blob: a5364fcb9ae5e4e85aad4a70cbcd0a7093395b63 [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gc
import (
"cmd/internal/obj"
"fmt"
)
/*
* function literals aka closures
*/
func closurehdr(ntype *Node) {
var name *Node
var a *Node
n := Nod(OCLOSURE, nil, nil)
n.Ntype = ntype
n.Funcdepth = Funcdepth
n.Func.Outerfunc = Curfn
funchdr(n)
// steal ntype's argument names and
// leave a fresh copy in their place.
// references to these variables need to
// refer to the variables in the external
// function declared below; see walkclosure.
n.List = ntype.List
n.Rlist = ntype.Rlist
ntype.List = nil
ntype.Rlist = nil
for l := n.List; l != nil; l = l.Next {
name = l.N.Left
if name != nil {
name = newname(name.Sym)
}
a = Nod(ODCLFIELD, name, l.N.Right)
a.Isddd = l.N.Isddd
if name != nil {
name.Isddd = a.Isddd
}
ntype.List = list(ntype.List, a)
}
for l := n.Rlist; l != nil; l = l.Next {
name = l.N.Left
if name != nil {
name = newname(name.Sym)
}
ntype.Rlist = list(ntype.Rlist, Nod(ODCLFIELD, name, l.N.Right))
}
}
func closurebody(body *NodeList) *Node {
if body == nil {
body = list1(Nod(OEMPTY, nil, nil))
}
func_ := Curfn
func_.Nbody = body
func_.Func.Endlineno = lineno
funcbody(func_)
// closure-specific variables are hanging off the
// ordinary ones in the symbol table; see oldname.
// unhook them.
// make the list of pointers for the closure call.
var v *Node
for l := func_.Func.Cvars; l != nil; l = l.Next {
v = l.N
v.Closure.Closure = v.Outer
v.Outerexpr = oldname(v.Sym)
}
return func_
}
func typecheckclosure(func_ *Node, top int) {
var n *Node
for l := func_.Func.Cvars; l != nil; l = l.Next {
n = l.N.Closure
if !n.Captured {
n.Captured = true
if n.Decldepth == 0 {
Fatal("typecheckclosure: var %v does not have decldepth assigned", Nconv(n, obj.FmtShort))
}
// Ignore assignments to the variable in straightline code
// preceding the first capturing by a closure.
if n.Decldepth == decldepth {
n.Assigned = false
}
}
}
for l := func_.Func.Dcl; l != nil; l = l.Next {
if l.N.Op == ONAME && (l.N.Class == PPARAM || l.N.Class == PPARAMOUT) {
l.N.Decldepth = 1
}
}
oldfn := Curfn
typecheck(&func_.Ntype, Etype)
func_.Type = func_.Ntype.Type
func_.Top = top
// Type check the body now, but only if we're inside a function.
// At top level (in a variable initialization: curfn==nil) we're not
// ready to type check code yet; we'll check it later, because the
// underlying closure function we create is added to xtop.
if Curfn != nil && func_.Type != nil {
Curfn = func_
olddd := decldepth
decldepth = 1
typechecklist(func_.Nbody, Etop)
decldepth = olddd
Curfn = oldfn
}
// Create top-level function
xtop = list(xtop, makeclosure(func_))
}
// closurename returns name for OCLOSURE n.
// It is not as simple as it ought to be, because we typecheck nested closures
// starting from the innermost one. So when we check the inner closure,
// we don't yet have name for the outer closure. This function uses recursion
// to generate names all the way up if necessary.
var closurename_closgen int
func closurename(n *Node) *Sym {
if n.Sym != nil {
return n.Sym
}
gen := 0
outer := ""
prefix := ""
if n.Func.Outerfunc == nil {
// Global closure.
outer = "glob"
prefix = "func"
closurename_closgen++
gen = closurename_closgen
} else if n.Func.Outerfunc.Op == ODCLFUNC {
// The outermost closure inside of a named function.
outer = n.Func.Outerfunc.Nname.Sym.Name
prefix = "func"
// Yes, functions can be named _.
// Can't use function closgen in such case,
// because it would lead to name clashes.
if !isblank(n.Func.Outerfunc.Nname) {
n.Func.Outerfunc.Func.Closgen++
gen = n.Func.Outerfunc.Func.Closgen
} else {
closurename_closgen++
gen = closurename_closgen
}
} else if n.Func.Outerfunc.Op == OCLOSURE {
// Nested closure, recurse.
outer = closurename(n.Func.Outerfunc).Name
prefix = ""
n.Func.Outerfunc.Func.Closgen++
gen = n.Func.Outerfunc.Func.Closgen
} else {
Fatal("closurename called for %v", Nconv(n, obj.FmtShort))
}
n.Sym = Lookupf("%s.%s%d", outer, prefix, gen)
return n.Sym
}
func makeclosure(func_ *Node) *Node {
/*
* wrap body in external function
* that begins by reading closure parameters.
*/
xtype := Nod(OTFUNC, nil, nil)
xtype.List = func_.List
xtype.Rlist = func_.Rlist
// create the function
xfunc := Nod(ODCLFUNC, nil, nil)
xfunc.Nname = newfuncname(closurename(func_))
xfunc.Nname.Sym.Flags |= SymExported // disable export
xfunc.Nname.Ntype = xtype
xfunc.Nname.Defn = xfunc
declare(xfunc.Nname, PFUNC)
xfunc.Nname.Funcdepth = func_.Funcdepth
xfunc.Funcdepth = func_.Funcdepth
xfunc.Func.Endlineno = func_.Func.Endlineno
xfunc.Nbody = func_.Nbody
xfunc.Func.Dcl = concat(func_.Func.Dcl, xfunc.Func.Dcl)
if xfunc.Nbody == nil {
Fatal("empty body - won't generate any code")
}
typecheck(&xfunc, Etop)
xfunc.Closure = func_
func_.Closure = xfunc
func_.Nbody = nil
func_.List = nil
func_.Rlist = nil
return xfunc
}
// capturevars is called in a separate phase after all typechecking is done.
// It decides whether each variable captured by a closure should be captured
// by value or by reference.
// We use value capturing for values <= 128 bytes that are never reassigned
// after capturing (effectively constant).
func capturevars(xfunc *Node) {
var v *Node
var outer *Node
lno := int(lineno)
lineno = xfunc.Lineno
func_ := xfunc.Closure
func_.Func.Enter = nil
for l := func_.Func.Cvars; l != nil; l = l.Next {
v = l.N
if v.Type == nil {
// if v->type is nil, it means v looked like it was
// going to be used in the closure but wasn't.
// this happens because when parsing a, b, c := f()
// the a, b, c gets parsed as references to older
// a, b, c before the parser figures out this is a
// declaration.
v.Op = OXXX
continue
}
// type check the & of closed variables outside the closure,
// so that the outer frame also grabs them and knows they escape.
dowidth(v.Type)
outer = v.Outerexpr
v.Outerexpr = nil
// out parameters will be assigned to implicitly upon return.
if outer.Class != PPARAMOUT && !v.Closure.Addrtaken && !v.Closure.Assigned && v.Type.Width <= 128 {
v.Byval = true
} else {
v.Closure.Addrtaken = true
outer = Nod(OADDR, outer, nil)
}
if Debug['m'] > 1 {
var name *Sym
if v.Curfn != nil && v.Curfn.Nname != nil {
name = v.Curfn.Nname.Sym
}
how := "ref"
if v.Byval {
how = "value"
}
Warnl(int(v.Lineno), "%v capturing by %s: %v (addr=%v assign=%v width=%d)", Sconv(name, 0), how, Sconv(v.Sym, 0), v.Closure.Addrtaken, v.Closure.Assigned, int32(v.Type.Width))
}
typecheck(&outer, Erv)
func_.Func.Enter = list(func_.Func.Enter, outer)
}
lineno = int32(lno)
}
// transformclosure is called in a separate phase after escape analysis.
// It transform closure bodies to properly reference captured variables.
func transformclosure(xfunc *Node) {
lno := int(lineno)
lineno = xfunc.Lineno
func_ := xfunc.Closure
if func_.Top&Ecall != 0 {
// If the closure is directly called, we transform it to a plain function call
// with variables passed as args. This avoids allocation of a closure object.
// Here we do only a part of the transformation. Walk of OCALLFUNC(OCLOSURE)
// will complete the transformation later.
// For illustration, the following closure:
// func(a int) {
// println(byval)
// byref++
// }(42)
// becomes:
// func(a int, byval int, &byref *int) {
// println(byval)
// (*&byref)++
// }(42, byval, &byref)
// f is ONAME of the actual function.
f := xfunc.Nname
// Get pointer to input arguments and rewind to the end.
// We are going to append captured variables to input args.
param := &getinargx(f.Type).Type
for ; *param != nil; param = &(*param).Down {
}
var v *Node
var addr *Node
var fld *Type
for l := func_.Func.Cvars; l != nil; l = l.Next {
v = l.N
if v.Op == OXXX {
continue
}
fld = typ(TFIELD)
fld.Funarg = 1
if v.Byval {
// If v is captured by value, we merely downgrade it to PPARAM.
v.Class = PPARAM
v.Ullman = 1
fld.Nname = v
} else {
// If v of type T is captured by reference,
// we introduce function param &v *T
// and v remains PPARAMREF with &v heapaddr
// (accesses will implicitly deref &v).
addr = newname(Lookupf("&%s", v.Sym.Name))
addr.Type = Ptrto(v.Type)
addr.Class = PPARAM
v.Heapaddr = addr
fld.Nname = addr
}
fld.Type = fld.Nname.Type
fld.Sym = fld.Nname.Sym
// Declare the new param and append it to input arguments.
xfunc.Func.Dcl = list(xfunc.Func.Dcl, fld.Nname)
*param = fld
param = &fld.Down
}
// Recalculate param offsets.
if f.Type.Width > 0 {
Fatal("transformclosure: width is already calculated")
}
dowidth(f.Type)
xfunc.Type = f.Type // update type of ODCLFUNC
} else {
// The closure is not called, so it is going to stay as closure.
nvar := 0
var body *NodeList
offset := int64(Widthptr)
var addr *Node
var v *Node
var cv *Node
for l := func_.Func.Cvars; l != nil; l = l.Next {
v = l.N
if v.Op == OXXX {
continue
}
nvar++
// cv refers to the field inside of closure OSTRUCTLIT.
cv = Nod(OCLOSUREVAR, nil, nil)
cv.Type = v.Type
if !v.Byval {
cv.Type = Ptrto(v.Type)
}
offset = Rnd(offset, int64(cv.Type.Align))
cv.Xoffset = offset
offset += cv.Type.Width
if v.Byval && v.Type.Width <= int64(2*Widthptr) && Thearch.Thechar == '6' {
// If it is a small variable captured by value, downgrade it to PAUTO.
// This optimization is currently enabled only for amd64, see:
// https://github.com/golang/go/issues/9865
v.Class = PAUTO
v.Ullman = 1
xfunc.Func.Dcl = list(xfunc.Func.Dcl, v)
body = list(body, Nod(OAS, v, cv))
} else {
// Declare variable holding addresses taken from closure
// and initialize in entry prologue.
addr = newname(Lookupf("&%s", v.Sym.Name))
addr.Ntype = Nod(OIND, typenod(v.Type), nil)
addr.Class = PAUTO
addr.Used = true
addr.Curfn = xfunc
xfunc.Func.Dcl = list(xfunc.Func.Dcl, addr)
v.Heapaddr = addr
if v.Byval {
cv = Nod(OADDR, cv, nil)
}
body = list(body, Nod(OAS, addr, cv))
}
}
typechecklist(body, Etop)
walkstmtlist(body)
xfunc.Func.Enter = body
xfunc.Func.Needctxt = nvar > 0
}
lineno = int32(lno)
}
func walkclosure(func_ *Node, init **NodeList) *Node {
// If no closure vars, don't bother wrapping.
if func_.Func.Cvars == nil {
return func_.Closure.Nname
}
// Create closure in the form of a composite literal.
// supposing the closure captures an int i and a string s
// and has one float64 argument and no results,
// the generated code looks like:
//
// clos = &struct{.F uintptr; i *int; s *string}{func.1, &i, &s}
//
// The use of the struct provides type information to the garbage
// collector so that it can walk the closure. We could use (in this case)
// [3]unsafe.Pointer instead, but that would leave the gc in the dark.
// The information appears in the binary in the form of type descriptors;
// the struct is unnamed so that closures in multiple packages with the
// same struct type can share the descriptor.
typ := Nod(OTSTRUCT, nil, nil)
typ.List = list1(Nod(ODCLFIELD, newname(Lookup(".F")), typenod(Types[TUINTPTR])))
var typ1 *Node
var v *Node
for l := func_.Func.Cvars; l != nil; l = l.Next {
v = l.N
if v.Op == OXXX {
continue
}
typ1 = typenod(v.Type)
if !v.Byval {
typ1 = Nod(OIND, typ1, nil)
}
typ.List = list(typ.List, Nod(ODCLFIELD, newname(v.Sym), typ1))
}
clos := Nod(OCOMPLIT, nil, Nod(OIND, typ, nil))
clos.Esc = func_.Esc
clos.Right.Implicit = true
clos.List = concat(list1(Nod(OCFUNC, func_.Closure.Nname, nil)), func_.Func.Enter)
// Force type conversion from *struct to the func type.
clos = Nod(OCONVNOP, clos, nil)
clos.Type = func_.Type
typecheck(&clos, Erv)
// typecheck will insert a PTRLIT node under CONVNOP,
// tag it with escape analysis result.
clos.Left.Esc = func_.Esc
// non-escaping temp to use, if any.
// orderexpr did not compute the type; fill it in now.
if func_.Alloc != nil {
func_.Alloc.Type = clos.Left.Left.Type
func_.Alloc.Orig.Type = func_.Alloc.Type
clos.Left.Right = func_.Alloc
func_.Alloc = nil
}
walkexpr(&clos, init)
return clos
}
func typecheckpartialcall(fn *Node, sym *Node) {
switch fn.Op {
case ODOTINTER, ODOTMETH:
break
default:
Fatal("invalid typecheckpartialcall")
}
// Create top-level function.
fn.Nname = makepartialcall(fn, fn.Type, sym)
fn.Right = sym
fn.Op = OCALLPART
fn.Type = fn.Nname.Type
}
var makepartialcall_gopkg *Pkg
func makepartialcall(fn *Node, t0 *Type, meth *Node) *Node {
var p string
rcvrtype := fn.Left.Type
if exportname(meth.Sym.Name) {
p = fmt.Sprintf("(%v).%s-fm", Tconv(rcvrtype, obj.FmtLeft|obj.FmtShort), meth.Sym.Name)
} else {
p = fmt.Sprintf("(%v).(%v)-fm", Tconv(rcvrtype, obj.FmtLeft|obj.FmtShort), Sconv(meth.Sym, obj.FmtLeft))
}
basetype := rcvrtype
if Isptr[rcvrtype.Etype] {
basetype = basetype.Type
}
if basetype.Etype != TINTER && basetype.Sym == nil {
Fatal("missing base type for %v", Tconv(rcvrtype, 0))
}
var spkg *Pkg
if basetype.Sym != nil {
spkg = basetype.Sym.Pkg
}
if spkg == nil {
if makepartialcall_gopkg == nil {
makepartialcall_gopkg = mkpkg("go")
}
spkg = makepartialcall_gopkg
}
sym := Pkglookup(p, spkg)
if sym.Flags&SymUniq != 0 {
return sym.Def
}
sym.Flags |= SymUniq
savecurfn := Curfn
Curfn = nil
xtype := Nod(OTFUNC, nil, nil)
i := 0
var l *NodeList
var callargs *NodeList
ddd := false
xfunc := Nod(ODCLFUNC, nil, nil)
Curfn = xfunc
var fld *Node
var n *Node
for t := getinargx(t0).Type; t != nil; t = t.Down {
n = newname(Lookupf("a%d", i))
i++
n.Class = PPARAM
xfunc.Func.Dcl = list(xfunc.Func.Dcl, n)
callargs = list(callargs, n)
fld = Nod(ODCLFIELD, n, typenod(t.Type))
if t.Isddd {
fld.Isddd = true
ddd = true
}
l = list(l, fld)
}
xtype.List = l
i = 0
l = nil
var retargs *NodeList
for t := getoutargx(t0).Type; t != nil; t = t.Down {
n = newname(Lookupf("r%d", i))
i++
n.Class = PPARAMOUT
xfunc.Func.Dcl = list(xfunc.Func.Dcl, n)
retargs = list(retargs, n)
l = list(l, Nod(ODCLFIELD, n, typenod(t.Type)))
}
xtype.Rlist = l
xfunc.Func.Dupok = true
xfunc.Nname = newfuncname(sym)
xfunc.Nname.Sym.Flags |= SymExported // disable export
xfunc.Nname.Ntype = xtype
xfunc.Nname.Defn = xfunc
declare(xfunc.Nname, PFUNC)
// Declare and initialize variable holding receiver.
xfunc.Func.Needctxt = true
cv := Nod(OCLOSUREVAR, nil, nil)
cv.Xoffset = int64(Widthptr)
cv.Type = rcvrtype
if int(cv.Type.Align) > Widthptr {
cv.Xoffset = int64(cv.Type.Align)
}
ptr := Nod(ONAME, nil, nil)
ptr.Sym = Lookup("rcvr")
ptr.Class = PAUTO
ptr.Addable = 1
ptr.Ullman = 1
ptr.Used = true
ptr.Curfn = xfunc
xfunc.Func.Dcl = list(xfunc.Func.Dcl, ptr)
var body *NodeList
if Isptr[rcvrtype.Etype] || Isinter(rcvrtype) {
ptr.Ntype = typenod(rcvrtype)
body = list(body, Nod(OAS, ptr, cv))
} else {
ptr.Ntype = typenod(Ptrto(rcvrtype))
body = list(body, Nod(OAS, ptr, Nod(OADDR, cv, nil)))
}
call := Nod(OCALL, Nod(OXDOT, ptr, meth), nil)
call.List = callargs
call.Isddd = ddd
if t0.Outtuple == 0 {
body = list(body, call)
} else {
n := Nod(OAS2, nil, nil)
n.List = retargs
n.Rlist = list1(call)
body = list(body, n)
n = Nod(ORETURN, nil, nil)
body = list(body, n)
}
xfunc.Nbody = body
typecheck(&xfunc, Etop)
sym.Def = xfunc
xtop = list(xtop, xfunc)
Curfn = savecurfn
return xfunc
}
func walkpartialcall(n *Node, init **NodeList) *Node {
// Create closure in the form of a composite literal.
// For x.M with receiver (x) type T, the generated code looks like:
//
// clos = &struct{F uintptr; R T}{M.T·f, x}
//
// Like walkclosure above.
if Isinter(n.Left.Type) {
// Trigger panic for method on nil interface now.
// Otherwise it happens in the wrapper and is confusing.
n.Left = cheapexpr(n.Left, init)
checknil(n.Left, init)
}
typ := Nod(OTSTRUCT, nil, nil)
typ.List = list1(Nod(ODCLFIELD, newname(Lookup("F")), typenod(Types[TUINTPTR])))
typ.List = list(typ.List, Nod(ODCLFIELD, newname(Lookup("R")), typenod(n.Left.Type)))
clos := Nod(OCOMPLIT, nil, Nod(OIND, typ, nil))
clos.Esc = n.Esc
clos.Right.Implicit = true
clos.List = list1(Nod(OCFUNC, n.Nname.Nname, nil))
clos.List = list(clos.List, n.Left)
// Force type conversion from *struct to the func type.
clos = Nod(OCONVNOP, clos, nil)
clos.Type = n.Type
typecheck(&clos, Erv)
// typecheck will insert a PTRLIT node under CONVNOP,
// tag it with escape analysis result.
clos.Left.Esc = n.Esc
// non-escaping temp to use, if any.
// orderexpr did not compute the type; fill it in now.
if n.Alloc != nil {
n.Alloc.Type = clos.Left.Left.Type
n.Alloc.Orig.Type = n.Alloc.Type
clos.Left.Right = n.Alloc
n.Alloc = nil
}
walkexpr(&clos, init)
return clos
}