| // Derived from Inferno's libkern/memmove-386.s (adapted for amd64) | 
 | // https://bitbucket.org/inferno-os/inferno-os/src/default/libkern/memmove-386.s | 
 | // | 
 | //         Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. | 
 | //         Revisions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com).  All rights reserved. | 
 | //         Portions Copyright 2009 The Go Authors. All rights reserved. | 
 | // | 
 | // Permission is hereby granted, free of charge, to any person obtaining a copy | 
 | // of this software and associated documentation files (the "Software"), to deal | 
 | // in the Software without restriction, including without limitation the rights | 
 | // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | 
 | // copies of the Software, and to permit persons to whom the Software is | 
 | // furnished to do so, subject to the following conditions: | 
 | // | 
 | // The above copyright notice and this permission notice shall be included in | 
 | // all copies or substantial portions of the Software. | 
 | // | 
 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
 | // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
 | // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE | 
 | // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | 
 | // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | 
 | // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | 
 | // THE SOFTWARE. | 
 |  | 
 | // +build !plan9 | 
 |  | 
 | #include "go_asm.h" | 
 | #include "textflag.h" | 
 |  | 
 | // See memmove Go doc for important implementation constraints. | 
 |  | 
 | // func memmove(to, from unsafe.Pointer, n uintptr) | 
 | TEXT runtime·memmove(SB), NOSPLIT, $0-24 | 
 |  | 
 | 	MOVQ	to+0(FP), DI | 
 | 	MOVQ	from+8(FP), SI | 
 | 	MOVQ	n+16(FP), BX | 
 |  | 
 | 	// REP instructions have a high startup cost, so we handle small sizes | 
 | 	// with some straightline code. The REP MOVSQ instruction is really fast | 
 | 	// for large sizes. The cutover is approximately 2K. | 
 | tail: | 
 | 	// move_129through256 or smaller work whether or not the source and the | 
 | 	// destination memory regions overlap because they load all data into | 
 | 	// registers before writing it back.  move_256through2048 on the other | 
 | 	// hand can be used only when the memory regions don't overlap or the copy | 
 | 	// direction is forward. | 
 | 	// | 
 | 	// BSR+branch table make almost all memmove/memclr benchmarks worse. Not worth doing. | 
 | 	TESTQ	BX, BX | 
 | 	JEQ	move_0 | 
 | 	CMPQ	BX, $2 | 
 | 	JBE	move_1or2 | 
 | 	CMPQ	BX, $4 | 
 | 	JB	move_3 | 
 | 	JBE	move_4 | 
 | 	CMPQ	BX, $8 | 
 | 	JB	move_5through7 | 
 | 	JE	move_8 | 
 | 	CMPQ	BX, $16 | 
 | 	JBE	move_9through16 | 
 | 	CMPQ	BX, $32 | 
 | 	JBE	move_17through32 | 
 | 	CMPQ	BX, $64 | 
 | 	JBE	move_33through64 | 
 | 	CMPQ	BX, $128 | 
 | 	JBE	move_65through128 | 
 | 	CMPQ	BX, $256 | 
 | 	JBE	move_129through256 | 
 |  | 
 | 	TESTB	$1, runtime·useAVXmemmove(SB) | 
 | 	JNZ	avxUnaligned | 
 |  | 
 | /* | 
 |  * check and set for backwards | 
 |  */ | 
 | 	CMPQ	SI, DI | 
 | 	JLS	back | 
 |  | 
 | /* | 
 |  * forward copy loop | 
 |  */ | 
 | forward: | 
 | 	CMPQ	BX, $2048 | 
 | 	JLS	move_256through2048 | 
 |  | 
 | 	// If REP MOVSB isn't fast, don't use it | 
 | 	CMPB	internal∕cpu·X86+const_offsetX86HasERMS(SB), $1 // enhanced REP MOVSB/STOSB | 
 | 	JNE	fwdBy8 | 
 |  | 
 | 	// Check alignment | 
 | 	MOVL	SI, AX | 
 | 	ORL	DI, AX | 
 | 	TESTL	$7, AX | 
 | 	JEQ	fwdBy8 | 
 |  | 
 | 	// Do 1 byte at a time | 
 | 	MOVQ	BX, CX | 
 | 	REP;	MOVSB | 
 | 	RET | 
 |  | 
 | fwdBy8: | 
 | 	// Do 8 bytes at a time | 
 | 	MOVQ	BX, CX | 
 | 	SHRQ	$3, CX | 
 | 	ANDQ	$7, BX | 
 | 	REP;	MOVSQ | 
 | 	JMP	tail | 
 |  | 
 | back: | 
 | /* | 
 |  * check overlap | 
 |  */ | 
 | 	MOVQ	SI, CX | 
 | 	ADDQ	BX, CX | 
 | 	CMPQ	CX, DI | 
 | 	JLS	forward | 
 | /* | 
 |  * whole thing backwards has | 
 |  * adjusted addresses | 
 |  */ | 
 | 	ADDQ	BX, DI | 
 | 	ADDQ	BX, SI | 
 | 	STD | 
 |  | 
 | /* | 
 |  * copy | 
 |  */ | 
 | 	MOVQ	BX, CX | 
 | 	SHRQ	$3, CX | 
 | 	ANDQ	$7, BX | 
 |  | 
 | 	SUBQ	$8, DI | 
 | 	SUBQ	$8, SI | 
 | 	REP;	MOVSQ | 
 |  | 
 | 	CLD | 
 | 	ADDQ	$8, DI | 
 | 	ADDQ	$8, SI | 
 | 	SUBQ	BX, DI | 
 | 	SUBQ	BX, SI | 
 | 	JMP	tail | 
 |  | 
 | move_1or2: | 
 | 	MOVB	(SI), AX | 
 | 	MOVB	-1(SI)(BX*1), CX | 
 | 	MOVB	AX, (DI) | 
 | 	MOVB	CX, -1(DI)(BX*1) | 
 | 	RET | 
 | move_0: | 
 | 	RET | 
 | move_4: | 
 | 	MOVL	(SI), AX | 
 | 	MOVL	AX, (DI) | 
 | 	RET | 
 | move_3: | 
 | 	MOVW	(SI), AX | 
 | 	MOVB	2(SI), CX | 
 | 	MOVW	AX, (DI) | 
 | 	MOVB	CX, 2(DI) | 
 | 	RET | 
 | move_5through7: | 
 | 	MOVL	(SI), AX | 
 | 	MOVL	-4(SI)(BX*1), CX | 
 | 	MOVL	AX, (DI) | 
 | 	MOVL	CX, -4(DI)(BX*1) | 
 | 	RET | 
 | move_8: | 
 | 	// We need a separate case for 8 to make sure we write pointers atomically. | 
 | 	MOVQ	(SI), AX | 
 | 	MOVQ	AX, (DI) | 
 | 	RET | 
 | move_9through16: | 
 | 	MOVQ	(SI), AX | 
 | 	MOVQ	-8(SI)(BX*1), CX | 
 | 	MOVQ	AX, (DI) | 
 | 	MOVQ	CX, -8(DI)(BX*1) | 
 | 	RET | 
 | move_17through32: | 
 | 	MOVOU	(SI), X0 | 
 | 	MOVOU	-16(SI)(BX*1), X1 | 
 | 	MOVOU	X0, (DI) | 
 | 	MOVOU	X1, -16(DI)(BX*1) | 
 | 	RET | 
 | move_33through64: | 
 | 	MOVOU	(SI), X0 | 
 | 	MOVOU	16(SI), X1 | 
 | 	MOVOU	-32(SI)(BX*1), X2 | 
 | 	MOVOU	-16(SI)(BX*1), X3 | 
 | 	MOVOU	X0, (DI) | 
 | 	MOVOU	X1, 16(DI) | 
 | 	MOVOU	X2, -32(DI)(BX*1) | 
 | 	MOVOU	X3, -16(DI)(BX*1) | 
 | 	RET | 
 | move_65through128: | 
 | 	MOVOU	(SI), X0 | 
 | 	MOVOU	16(SI), X1 | 
 | 	MOVOU	32(SI), X2 | 
 | 	MOVOU	48(SI), X3 | 
 | 	MOVOU	-64(SI)(BX*1), X4 | 
 | 	MOVOU	-48(SI)(BX*1), X5 | 
 | 	MOVOU	-32(SI)(BX*1), X6 | 
 | 	MOVOU	-16(SI)(BX*1), X7 | 
 | 	MOVOU	X0, (DI) | 
 | 	MOVOU	X1, 16(DI) | 
 | 	MOVOU	X2, 32(DI) | 
 | 	MOVOU	X3, 48(DI) | 
 | 	MOVOU	X4, -64(DI)(BX*1) | 
 | 	MOVOU	X5, -48(DI)(BX*1) | 
 | 	MOVOU	X6, -32(DI)(BX*1) | 
 | 	MOVOU	X7, -16(DI)(BX*1) | 
 | 	RET | 
 | move_129through256: | 
 | 	MOVOU	(SI), X0 | 
 | 	MOVOU	16(SI), X1 | 
 | 	MOVOU	32(SI), X2 | 
 | 	MOVOU	48(SI), X3 | 
 | 	MOVOU	64(SI), X4 | 
 | 	MOVOU	80(SI), X5 | 
 | 	MOVOU	96(SI), X6 | 
 | 	MOVOU	112(SI), X7 | 
 | 	MOVOU	-128(SI)(BX*1), X8 | 
 | 	MOVOU	-112(SI)(BX*1), X9 | 
 | 	MOVOU	-96(SI)(BX*1), X10 | 
 | 	MOVOU	-80(SI)(BX*1), X11 | 
 | 	MOVOU	-64(SI)(BX*1), X12 | 
 | 	MOVOU	-48(SI)(BX*1), X13 | 
 | 	MOVOU	-32(SI)(BX*1), X14 | 
 | 	MOVOU	-16(SI)(BX*1), X15 | 
 | 	MOVOU	X0, (DI) | 
 | 	MOVOU	X1, 16(DI) | 
 | 	MOVOU	X2, 32(DI) | 
 | 	MOVOU	X3, 48(DI) | 
 | 	MOVOU	X4, 64(DI) | 
 | 	MOVOU	X5, 80(DI) | 
 | 	MOVOU	X6, 96(DI) | 
 | 	MOVOU	X7, 112(DI) | 
 | 	MOVOU	X8, -128(DI)(BX*1) | 
 | 	MOVOU	X9, -112(DI)(BX*1) | 
 | 	MOVOU	X10, -96(DI)(BX*1) | 
 | 	MOVOU	X11, -80(DI)(BX*1) | 
 | 	MOVOU	X12, -64(DI)(BX*1) | 
 | 	MOVOU	X13, -48(DI)(BX*1) | 
 | 	MOVOU	X14, -32(DI)(BX*1) | 
 | 	MOVOU	X15, -16(DI)(BX*1) | 
 | 	RET | 
 | move_256through2048: | 
 | 	SUBQ	$256, BX | 
 | 	MOVOU	(SI), X0 | 
 | 	MOVOU	16(SI), X1 | 
 | 	MOVOU	32(SI), X2 | 
 | 	MOVOU	48(SI), X3 | 
 | 	MOVOU	64(SI), X4 | 
 | 	MOVOU	80(SI), X5 | 
 | 	MOVOU	96(SI), X6 | 
 | 	MOVOU	112(SI), X7 | 
 | 	MOVOU	128(SI), X8 | 
 | 	MOVOU	144(SI), X9 | 
 | 	MOVOU	160(SI), X10 | 
 | 	MOVOU	176(SI), X11 | 
 | 	MOVOU	192(SI), X12 | 
 | 	MOVOU	208(SI), X13 | 
 | 	MOVOU	224(SI), X14 | 
 | 	MOVOU	240(SI), X15 | 
 | 	MOVOU	X0, (DI) | 
 | 	MOVOU	X1, 16(DI) | 
 | 	MOVOU	X2, 32(DI) | 
 | 	MOVOU	X3, 48(DI) | 
 | 	MOVOU	X4, 64(DI) | 
 | 	MOVOU	X5, 80(DI) | 
 | 	MOVOU	X6, 96(DI) | 
 | 	MOVOU	X7, 112(DI) | 
 | 	MOVOU	X8, 128(DI) | 
 | 	MOVOU	X9, 144(DI) | 
 | 	MOVOU	X10, 160(DI) | 
 | 	MOVOU	X11, 176(DI) | 
 | 	MOVOU	X12, 192(DI) | 
 | 	MOVOU	X13, 208(DI) | 
 | 	MOVOU	X14, 224(DI) | 
 | 	MOVOU	X15, 240(DI) | 
 | 	CMPQ	BX, $256 | 
 | 	LEAQ	256(SI), SI | 
 | 	LEAQ	256(DI), DI | 
 | 	JGE	move_256through2048 | 
 | 	JMP	tail | 
 |  | 
 | avxUnaligned: | 
 | 	// There are two implementations of move algorithm. | 
 | 	// The first one for non-overlapped memory regions. It uses forward copying. | 
 | 	// The second one for overlapped regions. It uses backward copying | 
 | 	MOVQ	DI, CX | 
 | 	SUBQ	SI, CX | 
 | 	// Now CX contains distance between SRC and DEST | 
 | 	CMPQ	CX, BX | 
 | 	// If the distance lesser than region length it means that regions are overlapped | 
 | 	JC	copy_backward | 
 |  | 
 | 	// Non-temporal copy would be better for big sizes. | 
 | 	CMPQ	BX, $0x100000 | 
 | 	JAE	gobble_big_data_fwd | 
 |  | 
 | 	// Memory layout on the source side | 
 | 	// SI                                       CX | 
 | 	// |<---------BX before correction--------->| | 
 | 	// |       |<--BX corrected-->|             | | 
 | 	// |       |                  |<--- AX  --->| | 
 | 	// |<-R11->|                  |<-128 bytes->| | 
 | 	// +----------------------------------------+ | 
 | 	// | Head  | Body             | Tail        | | 
 | 	// +-------+------------------+-------------+ | 
 | 	// ^       ^                  ^ | 
 | 	// |       |                  | | 
 | 	// Save head into Y4          Save tail into X5..X12 | 
 | 	//         | | 
 | 	//         SI+R11, where R11 = ((DI & -32) + 32) - DI | 
 | 	// Algorithm: | 
 | 	// 1. Unaligned save of the tail's 128 bytes | 
 | 	// 2. Unaligned save of the head's 32  bytes | 
 | 	// 3. Destination-aligned copying of body (128 bytes per iteration) | 
 | 	// 4. Put head on the new place | 
 | 	// 5. Put the tail on the new place | 
 | 	// It can be important to satisfy processor's pipeline requirements for | 
 | 	// small sizes as the cost of unaligned memory region copying is | 
 | 	// comparable with the cost of main loop. So code is slightly messed there. | 
 | 	// There is more clean implementation of that algorithm for bigger sizes | 
 | 	// where the cost of unaligned part copying is negligible. | 
 | 	// You can see it after gobble_big_data_fwd label. | 
 | 	LEAQ	(SI)(BX*1), CX | 
 | 	MOVQ	DI, R10 | 
 | 	// CX points to the end of buffer so we need go back slightly. We will use negative offsets there. | 
 | 	MOVOU	-0x80(CX), X5 | 
 | 	MOVOU	-0x70(CX), X6 | 
 | 	MOVQ	$0x80, AX | 
 | 	// Align destination address | 
 | 	ANDQ	$-32, DI | 
 | 	ADDQ	$32, DI | 
 | 	// Continue tail saving. | 
 | 	MOVOU	-0x60(CX), X7 | 
 | 	MOVOU	-0x50(CX), X8 | 
 | 	// Make R11 delta between aligned and unaligned destination addresses. | 
 | 	MOVQ	DI, R11 | 
 | 	SUBQ	R10, R11 | 
 | 	// Continue tail saving. | 
 | 	MOVOU	-0x40(CX), X9 | 
 | 	MOVOU	-0x30(CX), X10 | 
 | 	// Let's make bytes-to-copy value adjusted as we've prepared unaligned part for copying. | 
 | 	SUBQ	R11, BX | 
 | 	// Continue tail saving. | 
 | 	MOVOU	-0x20(CX), X11 | 
 | 	MOVOU	-0x10(CX), X12 | 
 | 	// The tail will be put on its place after main body copying. | 
 | 	// It's time for the unaligned heading part. | 
 | 	VMOVDQU	(SI), Y4 | 
 | 	// Adjust source address to point past head. | 
 | 	ADDQ	R11, SI | 
 | 	SUBQ	AX, BX | 
 | 	// Aligned memory copying there | 
 | gobble_128_loop: | 
 | 	VMOVDQU	(SI), Y0 | 
 | 	VMOVDQU	0x20(SI), Y1 | 
 | 	VMOVDQU	0x40(SI), Y2 | 
 | 	VMOVDQU	0x60(SI), Y3 | 
 | 	ADDQ	AX, SI | 
 | 	VMOVDQA	Y0, (DI) | 
 | 	VMOVDQA	Y1, 0x20(DI) | 
 | 	VMOVDQA	Y2, 0x40(DI) | 
 | 	VMOVDQA	Y3, 0x60(DI) | 
 | 	ADDQ	AX, DI | 
 | 	SUBQ	AX, BX | 
 | 	JA	gobble_128_loop | 
 | 	// Now we can store unaligned parts. | 
 | 	ADDQ	AX, BX | 
 | 	ADDQ	DI, BX | 
 | 	VMOVDQU	Y4, (R10) | 
 | 	VZEROUPPER | 
 | 	MOVOU	X5, -0x80(BX) | 
 | 	MOVOU	X6, -0x70(BX) | 
 | 	MOVOU	X7, -0x60(BX) | 
 | 	MOVOU	X8, -0x50(BX) | 
 | 	MOVOU	X9, -0x40(BX) | 
 | 	MOVOU	X10, -0x30(BX) | 
 | 	MOVOU	X11, -0x20(BX) | 
 | 	MOVOU	X12, -0x10(BX) | 
 | 	RET | 
 |  | 
 | gobble_big_data_fwd: | 
 | 	// There is forward copying for big regions. | 
 | 	// It uses non-temporal mov instructions. | 
 | 	// Details of this algorithm are commented previously for small sizes. | 
 | 	LEAQ	(SI)(BX*1), CX | 
 | 	MOVOU	-0x80(SI)(BX*1), X5 | 
 | 	MOVOU	-0x70(CX), X6 | 
 | 	MOVOU	-0x60(CX), X7 | 
 | 	MOVOU	-0x50(CX), X8 | 
 | 	MOVOU	-0x40(CX), X9 | 
 | 	MOVOU	-0x30(CX), X10 | 
 | 	MOVOU	-0x20(CX), X11 | 
 | 	MOVOU	-0x10(CX), X12 | 
 | 	VMOVDQU	(SI), Y4 | 
 | 	MOVQ	DI, R8 | 
 | 	ANDQ	$-32, DI | 
 | 	ADDQ	$32, DI | 
 | 	MOVQ	DI, R10 | 
 | 	SUBQ	R8, R10 | 
 | 	SUBQ	R10, BX | 
 | 	ADDQ	R10, SI | 
 | 	LEAQ	(DI)(BX*1), CX | 
 | 	SUBQ	$0x80, BX | 
 | gobble_mem_fwd_loop: | 
 | 	PREFETCHNTA 0x1C0(SI) | 
 | 	PREFETCHNTA 0x280(SI) | 
 | 	// Prefetch values were chosen empirically. | 
 | 	// Approach for prefetch usage as in 7.6.6 of [1] | 
 | 	// [1] 64-ia-32-architectures-optimization-manual.pdf | 
 | 	// https://www.intel.ru/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf | 
 | 	VMOVDQU	(SI), Y0 | 
 | 	VMOVDQU	0x20(SI), Y1 | 
 | 	VMOVDQU	0x40(SI), Y2 | 
 | 	VMOVDQU	0x60(SI), Y3 | 
 | 	ADDQ	$0x80, SI | 
 | 	VMOVNTDQ Y0, (DI) | 
 | 	VMOVNTDQ Y1, 0x20(DI) | 
 | 	VMOVNTDQ Y2, 0x40(DI) | 
 | 	VMOVNTDQ Y3, 0x60(DI) | 
 | 	ADDQ	$0x80, DI | 
 | 	SUBQ	$0x80, BX | 
 | 	JA		gobble_mem_fwd_loop | 
 | 	// NT instructions don't follow the normal cache-coherency rules. | 
 | 	// We need SFENCE there to make copied data available timely. | 
 | 	SFENCE | 
 | 	VMOVDQU	Y4, (R8) | 
 | 	VZEROUPPER | 
 | 	MOVOU	X5, -0x80(CX) | 
 | 	MOVOU	X6, -0x70(CX) | 
 | 	MOVOU	X7, -0x60(CX) | 
 | 	MOVOU	X8, -0x50(CX) | 
 | 	MOVOU	X9, -0x40(CX) | 
 | 	MOVOU	X10, -0x30(CX) | 
 | 	MOVOU	X11, -0x20(CX) | 
 | 	MOVOU	X12, -0x10(CX) | 
 | 	RET | 
 |  | 
 | copy_backward: | 
 | 	MOVQ	DI, AX | 
 | 	// Backward copying is about the same as the forward one. | 
 | 	// Firstly we load unaligned tail in the beginning of region. | 
 | 	MOVOU	(SI), X5 | 
 | 	MOVOU	0x10(SI), X6 | 
 | 	ADDQ	BX, DI | 
 | 	MOVOU	0x20(SI), X7 | 
 | 	MOVOU	0x30(SI), X8 | 
 | 	LEAQ	-0x20(DI), R10 | 
 | 	MOVQ	DI, R11 | 
 | 	MOVOU	0x40(SI), X9 | 
 | 	MOVOU	0x50(SI), X10 | 
 | 	ANDQ	$0x1F, R11 | 
 | 	MOVOU	0x60(SI), X11 | 
 | 	MOVOU	0x70(SI), X12 | 
 | 	XORQ	R11, DI | 
 | 	// Let's point SI to the end of region | 
 | 	ADDQ	BX, SI | 
 | 	// and load unaligned head into X4. | 
 | 	VMOVDQU	-0x20(SI), Y4 | 
 | 	SUBQ	R11, SI | 
 | 	SUBQ	R11, BX | 
 | 	// If there is enough data for non-temporal moves go to special loop | 
 | 	CMPQ	BX, $0x100000 | 
 | 	JA		gobble_big_data_bwd | 
 | 	SUBQ	$0x80, BX | 
 | gobble_mem_bwd_loop: | 
 | 	VMOVDQU	-0x20(SI), Y0 | 
 | 	VMOVDQU	-0x40(SI), Y1 | 
 | 	VMOVDQU	-0x60(SI), Y2 | 
 | 	VMOVDQU	-0x80(SI), Y3 | 
 | 	SUBQ	$0x80, SI | 
 | 	VMOVDQA	Y0, -0x20(DI) | 
 | 	VMOVDQA	Y1, -0x40(DI) | 
 | 	VMOVDQA	Y2, -0x60(DI) | 
 | 	VMOVDQA	Y3, -0x80(DI) | 
 | 	SUBQ	$0x80, DI | 
 | 	SUBQ	$0x80, BX | 
 | 	JA		gobble_mem_bwd_loop | 
 | 	// Let's store unaligned data | 
 | 	VMOVDQU	Y4, (R10) | 
 | 	VZEROUPPER | 
 | 	MOVOU	X5, (AX) | 
 | 	MOVOU	X6, 0x10(AX) | 
 | 	MOVOU	X7, 0x20(AX) | 
 | 	MOVOU	X8, 0x30(AX) | 
 | 	MOVOU	X9, 0x40(AX) | 
 | 	MOVOU	X10, 0x50(AX) | 
 | 	MOVOU	X11, 0x60(AX) | 
 | 	MOVOU	X12, 0x70(AX) | 
 | 	RET | 
 |  | 
 | gobble_big_data_bwd: | 
 | 	SUBQ	$0x80, BX | 
 | gobble_big_mem_bwd_loop: | 
 | 	PREFETCHNTA -0x1C0(SI) | 
 | 	PREFETCHNTA -0x280(SI) | 
 | 	VMOVDQU	-0x20(SI), Y0 | 
 | 	VMOVDQU	-0x40(SI), Y1 | 
 | 	VMOVDQU	-0x60(SI), Y2 | 
 | 	VMOVDQU	-0x80(SI), Y3 | 
 | 	SUBQ	$0x80, SI | 
 | 	VMOVNTDQ	Y0, -0x20(DI) | 
 | 	VMOVNTDQ	Y1, -0x40(DI) | 
 | 	VMOVNTDQ	Y2, -0x60(DI) | 
 | 	VMOVNTDQ	Y3, -0x80(DI) | 
 | 	SUBQ	$0x80, DI | 
 | 	SUBQ	$0x80, BX | 
 | 	JA	gobble_big_mem_bwd_loop | 
 | 	SFENCE | 
 | 	VMOVDQU	Y4, (R10) | 
 | 	VZEROUPPER | 
 | 	MOVOU	X5, (AX) | 
 | 	MOVOU	X6, 0x10(AX) | 
 | 	MOVOU	X7, 0x20(AX) | 
 | 	MOVOU	X8, 0x30(AX) | 
 | 	MOVOU	X9, 0x40(AX) | 
 | 	MOVOU	X10, 0x50(AX) | 
 | 	MOVOU	X11, 0x60(AX) | 
 | 	MOVOU	X12, 0x70(AX) | 
 | 	RET |