p4 _ |
| (Store {t5} p5 _ |
| mem:(Zero [n] p6 _)))))) |
| && o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p6) |
| && fe.CanSSA(t1) |
| && disjoint(op, t1.Size(), p2, t2.Size()) |
| && disjoint(op, t1.Size(), p3, t3.Size()) |
| && disjoint(op, t1.Size(), p4, t4.Size()) |
| && disjoint(op, t1.Size(), p5, t5.Size()) |
| => @mem.Block (Load <t1> (OffPtr <op.Type> [o1] p6) mem) |
| |
| // Zero to Load forwarding. |
| (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _)) |
| && t1.IsBoolean() |
| && isSamePtr(p1, p2) |
| && n >= o + 1 |
| => (ConstBool [false]) |
| (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _)) |
| && is8BitInt(t1) |
| && isSamePtr(p1, p2) |
| && n >= o + 1 |
| => (Const8 [0]) |
| (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _)) |
| && is16BitInt(t1) |
| && isSamePtr(p1, p2) |
| && n >= o + 2 |
| => (Const16 [0]) |
| (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _)) |
| && is32BitInt(t1) |
| && isSamePtr(p1, p2) |
| && n >= o + 4 |
| => (Const32 [0]) |
| (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _)) |
| && is64BitInt(t1) |
| && isSamePtr(p1, p2) |
| && n >= o + 8 |
| => (Const64 [0]) |
| (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _)) |
| && is32BitFloat(t1) |
| && isSamePtr(p1, p2) |
| && n >= o + 4 |
| => (Const32F [0]) |
| (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _)) |
| && is64BitFloat(t1) |
| && isSamePtr(p1, p2) |
| && n >= o + 8 |
| => (Const64F [0]) |
| |
| // Eliminate stores of values that have just been loaded from the same location. |
| // We also handle the common case where there are some intermediate stores. |
| (Store {t1} p1 (Load <t2> p2 mem) mem) |
| && isSamePtr(p1, p2) |
| && t2.Size() == t1.Size() |
| => mem |
| (Store {t1} p1 (Load <t2> p2 oldmem) mem:(Store {t3} p3 _ oldmem)) |
| && isSamePtr(p1, p2) |
| && t2.Size() == t1.Size() |
| && disjoint(p1, t1.Size(), p3, t3.Size()) |
| => mem |
| (Store {t1} p1 (Load <t2> p2 oldmem) mem:(Store {t3} p3 _ (Store {t4} p4 _ oldmem))) |
| && isSamePtr(p1, p2) |
| && t2.Size() == t1.Size() |
| && disjoint(p1, t1.Size(), p3, t3.Size()) |
| && disjoint(p1, t1.Size(), p4, t4.Size()) |
| => mem |
| (Store {t1} p1 (Load <t2> p2 oldmem) mem:(Store {t3} p3 _ (Store {t4} p4 _ (Store {t5} p5 _ oldmem)))) |
| && isSamePtr(p1, p2) |
| && t2.Size() == t1.Size() |
| && disjoint(p1, t1.Size(), p3, t3.Size()) |
| && disjoint(p1, t1.Size(), p4, t4.Size()) |
| && disjoint(p1, t1.Size(), p5, t5.Size()) |
| => mem |
| |
| // Don't Store zeros to cleared variables. |
| (Store {t} (OffPtr [o] p1) x mem:(Zero [n] p2 _)) |
| && isConstZero(x) |
| && o >= 0 && t.Size() + o <= n && isSamePtr(p1, p2) |
| => mem |
| (Store {t1} op:(OffPtr [o1] p1) x mem:(Store {t2} p2 _ (Zero [n] p3 _))) |
| && isConstZero(x) |
| && o1 >= 0 && t1.Size() + o1 <= n && isSamePtr(p1, p3) |
| && disjoint(op, t1.Size(), p2, t2.Size()) |
| => mem |
| (Store {t1} op:(OffPtr [o1] p1) x mem:(Store {t2} p2 _ (Store {t3} p3 _ (Zero [n] p4 _)))) |
| && isConstZero(x) |
| && o1 >= 0 && t1.Size() + o1 <= n && isSamePtr(p1, p4) |
| && disjoint(op, t1.Size(), p2, t2.Size()) |
| && disjoint(op, t1.Size(), p3, t3.Size()) |
| => mem |
| (Store {t1} op:(OffPtr [o1] p1) x mem:(Store {t2} p2 _ (Store {t3} p3 _ (Store {t4} p4 _ (Zero [n] p5 _))))) |
| && isConstZero(x) |
| && o1 >= 0 && t1.Size() + o1 <= n && isSamePtr(p1, p5) |
| && disjoint(op, t1.Size(), p2, t2.Size()) |
| && disjoint(op, t1.Size(), p3, t3.Size()) |
| && disjoint(op, t1.Size(), p4, t4.Size()) |
| => mem |
| |
| // Collapse OffPtr |
| (OffPtr (OffPtr p [b]) [a]) => (OffPtr p [a+b]) |
| (OffPtr p [0]) && v.Type.Compare(p.Type) == types.CMPeq => p |
| |
| // indexing operations |
| // Note: bounds check has already been done |
| (PtrIndex <t> ptr idx) && config.PtrSize == 4 && is32Bit(t.Elem().Size()) => (AddPtr ptr (Mul32 <typ.Int> idx (Const32 <typ.Int> [int32(t.Elem().Size())]))) |
| (PtrIndex <t> ptr idx) && config.PtrSize == 8 => (AddPtr ptr (Mul64 <typ.Int> idx (Const64 <typ.Int> [t.Elem().Size()]))) |
| |
| // struct operations |
| (StructSelect (StructMake1 x)) => x |
| (StructSelect [0] (StructMake2 x _)) => x |
| (StructSelect [1] (StructMake2 _ x)) => x |
| (StructSelect [0] (StructMake3 x _ _)) => x |
| (StructSelect [1] (StructMake3 _ x _)) => x |
| (StructSelect [2] (StructMake3 _ _ x)) => x |
| (StructSelect [0] (StructMake4 x _ _ _)) => x |
| (StructSelect [1] (StructMake4 _ x _ _)) => x |
| (StructSelect [2] (StructMake4 _ _ x _)) => x |
| (StructSelect [3] (StructMake4 _ _ _ x)) => x |
| |
| (Load <t> _ _) && t.IsStruct() && t.NumFields() == 0 && fe.CanSSA(t) => |
| (StructMake0) |
| (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 1 && fe.CanSSA(t) => |
| (StructMake1 |
| (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem)) |
| (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 2 && fe.CanSSA(t) => |
| (StructMake2 |
| (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem) |
| (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem)) |
| (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 3 && fe.CanSSA(t) => |
| (StructMake3 |
| (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem) |
| (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem) |
| (Load <t.FieldType(2)> (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] ptr) mem)) |
| (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 4 && fe.CanSSA(t) => |
| (StructMake4 |
| (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem) |
| (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem) |
| (Load <t.FieldType(2)> (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] ptr) mem) |
| (Load <t.FieldType(3)> (OffPtr <t.FieldType(3).PtrTo()> [t.FieldOff(3)] ptr) mem)) |
| |
| (StructSelect [i] x:(Load <t> ptr mem)) && !fe.CanSSA(t) => |
| @x.Block (Load <v.Type> (OffPtr <v.Type.PtrTo()> [t.FieldOff(int(i))] ptr) mem) |
| |
| (Store _ (StructMake0) mem) => mem |
| (Store dst (StructMake1 <t> f0) mem) => |
| (Store {t.FieldType(0)} (OffPtr <t.FieldType(0).PtrTo()> [0] dst) f0 mem) |
| (Store dst (StructMake2 <t> f0 f1) mem) => |
| (Store {t.FieldType(1)} |
| (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst) |
| f1 |
| (Store {t.FieldType(0)} |
| (OffPtr <t.FieldType(0).PtrTo()> [0] dst) |
| f0 mem)) |
| (Store dst (StructMake3 <t> f0 f1 f2) mem) => |
| (Store {t.FieldType(2)} |
| (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] dst) |
| f2 |
| (Store {t.FieldType(1)} |
| (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst) |
| f1 |
| (Store {t.FieldType(0)} |
| (OffPtr <t.FieldType(0).PtrTo()> [0] dst) |
| f0 mem))) |
| (Store dst (StructMake4 <t> f0 f1 f2 f3) mem) => |
| (Store {t.FieldType(3)} |
| (OffPtr <t.FieldType(3).PtrTo()> [t.FieldOff(3)] dst) |
| f3 |
| (Store {t.FieldType(2)} |
| (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] dst) |
| f2 |
| (Store {t.FieldType(1)} |
| (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst) |
| f1 |
| (Store {t.FieldType(0)} |
| (OffPtr <t.FieldType(0).PtrTo()> [0] dst) |
| f0 mem)))) |
| |
| // Putting struct{*byte} and similar into direct interfaces. |
| (IMake typ (StructMake1 val)) => (IMake typ val) |
| (StructSelect [0] (IData x)) => (IData x) |
| |
| // un-SSAable values use mem->mem copies |
| (Store {t} dst (Load src mem) mem) && !fe.CanSSA(t) => |
| (Move {t} [t.Size()] dst src mem) |
| (Store {t} dst (Load src mem) (VarDef {x} mem)) && !fe.CanSSA(t) => |
| (Move {t} [t.Size()] dst src (VarDef {x} mem)) |
| |
| // array ops |
| (ArraySelect (ArrayMake1 x)) => x |
| |
| (Load <t> _ _) && t.IsArray() && t.NumElem() == 0 => |
| (ArrayMake0) |
| |
| (Load <t> ptr mem) && t.IsArray() && t.NumElem() == 1 && fe.CanSSA(t) => |
| (ArrayMake1 (Load <t.Elem()> ptr mem)) |
| |
| (Store _ (ArrayMake0) mem) => mem |
| (Store dst (ArrayMake1 e) mem) => (Store {e.Type} dst e mem) |
| |
| // Putting [1]*byte and similar into direct interfaces. |
| (IMake typ (ArrayMake1 val)) => (IMake typ val) |
| (ArraySelect [0] (IData x)) => (IData x) |
| |
| // string ops |
| // Decomposing StringMake and lowering of StringPtr and StringLen |
| // happens in a later pass, dec, so that these operations are available |
| // to other passes for optimizations. |
| (StringPtr (StringMake (Addr <t> {s} base) _)) => (Addr <t> {s} base) |
| (StringLen (StringMake _ (Const64 <t> [c]))) => (Const64 <t> [c]) |
| (ConstString {str}) && config.PtrSize == 4 && str == "" => |
| (StringMake (ConstNil) (Const32 <typ.Int> [0])) |
| (ConstString {str}) && config.PtrSize == 8 && str == "" => |
| (StringMake (ConstNil) (Const64 <typ.Int> [0])) |
| (ConstString {str}) && config.PtrSize == 4 && str != "" => |
| (StringMake |
| (Addr <typ.BytePtr> {fe.StringData(str)} |
| (SB)) |
| (Const32 <typ.Int> [int32(len(str))])) |
| (ConstString {str}) && config.PtrSize == 8 && str != "" => |
| (StringMake |
| (Addr <typ.BytePtr> {fe.StringData(str)} |
| (SB)) |
| (Const64 <typ.Int> [int64(len(str))])) |
| |
| // slice ops |
| // Only a few slice rules are provided here. See dec.rules for |
| // a more comprehensive set. |
| (SliceLen (SliceMake _ (Const64 <t> [c]) _)) => (Const64 <t> [c]) |
| (SliceCap (SliceMake _ _ (Const64 <t> [c]))) => (Const64 <t> [c]) |
| (SliceLen (SliceMake _ (Const32 <t> [c]) _)) => (Const32 <t> [c]) |
| (SliceCap (SliceMake _ _ (Const32 <t> [c]))) => (Const32 <t> [c]) |
| (SlicePtr (SliceMake (SlicePtr x) _ _)) => (SlicePtr x) |
| (SliceLen (SliceMake _ (SliceLen x) _)) => (SliceLen x) |
| (SliceCap (SliceMake _ _ (SliceCap x))) => (SliceCap x) |
| (SliceCap (SliceMake _ _ (SliceLen x))) => (SliceLen x) |
| (ConstSlice) && config.PtrSize == 4 => |
| (SliceMake |
| (ConstNil <v.Type.Elem().PtrTo()>) |
| (Const32 <typ.Int> [0]) |
| (Const32 <typ.Int> [0])) |
| (ConstSlice) && config.PtrSize == 8 => |
| (SliceMake |
| (ConstNil <v.Type.Elem().PtrTo()>) |
| (Const64 <typ.Int> [0]) |
| (Const64 <typ.Int> [0])) |
| |
| // interface ops |
| (ConstInterface) => |
| (IMake |
| (ConstNil <typ.Uintptr>) |
| (ConstNil <typ.BytePtr>)) |
| |
| (NilCheck (GetG mem) mem) => mem |
| |
| (If (Not cond) yes no) => (If cond no yes) |
| (If (ConstBool [c]) yes no) && c => (First yes no) |
| (If (ConstBool [c]) yes no) && !c => (First no yes) |
| |
| // Get rid of Convert ops for pointer arithmetic on unsafe.Pointer. |
| (Convert (Add(64|32) (Convert ptr mem) off) mem) => (AddPtr ptr off) |
| (Convert (Convert ptr mem) mem) => ptr |
| |
| // strength reduction of divide by a constant. |
| // See ../magic.go for a detailed description of these algorithms. |
| |
| // Unsigned divide by power of 2. Strength reduce to a shift. |
| (Div8u n (Const8 [c])) && isPowerOfTwo8(c) => (Rsh8Ux64 n (Const64 <typ.UInt64> [log8(c)])) |
| (Div16u n (Const16 [c])) && isPowerOfTwo16(c) => (Rsh16Ux64 n (Const64 <typ.UInt64> [log16(c)])) |
| (Div32u n (Const32 [c])) && isPowerOfTwo32(c) => (Rsh32Ux64 n (Const64 <typ.UInt64> [log32(c)])) |
| (Div64u n (Const64 [c])) && isPowerOfTwo64(c) => (Rsh64Ux64 n (Const64 <typ.UInt64> [log64(c)])) |
| (Div64u n (Const64 [-1<<63])) => (Rsh64Ux64 n (Const64 <typ.UInt64> [63])) |
| |
| // Signed non-negative divide by power of 2. |
| (Div8 n (Const8 [c])) && isNonNegative(n) && isPowerOfTwo8(c) => (Rsh8Ux64 n (Const64 <typ.UInt64> [log8(c)])) |
| (Div16 n (Const16 [c])) && isNonNegative(n) && isPowerOfTwo16(c) => (Rsh16Ux64 n (Const64 <typ.UInt64> [log16(c)])) |
| (Div32 n (Const32 [c])) && isNonNegative(n) && isPowerOfTwo32(c) => (Rsh32Ux64 n (Const64 <typ.UInt64> [log32(c)])) |
| (Div64 n (Const64 [c])) && isNonNegative(n) && isPowerOfTwo64(c) => (Rsh64Ux64 n (Const64 <typ.UInt64> [log64(c)])) |
| (Div64 n (Const64 [-1<<63])) && isNonNegative(n) => (Const64 [0]) |
| |
| // Unsigned divide, not a power of 2. Strength reduce to a multiply. |
| // For 8-bit divides, we just do a direct 9-bit by 8-bit multiply. |
| (Div8u x (Const8 [c])) && umagicOK8(c) => |
| (Trunc32to8 |
| (Rsh32Ux64 <typ.UInt32> |
| (Mul32 <typ.UInt32> |
| (Const32 <typ.UInt32> [int32(1<<8+umagic8(c).m)]) |
| (ZeroExt8to32 x)) |
| (Const64 <typ.UInt64> [8+umagic8(c).s]))) |
| |
| // For 16-bit divides on 64-bit machines, we do a direct 17-bit by 16-bit multiply. |
| (Div16u x (Const16 [c])) && umagicOK16(c) && config.RegSize == 8 => |
| (Trunc64to16 |
| (Rsh64Ux64 <typ.UInt64> |
| (Mul64 <typ.UInt64> |
| (Const64 <typ.UInt64> [int64(1<<16+umagic16(c).m)]) |
| (ZeroExt16to64 x)) |
| (Const64 <typ.UInt64> [16+umagic16(c).s]))) |
| |
| // For 16-bit divides on 32-bit machines |
| (Div16u x (Const16 [c])) && umagicOK16(c) && config.RegSize == 4 && umagic16(c).m&1 == 0 => |
| (Trunc32to16 |
| (Rsh32Ux64 <typ.UInt32> |
| (Mul32 <typ.UInt32> |
| (Const32 <typ.UInt32> [int32(1<<15+umagic16(c).m/2)]) |
| (ZeroExt16to32 x)) |
| (Const64 <typ.UInt64> [16+umagic16(c).s-1]))) |
| (Div16u x (Const16 [c])) && umagicOK16(c) && config.RegSize == 4 && c&1 == 0 => |
| (Trunc32to16 |
| (Rsh32Ux64 <typ.UInt32> |
| (Mul32 <typ.UInt32> |
| (Const32 <typ.UInt32> [int32(1<<15+(umagic16(c).m+1)/2)]) |
| (Rsh32Ux64 <typ.UInt32> (ZeroExt16to32 x) (Const64 <typ.UInt64> [1]))) |
| (Const64 <typ.UInt64> [16+umagic16(c).s-2]))) |
| (Div16u x (Const16 [c])) && umagicOK16(c) && config.RegSize == 4 && config.useAvg => |
| (Trunc32to16 |
| (Rsh32Ux64 <typ.UInt32> |
| (Avg32u |
| (Lsh32x64 <typ.UInt32> (ZeroExt16to32 x) (Const64 <typ.UInt64> [16])) |
| (Mul32 <typ.UInt32> |
| (Const32 <typ.UInt32> [int32(umagic16(c).m)]) |
| (ZeroExt16to32 x))) |
| (Const64 <typ.UInt64> [16+umagic16(c).s-1]))) |
| |
| // For 32-bit divides on 32-bit machines |
| (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 4 && umagic32(c).m&1 == 0 && config.useHmul => |
| (Rsh32Ux64 <typ.UInt32> |
| (Hmul32u <typ.UInt32> |
| (Const32 <typ.UInt32> [int32(1<<31+umagic32(c).m/2)]) |
| x) |
| (Const64 <typ.UInt64> [umagic32(c).s-1])) |
| (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 4 && c&1 == 0 && config.useHmul => |
| (Rsh32Ux64 <typ.UInt32> |
| (Hmul32u <typ.UInt32> |
| (Const32 <typ.UInt32> [int32(1<<31+(umagic32(c).m+1)/2)]) |
| (Rsh32Ux64 <typ.UInt32> x (Const64 <typ.UInt64> [1]))) |
| (Const64 <typ.UInt64> [umagic32(c).s-2])) |
| (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 4 && config.useAvg && config.useHmul => |
| (Rsh32Ux64 <typ.UInt32> |
| (Avg32u |
| x |
| (Hmul32u <typ.UInt32> |
| (Const32 <typ.UInt32> [int32(umagic32(c).m)]) |
| x)) |
| (Const64 <typ.UInt64> [umagic32(c).s-1])) |
| |
| // For 32-bit divides on 64-bit machines |
| // We'll use a regular (non-hi) multiply for this case. |
| (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 8 && umagic32(c).m&1 == 0 => |
| (Trunc64to32 |
| (Rsh64Ux64 <typ.UInt64> |
| (Mul64 <typ.UInt64> |
| (Const64 <typ.UInt64> [int64(1<<31+umagic32(c).m/2)]) |
| (ZeroExt32to64 x)) |
| (Const64 <typ.UInt64> [32+umagic32(c).s-1]))) |
| (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 8 && c&1 == 0 => |
| (Trunc64to32 |
| (Rsh64Ux64 <typ.UInt64> |
| (Mul64 <typ.UInt64> |
| (Const64 <typ.UInt64> [int64(1<<31+(umagic32(c).m+1)/2)]) |
| (Rsh64Ux64 <typ.UInt64> (ZeroExt32to64 x) (Const64 <typ.UInt64> [1]))) |
| (Const64 <typ.UInt64> [32+umagic32(c).s-2]))) |
| (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 8 && config.useAvg => |
| (Trunc64to32 |
| (Rsh64Ux64 <typ.UInt64> |
| (Avg64u |
| (Lsh64x64 <typ.UInt64> (ZeroExt32to64 x) (Const64 <typ.UInt64> [32])) |
| (Mul64 <typ.UInt64> |
| (Const64 <typ.UInt32> [int64(umagic32(c).m)]) |
| (ZeroExt32to64 x))) |
| (Const64 <typ.UInt64> [32+umagic32(c).s-1]))) |
| |
| // For unsigned 64-bit divides on 32-bit machines, |
| // if the constant fits in 16 bits (so that the last term |
| // fits in 32 bits), convert to three 32-bit divides by a constant. |
| // |
| // If 1<<32 = Q * c + R |
| // and x = hi << 32 + lo |
| // |
| // Then x = (hi/c*c + hi%c) << 32 + lo |
| // = hi/c*c<<32 + hi%c<<32 + lo |
| // = hi/c*c<<32 + (hi%c)*(Q*c+R) + lo/c*c + lo%c |
| // = hi/c*c<<32 + (hi%c)*Q*c + lo/c*c + (hi%c*R+lo%c) |
| // and x / c = (hi/c)<<32 + (hi%c)*Q + lo/c + (hi%c*R+lo%c)/c |
| (Div64u x (Const64 [c])) && c > 0 && c <= 0xFFFF && umagicOK32(int32(c)) && config.RegSize == 4 && config.useHmul => |
| (Add64 |
| (Add64 <typ.UInt64> |
| (Add64 <typ.UInt64> |
| (Lsh64x64 <typ.UInt64> |
| (ZeroExt32to64 |
| (Div32u <typ.UInt32> |
| (Trunc64to32 <typ.UInt32> (Rsh64Ux64 <typ.UInt64> x (Const64 <typ.UInt64> [32]))) |
| (Const32 <typ.UInt32> [int32(c)]))) |
| (Const64 <typ.UInt64> [32])) |
| (ZeroExt32to64 (Div32u <typ.UInt32> (Trunc64to32 <typ.UInt32> x) (Const32 <typ.UInt32> [int32(c)])))) |
| (Mul64 <typ.UInt64> |
| (ZeroExt32to64 <typ.UInt64> |
| (Mod32u <typ.UInt32> |
| (Trunc64to32 <typ.UInt32> (Rsh64Ux64 <typ.UInt64> x (Const64 <typ.UInt64> [32]))) |
| (Const32 <typ.UInt32> [int32(c)]))) |
| (Const64 <typ.UInt64> [int64((1<<32)/c)]))) |
| (ZeroExt32to64 |
| (Div32u <typ.UInt32> |
| (Add32 <typ.UInt32> |
| (Mod32u <typ.UInt32> (Trunc64to32 <typ.UInt32> x) (Const32 <typ.UInt32> [int32(c)])) |
| (Mul32 <typ.UInt32> |
| (Mod32u <typ.UInt32> |
| (Trunc64to32 <typ.UInt32> (Rsh64Ux64 <typ.UInt64> x (Const64 <typ.UInt64> [32]))) |
| (Const32 <typ.UInt32> [int32(c)])) |
| (Const32 <typ.UInt32> [int32((1<<32)%c)]))) |
| (Const32 <typ.UInt32> [int32(c)])))) |
| |
| // For 64-bit divides on 64-bit machines |
| // (64-bit divides on 32-bit machines are lowered to a runtime call by the walk pass.) |
| (Div64u x (Const64 [c])) && umagicOK64(c) && config.RegSize == 8 && umagic64(c).m&1 == 0 && config.useHmul => |
| (Rsh64Ux64 <typ.UInt64> |
| (Hmul64u <typ.UInt64> |
| (Const64 <typ.UInt64> [int64(1<<63+umagic64(c).m/2)]) |
| x) |
| (Const64 <typ.UInt64> [umagic64(c).s-1])) |
| (Div64u x (Const64 [c])) && umagicOK64(c) && config.RegSize == 8 && c&1 == 0 && config.useHmul => |
| (Rsh64Ux64 <typ.UInt64> |
| (Hmul64u <typ.UInt64> |
| (Const64 <typ.UInt64> [int64(1<<63+(umagic64(c).m+1)/2)]) |
| (Rsh64Ux64 <typ.UInt64> x (Const64 <typ.UInt64> [1]))) |
| (Const64 <typ.UInt64> [umagic64(c).s-2])) |
| (Div64u x (Const64 [c])) && umagicOK64(c) && config.RegSize == 8 && config.useAvg && config.useHmul => |
| (Rsh64Ux64 <typ.UInt64> |
| (Avg64u |
| x |
| (Hmul64u <typ.UInt64> |
| (Const64 <typ.UInt64> [int64(umagic64(c).m)]) |
| x)) |
| (Const64 <typ.UInt64> [umagic64(c).s-1])) |
| |
| // Signed divide by a negative constant. Rewrite to divide by a positive constant. |
| (Div8 <t> n (Const8 [c])) && c < 0 && c != -1<<7 => (Neg8 (Div8 <t> n (Const8 <t> [-c]))) |
| (Div16 <t> n (Const16 [c])) && c < 0 && c != -1<<15 => (Neg16 (Div16 <t> n (Const16 <t> [-c]))) |
| (Div32 <t> n (Const32 [c])) && c < 0 && c != -1<<31 => (Neg32 (Div32 <t> n (Const32 <t> [-c]))) |
| (Div64 <t> n (Const64 [c])) && c < 0 && c != -1<<63 => (Neg64 (Div64 <t> n (Const64 <t> [-c]))) |
| |
| // Dividing by the most-negative number. Result is always 0 except |
| // if the input is also the most-negative number. |
| // We can detect that using the sign bit of x & -x. |
| (Div8 <t> x (Const8 [-1<<7 ])) => (Rsh8Ux64 (And8 <t> x (Neg8 <t> x)) (Const64 <typ.UInt64> [7 ])) |
| (Div16 <t> x (Const16 [-1<<15])) => (Rsh16Ux64 (And16 <t> x (Neg16 <t> x)) (Const64 <typ.UInt64> [15])) |
| (Div32 <t> x (Const32 [-1<<31])) => (Rsh32Ux64 (And32 <t> x (Neg32 <t> x)) (Const64 <typ.UInt64> [31])) |
| (Div64 <t> x (Const64 [-1<<63])) => (Rsh64Ux64 (And64 <t> x (Neg64 <t> x)) (Const64 <typ.UInt64> [63])) |
| |
| // Signed divide by power of 2. |
| // n / c = n >> log(c) if n >= 0 |
| // = (n+c-1) >> log(c) if n < 0 |
| // We conditionally add c-1 by adding n>>63>>(64-log(c)) (first shift signed, second shift unsigned). |
| (Div8 <t> n (Const8 [c])) && isPowerOfTwo8(c) => |
| (Rsh8x64 |
| (Add8 <t> n (Rsh8Ux64 <t> (Rsh8x64 <t> n (Const64 <typ.UInt64> [ 7])) (Const64 <typ.UInt64> [int64( 8-log8(c))]))) |
| (Const64 <typ.UInt64> [int64(log8(c))])) |
| (Div16 <t> n (Const16 [c])) && isPowerOfTwo16(c) => |
| (Rsh16x64 |
| (Add16 <t> n (Rsh16Ux64 <t> (Rsh16x64 <t> n (Const64 <typ.UInt64> [15])) (Const64 <typ.UInt64> [int64(16-log16(c))]))) |
| (Const64 <typ.UInt64> [int64(log16(c))])) |
| (Div32 <t> n (Const32 [c])) && isPowerOfTwo32(c) => |
| (Rsh32x64 |
| (Add32 <t> n (Rsh32Ux64 <t> (Rsh32x64 <t> n (Const64 <typ.UInt64> [31])) (Const64 <typ.UInt64> [int64(32-log32(c))]))) |
| (Const64 <typ.UInt64> [int64(log32(c))])) |
| (Div64 <t> n (Const64 [c])) && isPowerOfTwo64(c) => |
| (Rsh64x64 |
| (Add64 <t> n (Rsh64Ux64 <t> (Rsh64x64 <t> n (Const64 <typ.UInt64> [63])) (Const64 <typ.UInt64> [int64(64-log64(c))]))) |
| (Const64 <typ.UInt64> [int64(log64(c))])) |
| |
| // Signed divide, not a power of 2. Strength reduce to a multiply. |
| (Div8 <t> x (Const8 [c])) && smagicOK8(c) => |
| (Sub8 <t> |
| (Rsh32x64 <t> |
| (Mul32 <typ.UInt32> |
| (Const32 <typ.UInt32> [int32(smagic8(c).m)]) |
| (SignExt8to32 x)) |
| (Const64 <typ.UInt64> [8+smagic8(c).s])) |
| (Rsh32x64 <t> |
| (SignExt8to32 x) |
| (Const64 <typ.UInt64> [31]))) |
| (Div16 <t> x (Const16 [c])) && smagicOK16(c) => |
| (Sub16 <t> |
| (Rsh32x64 <t> |
| (Mul32 <typ.UInt32> |
| (Const32 <typ.UInt32> [int32(smagic16(c).m)]) |
| (SignExt16to32 x)) |
| (Const64 <typ.UInt64> [16+smagic16(c).s])) |
| (Rsh32x64 <t> |
| (SignExt16to32 x) |
| (Const64 <typ.UInt64> [31]))) |
| (Div32 <t> x (Const32 [c])) && smagicOK32(c) && config.RegSize == 8 => |
| (Sub32 <t> |
| (Rsh64x64 <t> |
| (Mul64 <typ.UInt64> |
| (Const64 <typ.UInt64> [int64(smagic32(c).m)]) |
| (SignExt32to64 x)) |
| (Const64 <typ.UInt64> [32+smagic32(c).s])) |
| (Rsh64x64 <t> |
| (SignExt32to64 x) |
| (Const64 <typ.UInt64> [63]))) |
| (Div32 <t> x (Const32 [c])) && smagicOK32(c) && config.RegSize == 4 && smagic32(c).m&1 == 0 && config.useHmul => |
| (Sub32 <t> |
| (Rsh32x64 <t> |
| (Hmul32 <t> |
| (Const32 <typ.UInt32> [int32(smagic32(c).m/2)]) |
| x) |
| (Const64 <typ.UInt64> [smagic32(c).s-1])) |
| (Rsh32x64 <t> |
| x |
| (Const64 <typ.UInt64> [31]))) |
| (Div32 <t> x (Const32 [c])) && smagicOK32(c) && config.RegSize == 4 && smagic32(c).m&1 != 0 && config.useHmul => |
| (Sub32 <t> |
| (Rsh32x64 <t> |
| (Add32 <t> |
| (Hmul32 <t> |
| (Const32 <typ.UInt32> [int32(smagic32(c).m)]) |
| x) |
| x) |
| (Const64 <typ.UInt64> [smagic32(c).s])) |
| (Rsh32x64 <t> |
| x |
| (Const64 <typ.UInt64> [31]))) |
| (Div64 <t> x (Const64 [c])) && smagicOK64(c) && smagic64(c).m&1 == 0 && config.useHmul => |
| (Sub64 <t> |
| (Rsh64x64 <t> |
| (Hmul64 <t> |
| (Const64 <typ.UInt64> [int64(smagic64(c).m/2)]) |
| x) |
| (Const64 <typ.UInt64> [smagic64(c).s-1])) |
| (Rsh64x64 <t> |
| x |
| (Const64 <typ.UInt64> [63]))) |
| (Div64 <t> x (Const64 [c])) && smagicOK64(c) && smagic64(c).m&1 != 0 && config.useHmul => |
| (Sub64 <t> |
| (Rsh64x64 <t> |
| (Add64 <t> |
| (Hmul64 <t> |
| (Const64 <typ.UInt64> [int64(smagic64(c).m)]) |
| x) |
| x) |
| (Const64 <typ.UInt64> [smagic64(c).s])) |
| (Rsh64x64 <t> |
| x |
| (Const64 <typ.UInt64> [63]))) |
| |
| // Unsigned mod by power of 2 constant. |
| (Mod8u <t> n (Const8 [c])) && isPowerOfTwo8(c) => (And8 n (Const8 <t> [c-1])) |
| (Mod16u <t> n (Const16 [c])) && isPowerOfTwo16(c) => (And16 n (Const16 <t> [c-1])) |
| (Mod32u <t> n (Const32 [c])) && isPowerOfTwo32(c) => (And32 n (Const32 <t> [c-1])) |
| (Mod64u <t> n (Const64 [c])) && isPowerOfTwo64(c) => (And64 n (Const64 <t> [c-1])) |
| (Mod64u <t> n (Const64 [-1<<63])) => (And64 n (Const64 <t> [1<<63-1])) |
| |
| // Signed non-negative mod by power of 2 constant. |
| (Mod8 <t> n (Const8 [c])) && isNonNegative(n) && isPowerOfTwo8(c) => (And8 n (Const8 <t> [c-1])) |
| (Mod16 <t> n (Const16 [c])) && isNonNegative(n) && isPowerOfTwo16(c) => (And16 n (Const16 <t> [c-1])) |
| (Mod32 <t> n (Const32 [c])) && isNonNegative(n) && isPowerOfTwo32(c) => (And32 n (Const32 <t> [c-1])) |
| (Mod64 <t> n (Const64 [c])) && isNonNegative(n) && isPowerOfTwo64(c) => (And64 n (Const64 <t> [c-1])) |
| (Mod64 n (Const64 [-1<<63])) && isNonNegative(n) => n |
| |
| // Signed mod by negative constant. |
| (Mod8 <t> n (Const8 [c])) && c < 0 && c != -1<<7 => (Mod8 <t> n (Const8 <t> [-c])) |
| (Mod16 <t> n (Const16 [c])) && c < 0 && c != -1<<15 => (Mod16 <t> n (Const16 <t> [-c])) |
| (Mod32 <t> n (Const32 [c])) && c < 0 && c != -1<<31 => (Mod32 <t> n (Const32 <t> [-c])) |
| (Mod64 <t> n (Const64 [c])) && c < 0 && c != -1<<63 => (Mod64 <t> n (Const64 <t> [-c])) |
| |
| // All other mods by constants, do A%B = A-(A/B*B). |
| // This implements % with two * and a bunch of ancillary ops. |
| // One of the * is free if the user's code also computes A/B. |
| (Mod8 <t> x (Const8 [c])) && x.Op != OpConst8 && (c > 0 || c == -1<<7) |
| => (Sub8 x (Mul8 <t> (Div8 <t> x (Const8 <t> [c])) (Const8 <t> [c]))) |
| (Mod16 <t> x (Const16 [c])) && x.Op != OpConst16 && (c > 0 || c == -1<<15) |
| => (Sub16 x (Mul16 <t> (Div16 <t> x (Const16 <t> [c])) (Const16 <t> [c]))) |
| (Mod32 <t> x (Const32 [c])) && x.Op != OpConst32 && (c > 0 || c == -1<<31) |
| => (Sub32 x (Mul32 <t> (Div32 <t> x (Const32 <t> [c])) (Const32 <t> [c]))) |
| (Mod64 <t> x (Const64 [c])) && x.Op != OpConst64 && (c > 0 || c == -1<<63) |
| => (Sub64 x (Mul64 <t> (Div64 <t> x (Const64 <t> [c])) (Const64 <t> [c]))) |
| (Mod8u <t> x (Const8 [c])) && x.Op != OpConst8 && c > 0 && umagicOK8( c) |
| => (Sub8 x (Mul8 <t> (Div8u <t> x (Const8 <t> [c])) (Const8 <t> [c]))) |
| (Mod16u <t> x (Const16 [c])) && x.Op != OpConst16 && c > 0 && umagicOK16(c) |
| => (Sub16 x (Mul16 <t> (Div16u <t> x (Const16 <t> [c])) (Const16 <t> [c]))) |
| (Mod32u <t> x (Const32 [c])) && x.Op != OpConst32 && c > 0 && umagicOK32(c) |
| => (Sub32 x (Mul32 <t> (Div32u <t> x (Const32 <t> [c])) (Const32 <t> [c]))) |
| (Mod64u <t> x (Const64 [c])) && x.Op != OpConst64 && c > 0 && umagicOK64(c) |
| => (Sub64 x (Mul64 <t> (Div64u <t> x (Const64 <t> [c])) (Const64 <t> [c]))) |
| |
| // For architectures without rotates on less than 32-bits, promote these checks to 32-bit. |
| (Eq8 (Mod8u x (Const8 [c])) (Const8 [0])) && x.Op != OpConst8 && udivisibleOK8(c) && !hasSmallRotate(config) => |
| (Eq32 (Mod32u <typ.UInt32> (ZeroExt8to32 <typ.UInt32> x) (Const32 <typ.UInt32> [int32(uint8(c))])) (Const32 <typ.UInt32> [0])) |
| (Eq16 (Mod16u x (Const16 [c])) (Const16 [0])) && x.Op != OpConst16 && udivisibleOK16(c) && !hasSmallRotate(config) => |
| (Eq32 (Mod32u <typ.UInt32> (ZeroExt16to32 <typ.UInt32> x) (Const32 <typ.UInt32> [int32(uint16(c))])) (Const32 <typ.UInt32> [0])) |
| (Eq8 (Mod8 x (Const8 [c])) (Const8 [0])) && x.Op != OpConst8 && sdivisibleOK8(c) && !hasSmallRotate(config) => |
| (Eq32 (Mod32 <typ.Int32> (SignExt8to32 <typ.Int32> x) (Const32 <typ.Int32> [int32(c)])) (Const32 <typ.Int32> [0])) |
| (Eq16 (Mod16 x (Const16 [c])) (Const16 [0])) && x.Op != OpConst16 && sdivisibleOK16(c) && !hasSmallRotate(config) => |
| (Eq32 (Mod32 <typ.Int32> (SignExt16to32 <typ.Int32> x) (Const32 <typ.Int32> [int32(c)])) (Const32 <typ.Int32> [0])) |
| |
| // Divisibility checks x%c == 0 convert to multiply and rotate. |
| // Note, x%c == 0 is rewritten as x == c*(x/c) during the opt pass |
| // where (x/c) is performed using multiplication with magic constants. |
| // To rewrite x%c == 0 requires pattern matching the rewritten expression |
| // and checking that the division by the same constant wasn't already calculated. |
| // This check is made by counting uses of the magic constant multiplication. |
| // Note that if there were an intermediate opt pass, this rule could be applied |
| // directly on the Div op and magic division rewrites could be delayed to late opt. |
| |
| // Unsigned divisibility checks convert to multiply and rotate. |
| (Eq8 x (Mul8 (Const8 [c]) |
| (Trunc32to8 |
| (Rsh32Ux64 |
| mul:(Mul32 |
| (Const32 [m]) |
| (ZeroExt8to32 x)) |
| (Const64 [s]))) |
| ) |
| ) |
| && v.Block.Func.pass.name != "opt" && mul.Uses == 1 |
| && m == int32(1<<8+umagic8(c).m) && s == 8+umagic8(c).s |
| && x.Op != OpConst8 && udivisibleOK8(c) |
| => (Leq8U |
| (RotateLeft8 <typ.UInt8> |
| (Mul8 <typ.UInt8> |
| (Const8 <typ.UInt8> [int8(udivisible8(c).m)]) |
| x) |
| (Const8 <typ.UInt8> [int8(8-udivisible8(c).k)]) |
| ) |
| (Const8 <typ.UInt8> [int8(udivisible8(c).max)]) |
| ) |
| |
| (Eq16 x (Mul16 (Const16 [c]) |
| (Trunc64to16 |
| (Rsh64Ux64 |
| mul:(Mul64 |
| (Const64 [m]) |
| (ZeroExt16to64 x)) |
| (Const64 [s]))) |
| ) |
| ) |
| && v.Block.Func.pass.name != "opt" && mul.Uses == 1 |
| && m == int64(1<<16+umagic16(c).m) && s == 16+umagic16(c).s |
| && x.Op != OpConst16 && udivisibleOK16(c) |
| => (Leq16U |
| (RotateLeft16 <typ.UInt16> |
| (Mul16 <typ.UInt16> |
| (Const16 <typ.UInt16> [int16(udivisible16(c).m)]) |
| x) |
| (Const16 <typ.UInt16> [int16(16-udivisible16(c).k)]) |
| ) |
| (Const16 <typ.UInt16> [int16(udivisible16(c).max)]) |
| ) |
| |
| (Eq16 x (Mul16 (Const16 [c]) |
| (Trunc32to16 |
| (Rsh32Ux64 |
| mul:(Mul32 |
| (Const32 [m]) |
| (ZeroExt16to32 x)) |
| (Const64 [s]))) |
| ) |
| ) |
| && v.Block.Func.pass.name != "opt" && mul.Uses == 1 |
| && m == int32(1<<15+umagic16(c).m/2) && s == 16+umagic16(c).s-1 |
| && x.Op != OpConst16 && udivisibleOK16(c) |
| => (Leq16U |
| (RotateLeft16 <typ.UInt16> |
| (Mul16 <typ.UInt16> |
| (Const16 <typ.UInt16> [int16(udivisible16(c).m)]) |
| x) |
| (Const16 <typ.UInt16> [int16(16-udivisible16(c).k)]) |
| ) |
| (Const16 <typ.UInt16> [int16(udivisible16(c).max)]) |
| ) |
| |
| (Eq16 x (Mul16 (Const16 [c]) |
| (Trunc32to16 |
| (Rsh32Ux64 |
| mul:(Mul32 |
| (Const32 [m]) |
| (Rsh32Ux64 (ZeroExt16to32 x) (Const64 [1]))) |
| (Const64 [s]))) |
| ) |
| ) |
| && v.Block.Func.pass.name != "opt" && mul.Uses == 1 |
| && m == int32(1<<15+(umagic16(c).m+1)/2) && s == 16+umagic16(c).s-2 |
| && x.Op != OpConst16 && udivisibleOK16(c) |
| => (Leq16U |
| (RotateLeft16 <typ.UInt16> |
| (Mul16 <typ.UInt16> |
| (Const16 <typ.UInt16> [int16(udivisible16(c).m)]) |
| x) |
| (Const16 <typ.UInt16> [int16(16-udivisible16(c).k)]) |
| ) |
| (Const16 <typ.UInt16> [int16(udivisible16(c).max)]) |
| ) |
| |
| (Eq16 x (Mul16 (Const16 [c]) |
| (Trunc32to16 |
| (Rsh32Ux64 |
| (Avg32u |
| (Lsh32x64 (ZeroExt16to32 x) (Const64 [16])) |
| mul:(Mul32 |
| (Const32 [m]) |
| (ZeroExt16to32 x))) |
| (Const64 [s]))) |
| ) |
| ) |
| && v.Block.Func.pass.name != "opt" && mul.Uses == 1 |
| && m == int32(umagic16(c).m) && s == 16+umagic16(c).s-1 |
| && x.Op != OpConst16 && udivisibleOK16(c) |
| => (Leq16U |
| (RotateLeft16 <typ.UInt16> |
| (Mul16 <typ.UInt16> |
| (Const16 <typ.UInt16> [int16(udivisible16(c).m)]) |
| x) |
| (Const16 <typ.UInt16> [int16(16-udivisible16(c).k)]) |
| ) |
| (Const16 <typ.UInt16> [int16(udivisible16(c).max)]) |
| ) |
| |
| (Eq32 x (Mul32 (Const32 [c]) |
| (Rsh32Ux64 |
| mul:(Hmul32u |
| (Const32 [m]) |
| x) |
| (Const64 [s])) |
| ) |
| ) |
| && v.Block.Func.pass.name != "opt" && mul.Uses == 1 |
| && m == int32(1<<31+umagic32(c).m/2) && s == umagic32(c).s-1 |
| && x.Op != OpConst32 && udivisibleOK32(c) |
| => (Leq32U |
| (RotateLeft32 <typ.UInt32> |
| (Mul32 <typ.UInt32> |
| (Const32 <typ.UInt32> [int32(udivisible32(c).m)]) |
| x) |
| (Const32 <typ.UInt32> [int32(32-udivisible32(c).k)]) |
| ) |
| (Const32 <typ.UInt32> [int32(udivisible32(c).max)]) |
| ) |
| |
| (Eq32 x (Mul32 (Const32 [c]) |
| (Rsh32Ux64 |
| mul:(Hmul32u |
| (Const32 <typ.UInt32> [m]) |
| (Rsh32Ux64 x (Const64 [1]))) |
| (Const64 [s])) |
| ) |
| ) |
| && v.Block.Func.pass.name != "opt" && mul.Uses == 1 |
| && m == int32(1<<31+(umagic32(c).m+1)/2) && s == umagic32(c).s-2 |
| && x.Op != OpConst32 && udivisibleOK32(c) |
| => (Leq32U |
| (RotateLeft32 <typ.UInt32> |
| (Mul32 <typ.UInt32> |
| (Const32 <typ.UInt32> [int32(udivisible32(c).m)]) |
| x) |
| (Const32 <typ.UInt32> [int32(32-udivisible32(c).k)]) |
| ) |
| (Const32 <typ.UInt32> [int32(udivisible32(c).max)]) |
| ) |
| |
| (Eq32 x (Mul32 (Const32 [c]) |
| (Rsh32Ux64 |
| (Avg32u |
| x |
| mul:(Hmul32u |
| (Const32 [m]) |
| x)) |
| (Const64 [s])) |
| ) |
| ) |
| && v.Block.Func.pass.name != "opt" && mul.Uses == 1 |
| && m == int32(umagic32(c).m) && s == umagic32(c).s-1 |
| && x.Op != OpConst32 && udivisibleOK32(c) |
| => (Leq32U |
| (RotateLeft32 <typ.UInt32> |
| (Mul32 <typ.UInt32> |
| (Const32 <typ.UInt32> [int32(udivisible32(c).m)]) |
| x) |
| (Const32 <typ.UInt32> [int32(32-udivisible32(c).k)]) |
| ) |
| (Const32 <typ.UInt32> [int32(udivisible32(c).max)]) |
| ) |
| |
| (Eq32 x (Mul32 (Const32 [c]) |
| (Trunc64to32 |
| (Rsh64Ux64 |
| mul:(Mul64 |
| (Const64 [m]) |
| (ZeroExt32to64 x)) |
| (Const64 [s]))) |
| ) |
| ) |
| && v.Block.Func.pass.name != "opt" && mul.Uses == 1 |
| && m == int64(1<<31+umagic32(c).m/2) && s == 32+umagic32(c).s-1 |
| && x.Op != OpConst32 && udivisibleOK32(c) |
| => (Leq32U |
| (RotateLeft32 <typ.UInt32> |
| (Mul32 <typ.UInt32> |
| (Const32 <typ.UInt32> [int32(udivisible32(c).m)]) |
| x) |
| (Const32 <typ.UInt32> [int32(32-udivisible32(c).k)]) |
| ) |
| (Const32 <typ.UInt32> [int32(udivisible32(c).max)]) |
| ) |
| |
| (Eq32 x (Mul32 (Const32 [c]) |
| (Trunc64to32 |
| (Rsh64Ux64 |
| mul:(Mul64 |
| (Const64 [m]) |
| (Rsh64Ux64 (ZeroExt32to64 x) (Const64 [1]))) |
| (Const64 [s]))) |
| ) |
| ) |
| && v.Block.Func.pass.name != "opt" && mul.Uses == 1 |
| && m == int64(1<<31+(umagic32(c).m+1)/2) && s == 32+umagic32(c).s-2 |
| && x.Op != OpConst32 && udivisibleOK32(c) |
| => (Leq32U |
| (RotateLeft32 <typ.UInt32> |
| (Mul32 <typ.UInt32> |
| (Const32 <typ.UInt32> [int32(udivisible32(c).m)]) |
| x) |
| (Const32 <typ.UInt32> [int32(32-udivisible32(c).k)]) |
| ) |
| (Const32 <typ.UInt32> [int32(udivisible32(c).max)]) |
| ) |
| |
| (Eq32 x (Mul32 (Const32 [c]) |
| (Trunc64to32 |
| (Rsh64Ux64 |
| (Avg64u |
| (Lsh64x64 (ZeroExt32to64 x) (Const64 [32])) |
| mul:(Mul64 |
| (Const64 [m]) |
| (ZeroExt32to64 x))) |
| (Const64 [s]))) |
| ) |
| ) |
| && v.Block.Func.pass.name != "opt" && mul.Uses == 1 |
| && m == int64(umagic32(c).m) && s == 32+umagic32(c).s-1 |
| && x.Op != OpConst32 && udivisibleOK32(c) |
| => (Leq32U |
| (RotateLeft32 <typ.UInt32> |
| (Mul32 <typ.UInt32> |
| (Const32 <typ.UInt32> [int32(udivisible32(c).m)]) |
| x) |
| (Const32 <typ.UInt32> [int32(32-udivisible32(c).k)]) |
| ) |
| (Const32 <typ.UInt32> [int32(udivisible32(c).max)]) |
| ) |
| |
| (Eq64 x (Mul64 (Const64 [c]) |
| (Rsh64Ux64 |
| mul:(Hmul64u |
| (Const64 [m]) |
| x) |
| (Const64 [s])) |
| ) |
| ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 |
| && m == int64(1<<63+umagic64(c).m/2) && s == umagic64(c).s-1 |
| && x.Op != OpConst64 && udivisibleOK64(c) |
| => (Leq64U |
| (RotateLeft64 <typ.UInt64> |
| (Mul64 <typ.UInt64> |
| (Const64 <typ.UInt64> [int64(udivisible64(c).m)]) |
| x) |
| (Const64 <typ.UInt64> [64-udivisible64(c).k]) |
| ) |
| (Const64 <typ.UInt64> [int64(udivisible64(c).max)]) |
| ) |
| (Eq64 x (Mul64 (Const64 [c]) |
| (Rsh64Ux64 |
| mul:(Hmul64u |
| (Const64 [m]) |
| (Rsh64Ux64 x (Const64 [1]))) |
| (Const64 [s])) |
| ) |
| ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 |
| && m == int64(1<<63+(umagic64(c).m+1)/2) && s == umagic64(c).s-2 |
| && x.Op != OpConst64 && udivisibleOK64(c) |
| => (Leq64U |
| (RotateLeft64 <typ.UInt64> |
| (Mul64 <typ.UInt64> |
| (Const64 <typ.UInt64> [int64(udivisible64(c).m)]) |
| x) |
| (Const64 <typ.UInt64> [64-udivisible64(c).k]) |
| ) |
| (Const64 <typ.UInt64> [int64(udivisible64(c).max)]) |
| ) |
| (Eq64 x (Mul64 (Const64 [c]) |
| (Rsh64Ux64 |
| (Avg64u |
| x |
| mul:(Hmul64u |
| (Const64 [m]) |
| x)) |
| (Const64 [s])) |
| ) |
| ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 |
| && m == int64(umagic64(c).m) && s == umagic64(c).s-1 |
| && x.Op != OpConst64 && udivisibleOK64(c) |
| => (Leq64U |
| (RotateLeft64 <typ.UInt64> |
| (Mul64 <typ.UInt64> |
| (Const64 <typ.UInt64> [int64(udivisible64(c).m)]) |
| x) |
| (Const64 <typ.UInt64> [64-udivisible64(c).k]) |
| ) |
| (Const64 <typ.UInt64> [int64(udivisible64(c).max)]) |
| ) |
| |
| // Signed divisibility checks convert to multiply, add and rotate. |
| (Eq8 x (Mul8 (Const8 [c]) |
| (Sub8 |
| (Rsh32x64 |
| mul:(Mul32 |
| (Const32 [m]) |
| (SignExt8to32 x)) |
| (Const64 [s])) |
| (Rsh32x64 |
| (SignExt8to32 x) |
| (Const64 [31]))) |
| ) |
| ) |
| && v.Block.Func.pass.name != "opt" && mul.Uses == 1 |
| && m == int32(smagic8(c).m) && s == 8+smagic8(c).s |
| && x.Op != OpConst8 && sdivisibleOK8(c) |
| => (Leq8U |
| (RotateLeft8 <typ.UInt8> |
| (Add8 <typ.UInt8> |
| (Mul8 <typ.UInt8> |
| (Const8 <typ.UInt8> [int8(sdivisible8(c).m)]) |
| x) |
| (Const8 <typ.UInt8> [int8(sdivisible8(c).a)]) |
| ) |
| (Const8 <typ.UInt8> [int8(8-sdivisible8(c).k)]) |
| ) |
| (Const8 <typ.UInt8> [int8(sdivisible8(c).max)]) |
| ) |
| |
| (Eq16 x (Mul16 (Const16 [c]) |
| (Sub16 |
| (Rsh32x64 |
| mul:(Mul32 |
| (Const32 [m]) |
| (SignExt16to32 x)) |
| (Const64 [s])) |
| (Rsh32x64 |
| (SignExt16to32 x) |
| (Const64 [31]))) |
| ) |
| ) |
| && v.Block.Func.pass.name != "opt" && mul.Uses == 1 |
| && m == int32(smagic16(c).m) && s == 16+smagic16(c).s |
| && x.Op != OpConst16 && sdivisibleOK16(c) |
| => (Leq16U |
| (RotateLeft16 <typ.UInt16> |
| (Add16 <typ.UInt16> |
| (Mul16 <typ.UInt16> |
| (Const16 <typ.UInt16> [int16(sdivisible16(c).m)]) |
| x) |
| (Const16 <typ.UInt16> [int16(sdivisible16(c).a)]) |
| ) |
| (Const16 <typ.UInt16> [int16(16-sdivisible16(c).k)]) |
| ) |
| (Const16 <typ.UInt16> [int16(sdivisible16(c).max)]) |
| ) |
| |
| (Eq32 x (Mul32 (Const32 [c]) |
| (Sub32 |
| (Rsh64x64 |
| mul:(Mul64 |
| (Const64 [m]) |
| (SignExt32to64 x)) |
| (Const64 [s])) |
| (Rsh64x64 |
| (SignExt32to64 x) |
| (Const64 [63]))) |
| ) |
| ) |
| && v.Block.Func.pass.name != "opt" && mul.Uses == 1 |
| && m == int64(smagic32(c).m) && s == 32+smagic32(c).s |
| && x.Op != OpConst32 && sdivisibleOK32(c) |
| => (Leq32U |
| (RotateLeft32 <typ.UInt32> |
| (Add32 <typ.UInt32> |
| (Mul32 <typ.UInt32> |
| (Const32 <typ.UInt32> [int32(sdivisible32(c).m)]) |
| x) |
| (Const32 <typ.UInt32> [int32(sdivisible32(c).a)]) |
| ) |
| (Const32 <typ.UInt32> [int32(32-sdivisible32(c).k)]) |
| ) |
| (Const32 <typ.UInt32> [int32(sdivisible32(c).max)]) |
| ) |
| |
| (Eq32 x (Mul32 (Const32 [c]) |
| (Sub32 |
| (Rsh32x64 |
| mul:(Hmul32 |
| (Const32 [m]) |
| x) |
| (Const64 [s])) |
| (Rsh32x64 |
| x |
| (Const64 [31]))) |
| ) |
| ) |
| && v.Block.Func.pass.name != "opt" && mul.Uses == 1 |
| && m == int32(smagic32(c).m/2) && s == smagic32(c).s-1 |
| && x.Op != OpConst32 && sdivisibleOK32(c) |
| => (Leq32U |
| (RotateLeft32 <typ.UInt32> |
| (Add32 <typ.UInt32> |
| (Mul32 <typ.UInt32> |
| (Const32 <typ.UInt32> [int32(sdivisible32(c).m)]) |
| x) |
| (Const32 <typ.UInt32> [int32(sdivisible32(c).a)]) |
| ) |
| (Const32 <typ.UInt32> [int32(32-sdivisible32(c).k)]) |
| ) |
| (Const32 <typ.UInt32> [int32(sdivisible32(c).max)]) |
| ) |
| |
| (Eq32 x (Mul32 (Const32 [c]) |
| (Sub32 |
| (Rsh32x64 |
| (Add32 |
| mul:(Hmul32 |
| (Const32 [m]) |
| x) |
| x) |
| (Const64 [s])) |
| (Rsh32x64 |
| x |
| (Const64 [31]))) |
| ) |
| ) |
| && v.Block.Func.pass.name != "opt" && mul.Uses == 1 |
| && m == int32(smagic32(c).m) && s == smagic32(c).s |
| && x.Op != OpConst32 && sdivisibleOK32(c) |
| => (Leq32U |
| (RotateLeft32 <typ.UInt32> |
| (Add32 <typ.UInt32> |
| (Mul32 <typ.UInt32> |
| (Const32 <typ.UInt32> [int32(sdivisible32(c).m)]) |
| x) |
| (Const32 <typ.UInt32> [int32(sdivisible32(c).a)]) |
| ) |
| (Const32 <typ.UInt32> [int32(32-sdivisible32(c).k)]) |
| ) |
| (Const32 <typ.UInt32> [int32(sdivisible32(c).max)]) |
| ) |
| |
| (Eq64 x (Mul64 (Const64 [c]) |
| (Sub64 |
| (Rsh64x64 |
| mul:(Hmul64 |
| (Const64 [m]) |
| x) |
| (Const64 [s])) |
| (Rsh64x64 |
| x |
| (Const64 [63]))) |
| ) |
| ) |
| && v.Block.Func.pass.name != "opt" && mul.Uses == 1 |
| && m == int64(smagic64(c).m/2) && s == smagic64(c).s-1 |
| && x.Op != OpConst64 && sdivisibleOK64(c) |
| => (Leq64U |
| (RotateLeft64 <typ.UInt64> |
| (Add64 <typ.UInt64> |
| (Mul64 <typ.UInt64> |
| (Const64 <typ.UInt64> [int64(sdivisible64(c).m)]) |
| x) |
| (Const64 <typ.UInt64> [int64(sdivisible64(c).a)]) |
| ) |
| (Const64 <typ.UInt64> [64-sdivisible64(c).k]) |
| ) |
| (Const64 <typ.UInt64> [int64(sdivisible64(c).max)]) |
| ) |
| |
| (Eq64 x (Mul64 (Const64 [c]) |
| (Sub64 |
| (Rsh64x64 |
| (Add64 |
| mul:(Hmul64 |
| (Const64 [m]) |
| x) |
| x) |
| (Const64 [s])) |
| (Rsh64x64 |
| x |
| (Const64 [63]))) |
| ) |
| ) |
| && v.Block.Func.pass.name != "opt" && mul.Uses == 1 |
| && m == int64(smagic64(c).m) && s == smagic64(c).s |
| && x.Op != OpConst64 && sdivisibleOK64(c) |
| => (Leq64U |
| (RotateLeft64 <typ.UInt64> |
| (Add64 <typ.UInt64> |
| (Mul64 <typ.UInt64> |
| (Const64 <typ.UInt64> [int64(sdivisible64(c).m)]) |
| x) |
| (Const64 <typ.UInt64> [int64(sdivisible64(c).a)]) |
| ) |
| (Const64 <typ.UInt64> [64-sdivisible64(c).k]) |
| ) |
| (Const64 <typ.UInt64> [int64(sdivisible64(c).max)]) |
| ) |
| |
| // Divisibility check for signed integers for power of two constant are simple mask. |
| // However, we must match against the rewritten n%c == 0 -> n - c*(n/c) == 0 -> n == c*(n/c) |
| // where n/c contains fixup code to handle signed n. |
| ((Eq8|Neq8) n (Lsh8x64 |
| (Rsh8x64 |
| (Add8 <t> n (Rsh8Ux64 <t> (Rsh8x64 <t> n (Const64 <typ.UInt64> [ 7])) (Const64 <typ.UInt64> [kbar]))) |
| (Const64 <typ.UInt64> [k])) |
| (Const64 <typ.UInt64> [k])) |
| ) && k > 0 && k < 7 && kbar == 8 - k |
| => ((Eq8|Neq8) (And8 <t> n (Const8 <t> [1<<uint(k)-1])) (Const8 <t> [0])) |
| |
| ((Eq16|Neq16) n (Lsh16x64 |
| (Rsh16x64 |
| (Add16 <t> n (Rsh16Ux64 <t> (Rsh16x64 <t> n (Const64 <typ.UInt64> [15])) (Const64 <typ.UInt64> [kbar]))) |
| (Const64 <typ.UInt64> [k])) |
| (Const64 <typ.UInt64> [k])) |
| ) && k > 0 && k < 15 && kbar == 16 - k |
| => ((Eq16|Neq16) (And16 <t> n (Const16 <t> [1<<uint(k)-1])) (Const16 <t> [0])) |
| |
| ((Eq32|Neq32) n (Lsh32x64 |
| (Rsh32x64 |
| (Add32 <t> n (Rsh32Ux64 <t> (Rsh32x64 <t> n (Const64 <typ.UInt64> [31])) (Const64 <typ.UInt64> [kbar]))) |
| (Const64 <typ.UInt64> [k])) |
| (Const64 <typ.UInt64> [k])) |
| ) && k > 0 && k < 31 && kbar == 32 - k |
| => ((Eq32|Neq32) (And32 <t> n (Const32 <t> [1<<uint(k)-1])) (Const32 <t> [0])) |
| |
| ((Eq64|Neq64) n (Lsh64x64 |
| (Rsh64x64 |
| (Add64 <t> n (Rsh64Ux64 <t> (Rsh64x64 <t> n (Const64 <typ.UInt64> [63])) (Const64 <typ.UInt64> [kbar]))) |
| (Const64 <typ.UInt64> [k])) |
| (Const64 <typ.UInt64> [k])) |
| ) && k > 0 && k < 63 && kbar == 64 - k |
| => ((Eq64|Neq64) (And64 <t> n (Const64 <t> [1<<uint(k)-1])) (Const64 <t> [0])) |
| |
| (Eq(8|16|32|64) s:(Sub(8|16|32|64) x y) (Const(8|16|32|64) [0])) && s.Uses == 1 => (Eq(8|16|32|64) x y) |
| (Neq(8|16|32|64) s:(Sub(8|16|32|64) x y) (Const(8|16|32|64) [0])) && s.Uses == 1 => (Neq(8|16|32|64) x y) |
| |
| // Optimize bitsets |
| (Eq8 (And8 <t> x (Const8 <t> [y])) (Const8 <t> [y])) && oneBit8(y) |
| => (Neq8 (And8 <t> x (Const8 <t> [y])) (Const8 <t> [0])) |
| (Eq16 (And16 <t> x (Const16 <t> [y])) (Const16 <t> [y])) && oneBit16(y) |
| => (Neq16 (And16 <t> x (Const16 <t> [y])) (Const16 <t> [0])) |
| (Eq32 (And32 <t> x (Const32 <t> [y])) (Const32 <t> [y])) && oneBit32(y) |
| => (Neq32 (And32 <t> x (Const32 <t> [y])) (Const32 <t> [0])) |
| (Eq64 (And64 <t> x (Const64 <t> [y])) (Const64 <t> [y])) && oneBit64(y) |
| => (Neq64 (And64 <t> x (Const64 <t> [y])) (Const64 <t> [0])) |
| (Neq8 (And8 <t> x (Const8 <t> [y])) (Const8 <t> [y])) && oneBit8(y) |
| => (Eq8 (And8 <t> x (Const8 <t> [y])) (Const8 <t> [0])) |
| (Neq16 (And16 <t> x (Const16 <t> [y])) (Const16 <t> [y])) && oneBit16(y) |
| => (Eq16 (And16 <t> x (Const16 <t> [y])) (Const16 <t> [0])) |
| (Neq32 (And32 <t> x (Const32 <t> [y])) (Const32 <t> [y])) && oneBit32(y) |
| => (Eq32 (And32 <t> x (Const32 <t> [y])) (Const32 <t> [0])) |
| (Neq64 (And64 <t> x (Const64 <t> [y])) (Const64 <t> [y])) && oneBit64(y) |
| => (Eq64 (And64 <t> x (Const64 <t> [y])) (Const64 <t> [0])) |
| |
| // Reassociate expressions involving |
| // constants such that constants come first, |
| // exposing obvious constant-folding opportunities. |
| // Reassociate (op (op y C) x) to (op C (op x y)) or similar, where C |
| // is constant, which pushes constants to the outside |
| // of the expression. At that point, any constant-folding |
| // opportunities should be obvious. |
| // Note: don't include AddPtr here! In order to maintain the |
| // invariant that pointers must stay within the pointed-to object, |
| // we can't pull part of a pointer computation above the AddPtr. |
| // See issue 37881. |
| // Note: we don't need to handle any (x-C) cases because we already rewrite |
| // (x-C) to (x+(-C)). |
| |
| // x + (C + z) -> C + (x + z) |
| (Add64 (Add64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Add64 i (Add64 <t> z x)) |
| (Add32 (Add32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Add32 i (Add32 <t> z x)) |
| (Add16 (Add16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Add16 i (Add16 <t> z x)) |
| (Add8 (Add8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Add8 i (Add8 <t> z x)) |
| |
| // x + (C - z) -> C + (x - z) |
| (Add64 (Sub64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Add64 i (Sub64 <t> x z)) |
| (Add32 (Sub32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Add32 i (Sub32 <t> x z)) |
| (Add16 (Sub16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Add16 i (Sub16 <t> x z)) |
| (Add8 (Sub8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Add8 i (Sub8 <t> x z)) |
| |
| // x - (C - z) -> x + (z - C) -> (x + z) - C |
| (Sub64 x (Sub64 i:(Const64 <t>) z)) && (z.Op != OpConst64 && x.Op != OpConst64) => (Sub64 (Add64 <t> x z) i) |
| (Sub32 x (Sub32 i:(Const32 <t>) z)) && (z.Op != OpConst32 && x.Op != OpConst32) => (Sub32 (Add32 <t> x z) i) |
| (Sub16 x (Sub16 i:(Const16 <t>) z)) && (z.Op != OpConst16 && x.Op != OpConst16) => (Sub16 (Add16 <t> x z) i) |
| (Sub8 x (Sub8 i:(Const8 <t>) z)) && (z.Op != OpConst8 && x.Op != OpConst8) => (Sub8 (Add8 <t> x z) i) |
| |
| // x - (z + C) -> x + (-z - C) -> (x - z) - C |
| (Sub64 x (Add64 z i:(Const64 <t>))) && (z.Op != OpConst64 && x.Op != OpConst64) => (Sub64 (Sub64 <t> x z) i) |
| (Sub32 x (Add32 z i:(Const32 <t>))) && (z.Op != OpConst32 && x.Op != OpConst32) => (Sub32 (Sub32 <t> x z) i) |
| (Sub16 x (Add16 z i:(Const16 <t>))) && (z.Op != OpConst16 && x.Op != OpConst16) => (Sub16 (Sub16 <t> x z) i) |
| (Sub8 x (Add8 z i:(Const8 <t>))) && (z.Op != OpConst8 && x.Op != OpConst8) => (Sub8 (Sub8 <t> x z) i) |
| |
| // (C - z) - x -> C - (z + x) |
| (Sub64 (Sub64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Sub64 i (Add64 <t> z x)) |
| (Sub32 (Sub32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Sub32 i (Add32 <t> z x)) |
| (Sub16 (Sub16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Sub16 i (Add16 <t> z x)) |
| (Sub8 (Sub8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Sub8 i (Add8 <t> z x)) |
| |
| // (z + C) -x -> C + (z - x) |
| (Sub64 (Add64 z i:(Const64 <t>)) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Add64 i (Sub64 <t> z x)) |
| (Sub32 (Add32 z i:(Const32 <t>)) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Add32 i (Sub32 <t> z x)) |
| (Sub16 (Add16 z i:(Const16 <t>)) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Add16 i (Sub16 <t> z x)) |
| (Sub8 (Add8 z i:(Const8 <t>)) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Add8 i (Sub8 <t> z x)) |
| |
| // x & (C & z) -> C & (x & z) |
| (And64 (And64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (And64 i (And64 <t> z x)) |
| (And32 (And32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (And32 i (And32 <t> z x)) |
| (And16 (And16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (And16 i (And16 <t> z x)) |
| (And8 (And8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (And8 i (And8 <t> z x)) |
| |
| // x | (C | z) -> C | (x | z) |
| (Or64 (Or64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Or64 i (Or64 <t> z x)) |
| (Or32 (Or32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Or32 i (Or32 <t> z x)) |
| (Or16 (Or16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Or16 i (Or16 <t> z x)) |
| (Or8 (Or8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Or8 i (Or8 <t> z x)) |
| |
| // x ^ (C ^ z) -> C ^ (x ^ z) |
| (Xor64 (Xor64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Xor64 i (Xor64 <t> z x)) |
| (Xor32 (Xor32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Xor32 i (Xor32 <t> z x)) |
| (Xor16 (Xor16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Xor16 i (Xor16 <t> z x)) |
| (Xor8 (Xor8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Xor8 i (Xor8 <t> z x)) |
| |
| // x * (D * z) = D * (x * z) |
| (Mul64 (Mul64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Mul64 i (Mul64 <t> x z)) |
| (Mul32 (Mul32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Mul32 i (Mul32 <t> x z)) |
| (Mul16 (Mul16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Mul16 i (Mul16 <t> x z)) |
| (Mul8 (Mul8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Mul8 i (Mul8 <t> x z)) |
| |
| // C + (D + x) -> (C + D) + x |
| (Add64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) => (Add64 (Const64 <t> [c+d]) x) |
| (Add32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) => (Add32 (Const32 <t> [c+d]) x) |
| (Add16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) => (Add16 (Const16 <t> [c+d]) x) |
| (Add8 (Const8 <t> [c]) (Add8 (Const8 <t> [d]) x)) => (Add8 (Const8 <t> [c+d]) x) |
| |
| // C + (D - x) -> (C + D) - x |
| (Add64 (Const64 <t> [c]) (Sub64 (Const64 <t> [d]) x)) => (Sub64 (Const64 <t> [c+d]) x) |
| (Add32 (Const32 <t> [c]) (Sub32 (Const32 <t> [d]) x)) => (Sub32 (Const32 <t> [c+d]) x) |
| (Add16 (Const16 <t> [c]) (Sub16 (Const16 <t> [d]) x)) => (Sub16 (Const16 <t> [c+d]) x) |
| (Add8 (Const8 <t> [c]) (Sub8 (Const8 <t> [d]) x)) => (Sub8 (Const8 <t> [c+d]) x) |
| |
| // C - (D - x) -> (C - D) + x |
| (Sub64 (Const64 <t> [c]) (Sub64 (Const64 <t> [d]) x)) => (Add64 (Const64 <t> [c-d]) x) |
| (Sub32 (Const32 <t> [c]) (Sub32 (Const32 <t> [d]) x)) => (Add32 (Const32 <t> [c-d]) x) |
| (Sub16 (Const16 <t> [c]) (Sub16 (Const16 <t> [d]) x)) => (Add16 (Const16 <t> [c-d]) x) |
| (Sub8 (Const8 <t> [c]) (Sub8 (Const8 <t> [d]) x)) => (Add8 (Const8 <t> [c-d]) x) |
| |
| // C - (D + x) -> (C - D) - x |
| (Sub64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) => (Sub64 (Const64 <t> [c-d]) x) |
| (Sub32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) => (Sub32 (Const32 <t> [c-d]) x) |
| (Sub16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) => (Sub16 (Const16 <t> [c-d]) x) |
| (Sub8 (Const8 <t> [c]) (Add8 (Const8 <t> [d]) x)) => (Sub8 (Const8 <t> [c-d]) x) |
| |
| // C & (D & x) -> (C & D) & x |
| (And64 (Const64 <t> [c]) (And64 (Const64 <t> [d]) x)) => (And64 (Const64 <t> [c&d]) x) |
| (And32 (Const32 <t> [c]) (And32 (Const32 <t> [d]) x)) => (And32 (Const32 <t> [c&d]) x) |
| (And16 (Const16 <t> [c]) (And16 (Const16 <t> [d]) x)) => (And16 (Const16 <t> [c&d]) x) |
| (And8 (Const8 <t> [c]) (And8 (Const8 <t> [d]) x)) => (And8 (Const8 <t> [c&d]) x) |
| |
| // C | (D | x) -> (C | D) | x |
| (Or64 (Const64 <t> [c]) (Or64 (Const64 <t> [d]) x)) => (Or64 (Const64 <t> [c|d]) x) |
| (Or32 (Const32 <t> [c]) (Or32 (Const32 <t> [d]) x)) => (Or32 (Const32 <t> [c|d]) x) |
| (Or16 (Const16 <t> [c]) (Or16 (Const16 <t> [d]) x)) => (Or16 (Const16 <t> [c|d]) x) |
| (Or8 (Const8 <t> [c]) (Or8 (Const8 <t> [d]) x)) => (Or8 (Const8 <t> [c|d]) x) |
| |
| // C ^ (D ^ x) -> (C ^ D) ^ x |
| (Xor64 (Const64 <t> [c]) (Xor64 (Const64 <t> [d]) x)) => (Xor64 (Const64 <t> [c^d]) x) |
| (Xor32 (Const32 <t> [c]) (Xor32 (Const32 <t> [d]) x)) => (Xor32 (Const32 <t> [c^d]) x) |
| (Xor16 (Const16 <t> [c]) (Xor16 (Const16 <t> [d]) x)) => (Xor16 (Const16 <t> [c^d]) x) |
| (Xor8 (Const8 <t> [c]) (Xor8 (Const8 <t> [d]) x)) => (Xor8 (Const8 <t> [c^d]) x) |
| |
| // C * (D * x) = (C * D) * x |
| (Mul64 (Const64 <t> [c]) (Mul64 (Const64 <t> [d]) x)) => (Mul64 (Const64 <t> [c*d]) x) |
| (Mul32 (Const32 <t> [c]) (Mul32 (Const32 <t> [d]) x)) => (Mul32 (Const32 <t> [c*d]) x) |
| (Mul16 (Const16 <t> [c]) (Mul16 (Const16 <t> [d]) x)) => (Mul16 (Const16 <t> [c*d]) x) |
| (Mul8 (Const8 <t> [c]) (Mul8 (Const8 <t> [d]) x)) => (Mul8 (Const8 <t> [c*d]) x) |
| |
| // floating point optimizations |
| (Mul(32|64)F x (Const(32|64)F [1])) => x |
| (Mul32F x (Const32F [-1])) => (Neg32F x) |
| (Mul64F x (Const64F [-1])) => (Neg64F x) |
| (Mul32F x (Const32F [2])) => (Add32F x x) |
| (Mul64F x (Const64F [2])) => (Add64F x x) |
| |
| (Div32F x (Const32F <t> [c])) && reciprocalExact32(c) => (Mul32F x (Const32F <t> [1/c])) |
| (Div64F x (Const64F <t> [c])) && reciprocalExact64(c) => (Mul64F x (Const64F <t> [1/c])) |
| |
| (Sqrt (Const64F [c])) && !math.IsNaN(math.Sqrt(c)) => (Const64F [math.Sqrt(c)]) |
| |
| // recognize runtime.newobject and don't Zero/Nilcheck it |
| (Zero (Load (OffPtr [c] (SP)) mem) mem) |
| && mem.Op == OpStaticCall |
| && isSameCall(mem.Aux, "runtime.newobject") |
| && c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value |
| => mem |
| (Store (Load (OffPtr [c] (SP)) mem) x mem) |
| && isConstZero(x) |
| && mem.Op == OpStaticCall |
| && isSameCall(mem.Aux, "runtime.newobject") |
| && c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value |
| => mem |
| (Store (OffPtr (Load (OffPtr [c] (SP)) mem)) x mem) |
| && isConstZero(x) |
| && mem.Op == OpStaticCall |
| && isSameCall(mem.Aux, "runtime.newobject") |
| && c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value |
| => mem |
| // nil checks just need to rewrite to something useless. |
| // they will be deadcode eliminated soon afterwards. |
| (NilCheck (Load (OffPtr [c] (SP)) (StaticCall {sym} _)) _) |
| && isSameCall(sym, "runtime.newobject") |
| && c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value |
| && warnRule(fe.Debug_checknil(), v, "removed nil check") |
| => (Invalid) |
| (NilCheck (OffPtr (Load (OffPtr [c] (SP)) (StaticCall {sym} _))) _) |
| && isSameCall(sym, "runtime.newobject") |
| && c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value |
| && warnRule(fe.Debug_checknil(), v, "removed nil check") |
| => (Invalid) |
| |
| // for rewriting results of some late-expanded rewrites (below) |
| (SelectN [0] (MakeResult a ___)) => a |
| (SelectN [1] (MakeResult a b ___)) => b |
| (SelectN [2] (MakeResult a b c ___)) => c |
| |
| // for late-expanded calls, recognize newobject and remove zeroing and nilchecks |
| (Zero (SelectN [0] call:(StaticLECall _ _)) mem:(SelectN [1] call)) |
| && isSameCall(call.Aux, "runtime.newobject") |
| => mem |
| |
| (Store (SelectN [0] call:(StaticLECall _ _)) x mem:(SelectN [1] call)) |
| && isConstZero(x) |
| && isSameCall(call.Aux, "runtime.newobject") |
| => mem |
| |
| (Store (OffPtr (SelectN [0] call:(StaticLECall _ _))) x mem:(SelectN [1] call)) |
| && isConstZero(x) |
| && isSameCall(call.Aux, "runtime.newobject") |
| => mem |
| |
| (NilCheck (SelectN [0] call:(StaticLECall _ _)) (SelectN [1] call)) |
| && isSameCall(call.Aux, "runtime.newobject") |
| && warnRule(fe.Debug_checknil(), v, "removed nil check") |
| => (Invalid) |
| |
| (NilCheck (OffPtr (SelectN [0] call:(StaticLECall _ _))) (SelectN [1] call)) |
| && isSameCall(call.Aux, "runtime.newobject") |
| && warnRule(fe.Debug_checknil(), v, "removed nil check") |
| => (Invalid) |
| |
| // for late-expanded calls, recognize memequal applied to a single constant byte |
| // TODO figure out breakeven number of bytes for this optimization. |
| (StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [1]) mem) |
| && isSameCall(callAux, "runtime.memequal") |
| && symIsRO(scon) |
| => (MakeResult (Eq8 (Load <typ.Int8> sptr mem) (Const8 <typ.Int8> [int8(read8(scon,0))])) mem) |
| |
| // Evaluate constant address comparisons. |
| (EqPtr x x) => (ConstBool [true]) |
| (NeqPtr x x) => (ConstBool [false]) |
| (EqPtr (Addr {a} _) (Addr {b} _)) => (ConstBool [a == b]) |
| (EqPtr (Addr {a} _) (OffPtr [o] (Addr {b} _))) => (ConstBool [a == b && o == 0]) |
| (EqPtr (OffPtr [o1] (Addr {a} _)) (OffPtr [o2] (Addr {b} _))) => (ConstBool [a == b && o1 == o2]) |
| (NeqPtr (Addr {a} _) (Addr {b} _)) => (ConstBool [a != b]) |
| (NeqPtr (Addr {a} _) (OffPtr [o] (Addr {b} _))) => (ConstBool [a != b || o != 0]) |
| (NeqPtr (OffPtr [o1] (Addr {a} _)) (OffPtr [o2] (Addr {b} _))) => (ConstBool [a != b || o1 != o2]) |
| (EqPtr (LocalAddr {a} _ _) (LocalAddr {b} _ _)) => (ConstBool [a == b]) |
| (EqPtr (LocalAddr {a} _ _) (OffPtr [o] (LocalAddr {b} _ _))) => (ConstBool [a == b && o == 0]) |
| (EqPtr (OffPtr [o1] (LocalAddr {a} _ _)) (OffPtr [o2] (LocalAddr {b} _ _))) => (ConstBool [a == b && o1 == o2]) |
| (NeqPtr (LocalAddr {a} _ _) (LocalAddr {b} _ _)) => (ConstBool [a != b]) |
| (NeqPtr (LocalAddr {a} _ _) (OffPtr [o] (LocalAddr {b} _ _))) => (ConstBool [a != b || o != 0]) |
| (NeqPtr (OffPtr [o1] (LocalAddr {a} _ _)) (OffPtr [o2] (LocalAddr {b} _ _))) => (ConstBool [a != b || o1 != o2]) |
| (EqPtr (OffPtr [o1] p1) p2) && isSamePtr(p1, p2) => (ConstBool [o1 == 0]) |
| (NeqPtr (OffPtr [o1] p1) p2) && isSamePtr(p1, p2) => (ConstBool [o1 != 0]) |
| (EqPtr (OffPtr [o1] p1) (OffPtr [o2] p2)) && isSamePtr(p1, p2) => (ConstBool [o1 == o2]) |
| (NeqPtr (OffPtr [o1] p1) (OffPtr [o2] p2)) && isSamePtr(p1, p2) => (ConstBool [o1 != o2]) |
| (EqPtr (Const(32|64) [c]) (Const(32|64) [d])) => (ConstBool [c == d]) |
| (NeqPtr (Const(32|64) [c]) (Const(32|64) [d])) => (ConstBool [c != d]) |
| |
| (EqPtr (LocalAddr _ _) (Addr _)) => (ConstBool [false]) |
| (EqPtr (OffPtr (LocalAddr _ _)) (Addr _)) => (ConstBool [false]) |
| (EqPtr (LocalAddr _ _) (OffPtr (Addr _))) => (ConstBool [false]) |
| (EqPtr (OffPtr (LocalAddr _ _)) (OffPtr (Addr _))) => (ConstBool [false]) |
| (NeqPtr (LocalAddr _ _) (Addr _)) => (ConstBool [true]) |
| (NeqPtr (OffPtr (LocalAddr _ _)) (Addr _)) => (ConstBool [true]) |
| (NeqPtr (LocalAddr _ _) (OffPtr (Addr _))) => (ConstBool [true]) |
| (NeqPtr (OffPtr (LocalAddr _ _)) (OffPtr (Addr _))) => (ConstBool [true]) |
| |
| // Simplify address comparisons. |
| (EqPtr (AddPtr p1 o1) p2) && isSamePtr(p1, p2) => (Not (IsNonNil o1)) |
| (NeqPtr (AddPtr p1 o1) p2) && isSamePtr(p1, p2) => (IsNonNil o1) |
| (EqPtr (Const(32|64) [0]) p) => (Not (IsNonNil p)) |
| (NeqPtr (Const(32|64) [0]) p) => (IsNonNil p) |
| (EqPtr (ConstNil) p) => (Not (IsNonNil p)) |
| (NeqPtr (ConstNil) p) => (IsNonNil p) |
| |
| // Evaluate constant user nil checks. |
| (IsNonNil (ConstNil)) => (ConstBool [false]) |
| (IsNonNil (Const(32|64) [c])) => (ConstBool [c != 0]) |
| (IsNonNil (Addr _)) => (ConstBool [true]) |
| (IsNonNil (LocalAddr _ _)) => (ConstBool [true]) |
| |
| // Inline small or disjoint runtime.memmove calls with constant length. |
| // See the comment in op Move in genericOps.go for discussion of the type. |
| (StaticCall {sym} s1:(Store _ (Const(64|32) [sz]) s2:(Store _ src s3:(Store {t} _ dst mem)))) |
| && sz >= 0 |
| && isSameCall(sym, "runtime.memmove") |
| && t.IsPtr() // avoids TUINTPTR, see issue 30061 |
| && s1.Uses == 1 && s2.Uses == 1 && s3.Uses == 1 |
| && isInlinableMemmove(dst, src, int64(sz), config) |
| && clobber(s1, s2, s3) |
| => (Move {t.Elem()} [int64(sz)] dst src mem) |
| |
| // Inline small or disjoint runtime.memmove calls with constant length. |
| // See the comment in op Move in genericOps.go for discussion of the type. |
| (SelectN [0] call:(StaticLECall {sym} dst src (Const(64|32) [sz]) mem)) |
| && sz >= 0 |
| && call.Uses == 1 // this will exclude all calls with results |
| && isSameCall(sym, "runtime.memmove") |
| && dst.Type.IsPtr() // avoids TUINTPTR, see issue 30061 |
| && isInlinableMemmove(dst, src, int64(sz), config) |
| && clobber(call) |
| => (Move {dst.Type.Elem()} [int64(sz)] dst src mem) |
| |
| // De-virtualize interface calls into static calls. |
| // Note that (ITab (IMake)) doesn't get |
| // rewritten until after the first opt pass, |
| // so this rule should trigger reliably. |
| (InterCall [argsize] {auxCall} (Load (OffPtr [off] (ITab (IMake (Addr {itab} (SB)) _))) _) mem) && devirt(v, auxCall, itab, off) != nil => |
| (StaticCall [int32(argsize)] {devirt(v, auxCall, itab, off)} mem) |
| |
| // De-virtualize late-expanded interface calls into late-expanded static calls. |
| // Note that (ITab (IMake)) doesn't get rewritten until after the first opt pass, |
| // so this rule should trigger reliably. |
| // devirtLECall removes the first argument, adds the devirtualized symbol to the AuxCall, and changes the opcode |
| (InterLECall [argsize] {auxCall} (Load (OffPtr [off] (ITab (IMake (Addr {itab} (SB)) _))) _) ___) && devirtLESym(v, auxCall, itab, off) != |
| nil => devirtLECall(v, devirtLESym(v, auxCall, itab, off)) |
| |
| // Move and Zero optimizations. |
| // Move source and destination may overlap. |
| |
| // Convert Moves into Zeros when the source is known to be zeros. |
| (Move {t} [n] dst1 src mem:(Zero {t} [n] dst2 _)) && isSamePtr(src, dst2) |
| => (Zero {t} [n] dst1 mem) |
| (Move {t} [n] dst1 src mem:(VarDef (Zero {t} [n] dst0 _))) && isSamePtr(src, dst0) |
| => (Zero {t} [n] dst1 mem) |
| (Move {t} [n] dst (Addr {sym} (SB)) mem) && symIsROZero(sym) => (Zero {t} [n] dst mem) |
| |
| // Don't Store to variables that are about to be overwritten by Move/Zero. |
| (Zero {t1} [n] p1 store:(Store {t2} (OffPtr [o2] p2) _ mem)) |
| && isSamePtr(p1, p2) && store.Uses == 1 |
| && n >= o2 + t2.Size() |
| && clobber(store) |
| => (Zero {t1} [n] p1 mem) |
| (Move {t1} [n] dst1 src1 store:(Store {t2} op:(OffPtr [o2] dst2) _ mem)) |
| && isSamePtr(dst1, dst2) && store.Uses == 1 |
| && n >= o2 + t2.Size() |
| && disjoint(src1, n, op, t2.Size()) |
| && clobber(store) |
| => (Move {t1} [n] dst1 src1 mem) |
| |
| // Don't Move to variables that are immediately completely overwritten. |
| (Zero {t} [n] dst1 move:(Move {t} [n] dst2 _ mem)) |
| && move.Uses == 1 |
| && isSamePtr(dst1, dst2) |
| && clobber(move) |
| => (Zero {t} [n] dst1 mem) |
| (Move {t} [n] dst1 src1 move:(Move {t} [n] dst2 _ mem)) |
| && move.Uses == 1 |
| && isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n) |
| && clobber(move) |
| => (Move {t} [n] dst1 src1 mem) |
| (Zero {t} [n] dst1 vardef:(VarDef {x} move:(Move {t} [n] dst2 _ mem))) |
| && move.Uses == 1 && vardef.Uses == 1 |
| && isSamePtr(dst1, dst2) |
| && clobber(move, vardef) |
| => (Zero {t} [n] dst1 (VarDef {x} mem)) |
| (Move {t} [n] dst1 src1 vardef:(VarDef {x} move:(Move {t} [n] dst2 _ mem))) |
| && move.Uses == 1 && vardef.Uses == 1 |
| && isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n) |
| && clobber(move, vardef) |
| => (Move {t} [n] dst1 src1 (VarDef {x} mem)) |
| (Store {t1} op1:(OffPtr [o1] p1) d1 |
| m2:(Store {t2} op2:(OffPtr [0] p2) d2 |
| m3:(Move [n] p3 _ mem))) |
| && m2.Uses == 1 && m3.Uses == 1 |
| && o1 == t2.Size() |
| && n == t2.Size() + t1.Size() |
| && isSamePtr(p1, p2) && isSamePtr(p2, p3) |
| && clobber(m2, m3) |
| => (Store {t1} op1 d1 (Store {t2} op2 d2 mem)) |
| (Store {t1} op1:(OffPtr [o1] p1) d1 |
| m2:(Store {t2} op2:(OffPtr [o2] p2) d2 |
| m3:(Store {t3} op3:(OffPtr [0] p3) d3 |
| m4:(Move [n] p4 _ mem)))) |
| && m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1 |
| && o2 == t3.Size() |
| && o1-o2 == t2.Size() |
| && n == t3.Size() + t2.Size() + t1.Size() |
| && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) |
| && clobber(m2, m3, m4) |
| => (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 mem))) |
| (Store {t1} op1:(OffPtr [o1] p1) d1 |
| m2:(Store {t2} op2:(OffPtr [o2] p2) d2 |
| m3:(Store {t3} op3:(OffPtr [o3] p3) d3 |
| m4:(Store {t4} op4:(OffPtr [0] p4) d4 |
| m5:(Move [n] p5 _ mem))))) |
| && m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1 && m5.Uses == 1 |
| && o3 == t4.Size() |
| && o2-o3 == t3.Size() |
| && o1-o2 == t2.Size() |
| && n == t4.Size() + t3.Size() + t2.Size() + t1.Size() |
| && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) |
| && clobber(m2, m3, m4, m5) |
| => (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 (Store {t4} op4 d4 mem)))) |
| |
| // Don't Zero variables that are immediately completely overwritten |
| // before being accessed. |
| (Move {t} [n] dst1 src1 zero:(Zero {t} [n] dst2 mem)) |
| && zero.Uses == 1 |
| && isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n) |
| && clobber(zero) |
| => (Move {t} [n] dst1 src1 mem) |
| (Move {t} [n] dst1 src1 vardef:(VarDef {x} zero:(Zero {t} [n] dst2 mem))) |
| && zero.Uses == 1 && vardef.Uses == 1 |
| && isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n) |
| && clobber(zero, vardef) |
| => (Move {t} [n] dst1 src1 (VarDef {x} mem)) |
| (Store {t1} op1:(OffPtr [o1] p1) d1 |
| m2:(Store {t2} op2:(OffPtr [0] p2) d2 |
| m3:(Zero [n] p3 mem))) |
| && m2.Uses == 1 && m3.Uses == 1 |
| && o1 == t2.Size() |
| && n == t2.Size() + t1.Size() |
| && isSamePtr(p1, p2) && isSamePtr(p2, p3) |
| && clobber(m2, m3) |
| => (Store {t1} op1 d1 (Store {t2} op2 d2 mem)) |
| (Store {t1} op1:(OffPtr [o1] p1) d1 |
| m2:(Store {t2} op2:(OffPtr [o2] p2) d2 |
| m3:(Store {t3} op3:(OffPtr [0] p3) d3 |
| m4:(Zero [n] p4 mem)))) |
| && m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1 |
| && o2 == t3.Size() |
| && o1-o2 == t2.Size() |
| && n == t3.Size() + t2.Size() + t1.Size() |
| && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) |
| && clobber(m2, m3, m4) |
| => (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 mem))) |
| (Store {t1} op1:(OffPtr [o1] p1) d1 |
| m2:(Store {t2} op2:(OffPtr [o2] p2) d2 |
| m3:(Store {t3} op3:(OffPtr [o3] p3) d3 |
| m4:(Store {t4} op4:(OffPtr [0] p4) d4 |
| m5:(Zero [n] p5 mem))))) |
| && m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1 && m5.Uses == 1 |
| && o3 == t4.Size() |
| && o2-o3 == t3.Size() |
| && o1-o2 == t2.Size() |
| && n == t4.Size() + t3.Size() + t2.Size() + t1.Size() |
| && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) |
| && clobber(m2, m3, m4, m5) |
| => (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 (Store {t4} op4 d4 mem)))) |
| |
| // Don't Move from memory if the values are likely to already be |
| // in registers. |
| (Move {t1} [n] dst p1 |
| mem:(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1 |
| (Store {t3} op3:(OffPtr <tt3> [0] p3) d2 _))) |
| && isSamePtr(p1, p2) && isSamePtr(p2, p3) |
| && t2.Alignment() <= t1.Alignment() |
| && t3.Alignment() <= t1.Alignment() |
| && registerizable(b, t2) |
| && registerizable(b, t3) |
| && o2 == t3.Size() |
| && n == t2.Size() + t3.Size() |
| => (Store {t2} (OffPtr <tt2> [o2] dst) d1 |
| (Store {t3} (OffPtr <tt3> [0] dst) d2 mem)) |
| (Move {t1} [n] dst p1 |
| mem:(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1 |
| (Store {t3} op3:(OffPtr <tt3> [o3] p3) d2 |
| (Store {t4} op4:(OffPtr <tt4> [0] p4) d3 _)))) |
| && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) |
| && t2.Alignment() <= t1.Alignment() |
| && t3.Alignment() <= t1.Alignment() |
| && t4.Alignment() <= t1.Alignment() |
| && registerizable(b, t2) |
| && registerizable(b, t3) |
| && registerizable(b, t4) |
| && o3 == t4.Size() |
| && o2-o3 == t3.Size() |
| && n == t2.Size() + t3.Size() + t4.Size() |
| => (Store {t2} (OffPtr <tt2> [o2] dst) d1 |
| (Store {t3} (OffPtr <tt3> [o3] dst) d2 |
| (Store {t4} (OffPtr <tt4> [0] dst) d3 mem))) |
| (Move {t1} [n] dst p1 |
| mem:(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1 |
| (Store {t3} op3:(OffPtr <tt3> [o3] p3) d2 |
| (Store {t4} op4:(OffPtr <tt4> [o4] p4) d3 |
| (Store {t5} op5:(OffPtr <tt5> [0] p5) d4 _))))) |
| && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) |
| && t2.Alignment() <= t1.Alignment() |
| && t3.Alignment() <= t1.Alignment() |
| && t4.Alignment() <= t1.Alignment() |
| && t5.Alignment() <= t1.Alignment() |
| && registerizable(b, t2) |
| && registerizable(b, t3) |
| && registerizable(b, t4) |
| && registerizable(b, t5) |
| && o4 == t5.Size() |
| && o3-o4 == t4.Size() |
| && o2-o3 == t3.Size() |
| && n == t2.Size() + t3.Size() + t4.Size() + t5.Size() |
| => (Store {t2} (OffPtr <tt2> [o2] dst) d1 |
| (Store {t3} (OffPtr <tt3> [o3] dst) d2 |
| (Store {t4} (OffPtr <tt4> [o4] dst) d3 |
| (Store {t5} (OffPtr <tt5> [0] dst) d4 mem)))) |
| |
| // Same thing but with VarDef in the middle. |
| (Move {t1} [n] dst p1 |
| mem:(VarDef |
| (Store {t2} op2:(OffPtr <tt2> [o2] p2) d1 |
| (Store {t3} op3:(OffPtr <tt3> [0] p3) d2 _)))) |
| && isSamePtr(p1, p2) && isSamePtr(p2, p3) |
| && t2.Alignment() <= t1.Alignment() |
| && t3.Alignment() <= t1.Alignment() |
| && registerizable(b, t2) |
| && registerizable(b, t3) |
| && o2 == t3.Size() |
| && n == t2.Size() + t3.Size() |
| => (Store {t2} (OffPtr <tt2> [o2] dst) d1 |
| (Store {t3} (OffPtr <tt3> [0] dst) d2 mem)) |
| (Move {t1} [n] dst p1 |
| mem:(VarDef |
| (Store {t2} op2:(OffPtr <tt2> [o2] p2) d1 |
| (Store {t3} op3:(OffPtr <tt3> [o3] p3) d2 |
| (Store {t4} op4:(OffPtr <tt4> [0] p4) d3 _))))) |
| && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) |
| && t2.Alignment() <= t1.Alignment() |
| && t3.Alignment() <= t1.Alignment() |
| && t4.Alignment() <= t1.Alignment() |
| && registerizable(b, t2) |
| && registerizable(b, t3) |
| && registerizable(b, t4) |
| && o3 == t4.Size() |
| && o2-o3 == t3.Size() |
| && n == t2.Size() + t3.Size() + t4.Size() |
| => (Store {t2} (OffPtr <tt2> [o2] dst) d1 |
| (Store {t3} (OffPtr <tt3> [o3] dst) d2 |
| (Store {t4} (OffPtr <tt4> [0] dst) d3 mem))) |
| (Move {t1} [n] dst p1 |
| mem:(VarDef |
| (Store {t2} op2:(OffPtr <tt2> [o2] p2) d1 |
| (Store {t3} op3:(OffPtr <tt3> [o3] p3) d2 |
| (Store {t4} op4:(OffPtr <tt4> [o4] p4) d3 |
| (Store {t5} op5:(OffPtr <tt5> [0] p5) d4 _)))))) |
| && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) |
| && t2.Alignment() <= t1.Alignment() |
| && t3.Alignment() <= t1.Alignment() |
| && t4.Alignment() <= t1.Alignment() |
| && t5.Alignment() <= t1.Alignment() |
| && registerizable(b, t2) |
| && registerizable(b, t3) |
| && registerizable(b, t4) |
| && registerizable(b, t5) |
| && o4 == t5.Size() |
| && o3-o4 == t4.Size() |
| && o2-o3 == t3.Size() |
| && n == t2.Size() + t3.Size() + t4.Size() + t5.Size() |
| => (Store {t2} (OffPtr <tt2> [o2] dst) d1 |
| (Store {t3} (OffPtr <tt3> [o3] dst) d2 |
| (Store {t4} (OffPtr <tt4> [o4] dst) d3 |
| (Store {t5} (OffPtr <tt5> [0] dst) d4 mem)))) |
| |
| // Prefer to Zero and Store than to Move. |
| (Move {t1} [n] dst p1 |
| mem:(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1 |
| (Zero {t3} [n] p3 _))) |
| && isSamePtr(p1, p2) && isSamePtr(p2, p3) |
| && t2.Alignment() <= t1.Alignment() |
| && t3.Alignment() <= t1.Alignment() |
| && registerizable(b, t2) |
| && n >= o2 + t2.Size() |
| => (Store {t2} (OffPtr <tt2> [o2] dst) d1 |
| (Zero {t1} [n] dst mem)) |
| (Move {t1} [n] dst p1 |
| mem:(Store {t2} (OffPtr <tt2> [o2] p2) d1 |
| (Store {t3} (OffPtr <tt3> [o3] p3) d2 |
| (Zero {t4} [n] p4 _)))) |
| && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) |
| && t2.Alignment() <= t1.Alignment() |
| && t3.Alignment() <= t1.Alignment() |
| && t4.Alignment() <= t1.Alignment() |
| && registerizable(b, t2) |
| && registerizable(b, t3) |
| && n >= o2 + t2.Size() |
| && n >= o3 + t3.Size() |
| => (Store {t2} (OffPtr <tt2> [o2] dst) d1 |
| (Store {t3} (OffPtr <tt3> [o3] dst) d2 |
| (Zero {t1} [n] dst mem))) |
| (Move {t1} [n] dst p1 |
| mem:(Store {t2} (OffPtr <tt2> [o2] p2) d1 |
| (Store {t3} (OffPtr <tt3> [o3] p3) d2 |
| (Store {t4} (OffPtr <tt4> [o4] p4) d3 |
| (Zero {t5} [n] p5 _))))) |
| && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) |
| && t2.Alignment() <= t1.Alignment() |
| && t3.Alignment() <= t1.Alignment() |
| && t4.Alignment() <= t1.Alignment() |
| && t5.Alignment() <= t1.Alignment() |
| && registerizable(b, t2) |
| && registerizable(b, t3) |
| && registerizable(b, t4) |
| && n >= o2 + t2.Size() |
| && n >= o3 + t3.Size() |
| && n >= o4 + t4.Size() |
| => (Store {t2} (OffPtr <tt2> [o2] dst) d1 |
| (Store {t3} (OffPtr <tt3> [o3] dst) d2 |
| (Store {t4} (OffPtr <tt4> [o4] dst) d3 |
| (Zero {t1} [n] dst mem)))) |
| (Move {t1} [n] dst p1 |
| mem:(Store {t2} (OffPtr <tt2> [o2] p2) d1 |
| (Store {t3} (OffPtr <tt3> [o3] p3) d2 |
| (Store {t4} (OffPtr <tt4> [o4] p4) d3 |
| (Store {t5} (OffPtr <tt5> [o5] p5) d4 |
| (Zero {t6} [n] p6 _)))))) |
| && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) && isSamePtr(p5, p6) |
| && t2.Alignment() <= t1.Alignment() |
| && t3.Alignment() <= t1.Alignment() |
| && t4.Alignment() <= t1.Alignment() |
| && t5.Alignment() <= t1.Alignment() |
| && t6.Alignment() <= t1.Alignment() |
| && registerizable(b, t2) |
| && registerizable(b, t3) |
| && registerizable(b, t4) |
| && registerizable(b, t5) |
| && n >= o2 + t2.Size() |
| && n >= o3 + t3.Size() |
| && n >= o4 + t4.Size() |
| && n >= o5 + t5.Size() |
| => (Store {t2} (OffPtr <tt2> [o2] dst) d1 |
| (Store {t3} (OffPtr <tt3> [o3] dst) d2 |
| (Store {t4} (OffPtr <tt4> [o4] dst) d3 |
| (Store {t5} (OffPtr <tt5> [o5] dst) d4 |
| (Zero {t1} [n] dst mem))))) |
| (Move {t1} [n] dst p1 |
| mem:(VarDef |
| (Store {t2} op2:(OffPtr <tt2> [o2] p2) d1 |
| (Zero {t3} [n] p3 _)))) |
| && isSamePtr(p1, p2) && isSamePtr(p2, p3) |
| && t2.Alignment() <= t1.Alignment() |
| && t3.Alignment() <= t1.Alignment() |
| && registerizable(b, t2) |
| && n >= o2 + t2.Size() |
| => (Store {t2} (OffPtr <tt2> [o2] dst) d1 |
| (Zero {t1} [n] dst mem)) |
| (Move {t1} [n] dst p1 |
| mem:(VarDef |
| (Store {t2} (OffPtr <tt2> [o2] p2) d1 |
| (Store {t3} (OffPtr <tt3> [o3] p3) d2 |
| (Zero {t4} [n] p4 _))))) |
| && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) |
| && t2.Alignment() <= t1.Alignment() |
| && t3.Alignment() <= t1.Alignment() |
| && t4.Alignment() <= t1.Alignment() |
| && registerizable(b, t2) |
| && registerizable(b, t3) |
| && n >= o2 + t2.Size() |
| && n >= o3 + t3.Size() |
| => (Store {t2} (OffPtr <tt2> [o2] dst) d1 |
| (Store {t3} (OffPtr <tt3> [o3] dst) d2 |
| (Zero {t1} [n] dst mem))) |
| (Move {t1} [n] dst p1 |
| mem:(VarDef |
| (Store {t2} (OffPtr <tt2> [o2] p2) d1 |
| (Store {t3} (OffPtr <tt3> [o3] p3) d2 |
| (Store {t4} (OffPtr <tt4> [o4] p4) d3 |
| (Zero {t5} [n] p5 _)))))) |
| && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) |
| && t2.Alignment() <= t1.Alignment() |
| && t3.Alignment() <= t1.Alignment() |
| && t4.Alignment() <= t1.Alignment() |
| && t5.Alignment() <= t1.Alignment() |
| && registerizable(b, t2) |
| && registerizable(b, t3) |
| && registerizable(b, t4) |
| && n >= o2 + t2.Size() |
| && n >= o3 + t3.Size() |
| && n >= o4 + t4.Size() |
| => (Store {t2} (OffPtr <tt2> [o2] dst) d1 |
| (Store {t3} (OffPtr <tt3> [o3] dst) d2 |
| (Store {t4} (OffPtr <tt4> [o4] dst) d3 |
| (Zero {t1} [n] dst mem)))) |
| (Move {t1} [n] dst p1 |
| mem:(VarDef |
| (Store {t2} (OffPtr <tt2> [o2] p2) d1 |
| (Store {t3} (OffPtr <tt3> [o3] p3) d2 |
| (Store {t4} (OffPtr <tt4> [o4] p4) d3 |
| (Store {t5} (OffPtr <tt5> [o5] p5) d4 |
| (Zero {t6} [n] p6 _))))))) |
| && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) && isSamePtr(p5, p6) |
| && t2.Alignment() <= t1.Alignment() |
| && t3.Alignment() <= t1.Alignment() |
| && t4.Alignment() <= t1.Alignment() |
| && t5.Alignment() <= t1.Alignment() |
| && t6.Alignment() <= t1.Alignment() |
| && registerizable(b, t2) |
| && registerizable(b, t3) |
| && registerizable(b, t4) |
| && registerizable(b, t5) |
| && n >= o2 + t2.Size() |
| && n >= o3 + t3.Size() |
| && n >= o4 + t4.Size() |
| && n >= o5 + t5.Size() |
| => (Store {t2} (OffPtr <tt2> [o2] dst) d1 |
| (Store {t3} (OffPtr <tt3> [o3] dst) d2 |
| (Store {t4} (OffPtr <tt4> [o4] dst) d3 |
| (Store {t5} (OffPtr <tt5> [o5] dst) d4 |
| (Zero {t1} [n] dst mem))))) |
| |
| // TODO this does not fire before call expansion; is that acceptable? |
| (StaticCall {sym} x) && needRaceCleanup(sym, v) => x |
| |
| // Collapse moving A -> B -> C into just A -> C. |
| // Later passes (deadstore, elim unread auto) will remove the A -> B move, if possible. |
| // This happens most commonly when B is an autotmp inserted earlier |
| // during compilation to ensure correctness. |
| // Take care that overlapping moves are preserved. |
| // Restrict this optimization to the stack, to avoid duplicating loads from the heap; |
| // see CL 145208 for discussion. |
| (Move {t1} [s] dst tmp1 midmem:(Move {t2} [s] tmp2 src _)) |
| && t1.Compare(t2) == types.CMPeq |
| && isSamePtr(tmp1, tmp2) |
| && isStackPtr(src) && !isVolatile(src) |
| && disjoint(src, s, tmp2, s) |
| && (disjoint(src, s, dst, s) || isInlinableMemmove(dst, src, s, config)) |
| => (Move {t1} [s] dst src midmem) |
| |
| // Same, but for large types that require VarDefs. |
| (Move {t1} [s] dst tmp1 midmem:(VarDef (Move {t2} [s] tmp2 src _))) |
| && t1.Compare(t2) == types.CMPeq |
| && isSamePtr(tmp1, tmp2) |
| && isStackPtr(src) && !isVolatile(src) |
| && disjoint(src, s, tmp2, s) |
| && (disjoint(src, s, dst, s) || isInlinableMemmove(dst, src, s, config)) |
| => (Move {t1} [s] dst src midmem) |
| |
| // Don't zero the same bits twice. |
| (Zero {t} [s] dst1 zero:(Zero {t} [s] dst2 _)) && isSamePtr(dst1, dst2) => zero |
| (Zero {t} [s] dst1 vardef:(VarDef (Zero {t} [s] dst2 _))) && isSamePtr(dst1, dst2) => vardef |
| |
| // Elide self-moves. This only happens rarely (e.g test/fixedbugs/bug277.go). |
| // However, this rule is needed to prevent the previous rule from looping forever in such cases. |
| (Move dst src mem) && isSamePtr(dst, src) => mem |