| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package runtime |
| |
| import ( |
| "internal/abi" |
| "internal/goarch" |
| "runtime/internal/atomic" |
| "unsafe" |
| ) |
| |
| type mOS struct { |
| // profileTimer holds the ID of the POSIX interval timer for profiling CPU |
| // usage on this thread. |
| // |
| // It is valid when the profileTimerValid field is non-zero. A thread |
| // creates and manages its own timer, and these fields are read and written |
| // only by this thread. But because some of the reads on profileTimerValid |
| // are in signal handling code, access to that field uses atomic operations. |
| profileTimer int32 |
| profileTimerValid uint32 |
| } |
| |
| //go:noescape |
| func futex(addr unsafe.Pointer, op int32, val uint32, ts, addr2 unsafe.Pointer, val3 uint32) int32 |
| |
| // Linux futex. |
| // |
| // futexsleep(uint32 *addr, uint32 val) |
| // futexwakeup(uint32 *addr) |
| // |
| // Futexsleep atomically checks if *addr == val and if so, sleeps on addr. |
| // Futexwakeup wakes up threads sleeping on addr. |
| // Futexsleep is allowed to wake up spuriously. |
| |
| const ( |
| _FUTEX_PRIVATE_FLAG = 128 |
| _FUTEX_WAIT_PRIVATE = 0 | _FUTEX_PRIVATE_FLAG |
| _FUTEX_WAKE_PRIVATE = 1 | _FUTEX_PRIVATE_FLAG |
| ) |
| |
| // Atomically, |
| // if(*addr == val) sleep |
| // Might be woken up spuriously; that's allowed. |
| // Don't sleep longer than ns; ns < 0 means forever. |
| //go:nosplit |
| func futexsleep(addr *uint32, val uint32, ns int64) { |
| // Some Linux kernels have a bug where futex of |
| // FUTEX_WAIT returns an internal error code |
| // as an errno. Libpthread ignores the return value |
| // here, and so can we: as it says a few lines up, |
| // spurious wakeups are allowed. |
| if ns < 0 { |
| futex(unsafe.Pointer(addr), _FUTEX_WAIT_PRIVATE, val, nil, nil, 0) |
| return |
| } |
| |
| var ts timespec |
| ts.setNsec(ns) |
| futex(unsafe.Pointer(addr), _FUTEX_WAIT_PRIVATE, val, unsafe.Pointer(&ts), nil, 0) |
| } |
| |
| // If any procs are sleeping on addr, wake up at most cnt. |
| //go:nosplit |
| func futexwakeup(addr *uint32, cnt uint32) { |
| ret := futex(unsafe.Pointer(addr), _FUTEX_WAKE_PRIVATE, cnt, nil, nil, 0) |
| if ret >= 0 { |
| return |
| } |
| |
| // I don't know that futex wakeup can return |
| // EAGAIN or EINTR, but if it does, it would be |
| // safe to loop and call futex again. |
| systemstack(func() { |
| print("futexwakeup addr=", addr, " returned ", ret, "\n") |
| }) |
| |
| *(*int32)(unsafe.Pointer(uintptr(0x1006))) = 0x1006 |
| } |
| |
| func getproccount() int32 { |
| // This buffer is huge (8 kB) but we are on the system stack |
| // and there should be plenty of space (64 kB). |
| // Also this is a leaf, so we're not holding up the memory for long. |
| // See golang.org/issue/11823. |
| // The suggested behavior here is to keep trying with ever-larger |
| // buffers, but we don't have a dynamic memory allocator at the |
| // moment, so that's a bit tricky and seems like overkill. |
| const maxCPUs = 64 * 1024 |
| var buf [maxCPUs / 8]byte |
| r := sched_getaffinity(0, unsafe.Sizeof(buf), &buf[0]) |
| if r < 0 { |
| return 1 |
| } |
| n := int32(0) |
| for _, v := range buf[:r] { |
| for v != 0 { |
| n += int32(v & 1) |
| v >>= 1 |
| } |
| } |
| if n == 0 { |
| n = 1 |
| } |
| return n |
| } |
| |
| // Clone, the Linux rfork. |
| const ( |
| _CLONE_VM = 0x100 |
| _CLONE_FS = 0x200 |
| _CLONE_FILES = 0x400 |
| _CLONE_SIGHAND = 0x800 |
| _CLONE_PTRACE = 0x2000 |
| _CLONE_VFORK = 0x4000 |
| _CLONE_PARENT = 0x8000 |
| _CLONE_THREAD = 0x10000 |
| _CLONE_NEWNS = 0x20000 |
| _CLONE_SYSVSEM = 0x40000 |
| _CLONE_SETTLS = 0x80000 |
| _CLONE_PARENT_SETTID = 0x100000 |
| _CLONE_CHILD_CLEARTID = 0x200000 |
| _CLONE_UNTRACED = 0x800000 |
| _CLONE_CHILD_SETTID = 0x1000000 |
| _CLONE_STOPPED = 0x2000000 |
| _CLONE_NEWUTS = 0x4000000 |
| _CLONE_NEWIPC = 0x8000000 |
| |
| // As of QEMU 2.8.0 (5ea2fc84d), user emulation requires all six of these |
| // flags to be set when creating a thread; attempts to share the other |
| // five but leave SYSVSEM unshared will fail with -EINVAL. |
| // |
| // In non-QEMU environments CLONE_SYSVSEM is inconsequential as we do not |
| // use System V semaphores. |
| |
| cloneFlags = _CLONE_VM | /* share memory */ |
| _CLONE_FS | /* share cwd, etc */ |
| _CLONE_FILES | /* share fd table */ |
| _CLONE_SIGHAND | /* share sig handler table */ |
| _CLONE_SYSVSEM | /* share SysV semaphore undo lists (see issue #20763) */ |
| _CLONE_THREAD /* revisit - okay for now */ |
| ) |
| |
| //go:noescape |
| func clone(flags int32, stk, mp, gp, fn unsafe.Pointer) int32 |
| |
| // May run with m.p==nil, so write barriers are not allowed. |
| //go:nowritebarrier |
| func newosproc(mp *m) { |
| stk := unsafe.Pointer(mp.g0.stack.hi) |
| /* |
| * note: strace gets confused if we use CLONE_PTRACE here. |
| */ |
| if false { |
| print("newosproc stk=", stk, " m=", mp, " g=", mp.g0, " clone=", abi.FuncPCABI0(clone), " id=", mp.id, " ostk=", &mp, "\n") |
| } |
| |
| // Disable signals during clone, so that the new thread starts |
| // with signals disabled. It will enable them in minit. |
| var oset sigset |
| sigprocmask(_SIG_SETMASK, &sigset_all, &oset) |
| ret := clone(cloneFlags, stk, unsafe.Pointer(mp), unsafe.Pointer(mp.g0), unsafe.Pointer(abi.FuncPCABI0(mstart))) |
| sigprocmask(_SIG_SETMASK, &oset, nil) |
| |
| if ret < 0 { |
| print("runtime: failed to create new OS thread (have ", mcount(), " already; errno=", -ret, ")\n") |
| if ret == -_EAGAIN { |
| println("runtime: may need to increase max user processes (ulimit -u)") |
| } |
| throw("newosproc") |
| } |
| } |
| |
| // Version of newosproc that doesn't require a valid G. |
| //go:nosplit |
| func newosproc0(stacksize uintptr, fn unsafe.Pointer) { |
| stack := sysAlloc(stacksize, &memstats.stacks_sys) |
| if stack == nil { |
| write(2, unsafe.Pointer(&failallocatestack[0]), int32(len(failallocatestack))) |
| exit(1) |
| } |
| ret := clone(cloneFlags, unsafe.Pointer(uintptr(stack)+stacksize), nil, nil, fn) |
| if ret < 0 { |
| write(2, unsafe.Pointer(&failthreadcreate[0]), int32(len(failthreadcreate))) |
| exit(1) |
| } |
| } |
| |
| var failallocatestack = []byte("runtime: failed to allocate stack for the new OS thread\n") |
| var failthreadcreate = []byte("runtime: failed to create new OS thread\n") |
| |
| const ( |
| _AT_NULL = 0 // End of vector |
| _AT_PAGESZ = 6 // System physical page size |
| _AT_HWCAP = 16 // hardware capability bit vector |
| _AT_RANDOM = 25 // introduced in 2.6.29 |
| _AT_HWCAP2 = 26 // hardware capability bit vector 2 |
| ) |
| |
| var procAuxv = []byte("/proc/self/auxv\x00") |
| |
| var addrspace_vec [1]byte |
| |
| func mincore(addr unsafe.Pointer, n uintptr, dst *byte) int32 |
| |
| func sysargs(argc int32, argv **byte) { |
| n := argc + 1 |
| |
| // skip over argv, envp to get to auxv |
| for argv_index(argv, n) != nil { |
| n++ |
| } |
| |
| // skip NULL separator |
| n++ |
| |
| // now argv+n is auxv |
| auxv := (*[1 << 28]uintptr)(add(unsafe.Pointer(argv), uintptr(n)*goarch.PtrSize)) |
| if sysauxv(auxv[:]) != 0 { |
| return |
| } |
| // In some situations we don't get a loader-provided |
| // auxv, such as when loaded as a library on Android. |
| // Fall back to /proc/self/auxv. |
| fd := open(&procAuxv[0], 0 /* O_RDONLY */, 0) |
| if fd < 0 { |
| // On Android, /proc/self/auxv might be unreadable (issue 9229), so we fallback to |
| // try using mincore to detect the physical page size. |
| // mincore should return EINVAL when address is not a multiple of system page size. |
| const size = 256 << 10 // size of memory region to allocate |
| p, err := mmap(nil, size, _PROT_READ|_PROT_WRITE, _MAP_ANON|_MAP_PRIVATE, -1, 0) |
| if err != 0 { |
| return |
| } |
| var n uintptr |
| for n = 4 << 10; n < size; n <<= 1 { |
| err := mincore(unsafe.Pointer(uintptr(p)+n), 1, &addrspace_vec[0]) |
| if err == 0 { |
| physPageSize = n |
| break |
| } |
| } |
| if physPageSize == 0 { |
| physPageSize = size |
| } |
| munmap(p, size) |
| return |
| } |
| var buf [128]uintptr |
| n = read(fd, noescape(unsafe.Pointer(&buf[0])), int32(unsafe.Sizeof(buf))) |
| closefd(fd) |
| if n < 0 { |
| return |
| } |
| // Make sure buf is terminated, even if we didn't read |
| // the whole file. |
| buf[len(buf)-2] = _AT_NULL |
| sysauxv(buf[:]) |
| } |
| |
| // startupRandomData holds random bytes initialized at startup. These come from |
| // the ELF AT_RANDOM auxiliary vector. |
| var startupRandomData []byte |
| |
| func sysauxv(auxv []uintptr) int { |
| var i int |
| for ; auxv[i] != _AT_NULL; i += 2 { |
| tag, val := auxv[i], auxv[i+1] |
| switch tag { |
| case _AT_RANDOM: |
| // The kernel provides a pointer to 16-bytes |
| // worth of random data. |
| startupRandomData = (*[16]byte)(unsafe.Pointer(val))[:] |
| |
| case _AT_PAGESZ: |
| physPageSize = val |
| } |
| |
| archauxv(tag, val) |
| vdsoauxv(tag, val) |
| } |
| return i / 2 |
| } |
| |
| var sysTHPSizePath = []byte("/sys/kernel/mm/transparent_hugepage/hpage_pmd_size\x00") |
| |
| func getHugePageSize() uintptr { |
| var numbuf [20]byte |
| fd := open(&sysTHPSizePath[0], 0 /* O_RDONLY */, 0) |
| if fd < 0 { |
| return 0 |
| } |
| ptr := noescape(unsafe.Pointer(&numbuf[0])) |
| n := read(fd, ptr, int32(len(numbuf))) |
| closefd(fd) |
| if n <= 0 { |
| return 0 |
| } |
| n-- // remove trailing newline |
| v, ok := atoi(slicebytetostringtmp((*byte)(ptr), int(n))) |
| if !ok || v < 0 { |
| v = 0 |
| } |
| if v&(v-1) != 0 { |
| // v is not a power of 2 |
| return 0 |
| } |
| return uintptr(v) |
| } |
| |
| func osinit() { |
| ncpu = getproccount() |
| physHugePageSize = getHugePageSize() |
| if iscgo { |
| // #42494 glibc and musl reserve some signals for |
| // internal use and require they not be blocked by |
| // the rest of a normal C runtime. When the go runtime |
| // blocks...unblocks signals, temporarily, the blocked |
| // interval of time is generally very short. As such, |
| // these expectations of *libc code are mostly met by |
| // the combined go+cgo system of threads. However, |
| // when go causes a thread to exit, via a return from |
| // mstart(), the combined runtime can deadlock if |
| // these signals are blocked. Thus, don't block these |
| // signals when exiting threads. |
| // - glibc: SIGCANCEL (32), SIGSETXID (33) |
| // - musl: SIGTIMER (32), SIGCANCEL (33), SIGSYNCCALL (34) |
| sigdelset(&sigsetAllExiting, 32) |
| sigdelset(&sigsetAllExiting, 33) |
| sigdelset(&sigsetAllExiting, 34) |
| } |
| osArchInit() |
| } |
| |
| var urandom_dev = []byte("/dev/urandom\x00") |
| |
| func getRandomData(r []byte) { |
| if startupRandomData != nil { |
| n := copy(r, startupRandomData) |
| extendRandom(r, n) |
| return |
| } |
| fd := open(&urandom_dev[0], 0 /* O_RDONLY */, 0) |
| n := read(fd, unsafe.Pointer(&r[0]), int32(len(r))) |
| closefd(fd) |
| extendRandom(r, int(n)) |
| } |
| |
| func goenvs() { |
| goenvs_unix() |
| } |
| |
| // Called to do synchronous initialization of Go code built with |
| // -buildmode=c-archive or -buildmode=c-shared. |
| // None of the Go runtime is initialized. |
| //go:nosplit |
| //go:nowritebarrierrec |
| func libpreinit() { |
| initsig(true) |
| } |
| |
| // Called to initialize a new m (including the bootstrap m). |
| // Called on the parent thread (main thread in case of bootstrap), can allocate memory. |
| func mpreinit(mp *m) { |
| mp.gsignal = malg(32 * 1024) // Linux wants >= 2K |
| mp.gsignal.m = mp |
| } |
| |
| func gettid() uint32 |
| |
| // Called to initialize a new m (including the bootstrap m). |
| // Called on the new thread, cannot allocate memory. |
| func minit() { |
| minitSignals() |
| |
| // Cgo-created threads and the bootstrap m are missing a |
| // procid. We need this for asynchronous preemption and it's |
| // useful in debuggers. |
| getg().m.procid = uint64(gettid()) |
| } |
| |
| // Called from dropm to undo the effect of an minit. |
| //go:nosplit |
| func unminit() { |
| unminitSignals() |
| } |
| |
| // Called from exitm, but not from drop, to undo the effect of thread-owned |
| // resources in minit, semacreate, or elsewhere. Do not take locks after calling this. |
| func mdestroy(mp *m) { |
| } |
| |
| //#ifdef GOARCH_386 |
| //#define sa_handler k_sa_handler |
| //#endif |
| |
| func sigreturn() |
| func sigtramp() // Called via C ABI |
| func cgoSigtramp() |
| |
| //go:noescape |
| func sigaltstack(new, old *stackt) |
| |
| //go:noescape |
| func setitimer(mode int32, new, old *itimerval) |
| |
| //go:noescape |
| func timer_create(clockid int32, sevp *sigevent, timerid *int32) int32 |
| |
| //go:noescape |
| func timer_settime(timerid int32, flags int32, new, old *itimerspec) int32 |
| |
| //go:noescape |
| func timer_delete(timerid int32) int32 |
| |
| //go:noescape |
| func rtsigprocmask(how int32, new, old *sigset, size int32) |
| |
| //go:nosplit |
| //go:nowritebarrierrec |
| func sigprocmask(how int32, new, old *sigset) { |
| rtsigprocmask(how, new, old, int32(unsafe.Sizeof(*new))) |
| } |
| |
| func raise(sig uint32) |
| func raiseproc(sig uint32) |
| |
| //go:noescape |
| func sched_getaffinity(pid, len uintptr, buf *byte) int32 |
| func osyield() |
| |
| //go:nosplit |
| func osyield_no_g() { |
| osyield() |
| } |
| |
| func pipe() (r, w int32, errno int32) |
| func pipe2(flags int32) (r, w int32, errno int32) |
| func setNonblock(fd int32) |
| |
| const ( |
| _si_max_size = 128 |
| _sigev_max_size = 64 |
| ) |
| |
| //go:nosplit |
| //go:nowritebarrierrec |
| func setsig(i uint32, fn uintptr) { |
| var sa sigactiont |
| sa.sa_flags = _SA_SIGINFO | _SA_ONSTACK | _SA_RESTORER | _SA_RESTART |
| sigfillset(&sa.sa_mask) |
| // Although Linux manpage says "sa_restorer element is obsolete and |
| // should not be used". x86_64 kernel requires it. Only use it on |
| // x86. |
| if GOARCH == "386" || GOARCH == "amd64" { |
| sa.sa_restorer = abi.FuncPCABI0(sigreturn) |
| } |
| if fn == abi.FuncPCABIInternal(sighandler) { // abi.FuncPCABIInternal(sighandler) matches the callers in signal_unix.go |
| if iscgo { |
| fn = abi.FuncPCABI0(cgoSigtramp) |
| } else { |
| fn = abi.FuncPCABI0(sigtramp) |
| } |
| } |
| sa.sa_handler = fn |
| sigaction(i, &sa, nil) |
| } |
| |
| //go:nosplit |
| //go:nowritebarrierrec |
| func setsigstack(i uint32) { |
| var sa sigactiont |
| sigaction(i, nil, &sa) |
| if sa.sa_flags&_SA_ONSTACK != 0 { |
| return |
| } |
| sa.sa_flags |= _SA_ONSTACK |
| sigaction(i, &sa, nil) |
| } |
| |
| //go:nosplit |
| //go:nowritebarrierrec |
| func getsig(i uint32) uintptr { |
| var sa sigactiont |
| sigaction(i, nil, &sa) |
| return sa.sa_handler |
| } |
| |
| // setSignaltstackSP sets the ss_sp field of a stackt. |
| //go:nosplit |
| func setSignalstackSP(s *stackt, sp uintptr) { |
| *(*uintptr)(unsafe.Pointer(&s.ss_sp)) = sp |
| } |
| |
| //go:nosplit |
| func (c *sigctxt) fixsigcode(sig uint32) { |
| } |
| |
| // sysSigaction calls the rt_sigaction system call. |
| //go:nosplit |
| func sysSigaction(sig uint32, new, old *sigactiont) { |
| if rt_sigaction(uintptr(sig), new, old, unsafe.Sizeof(sigactiont{}.sa_mask)) != 0 { |
| // Workaround for bugs in QEMU user mode emulation. |
| // |
| // QEMU turns calls to the sigaction system call into |
| // calls to the C library sigaction call; the C |
| // library call rejects attempts to call sigaction for |
| // SIGCANCEL (32) or SIGSETXID (33). |
| // |
| // QEMU rejects calling sigaction on SIGRTMAX (64). |
| // |
| // Just ignore the error in these case. There isn't |
| // anything we can do about it anyhow. |
| if sig != 32 && sig != 33 && sig != 64 { |
| // Use system stack to avoid split stack overflow on ppc64/ppc64le. |
| systemstack(func() { |
| throw("sigaction failed") |
| }) |
| } |
| } |
| } |
| |
| // rt_sigaction is implemented in assembly. |
| //go:noescape |
| func rt_sigaction(sig uintptr, new, old *sigactiont, size uintptr) int32 |
| |
| func getpid() int |
| func tgkill(tgid, tid, sig int) |
| |
| // signalM sends a signal to mp. |
| func signalM(mp *m, sig int) { |
| tgkill(getpid(), int(mp.procid), sig) |
| } |
| |
| // go118UseTimerCreateProfiler enables the per-thread CPU profiler. |
| const go118UseTimerCreateProfiler = true |
| |
| // validSIGPROF compares this signal delivery's code against the signal sources |
| // that the profiler uses, returning whether the delivery should be processed. |
| // To be processed, a signal delivery from a known profiling mechanism should |
| // correspond to the best profiling mechanism available to this thread. Signals |
| // from other sources are always considered valid. |
| // |
| //go:nosplit |
| func validSIGPROF(mp *m, c *sigctxt) bool { |
| code := int32(c.sigcode()) |
| setitimer := code == _SI_KERNEL |
| timer_create := code == _SI_TIMER |
| |
| if !(setitimer || timer_create) { |
| // The signal doesn't correspond to a profiling mechanism that the |
| // runtime enables itself. There's no reason to process it, but there's |
| // no reason to ignore it either. |
| return true |
| } |
| |
| if mp == nil { |
| // Since we don't have an M, we can't check if there's an active |
| // per-thread timer for this thread. We don't know how long this thread |
| // has been around, and if it happened to interact with the Go scheduler |
| // at a time when profiling was active (causing it to have a per-thread |
| // timer). But it may have never interacted with the Go scheduler, or |
| // never while profiling was active. To avoid double-counting, process |
| // only signals from setitimer. |
| // |
| // When a custom cgo traceback function has been registered (on |
| // platforms that support runtime.SetCgoTraceback), SIGPROF signals |
| // delivered to a thread that cannot find a matching M do this check in |
| // the assembly implementations of runtime.cgoSigtramp. |
| return setitimer |
| } |
| |
| // Having an M means the thread interacts with the Go scheduler, and we can |
| // check whether there's an active per-thread timer for this thread. |
| if atomic.Load(&mp.profileTimerValid) != 0 { |
| // If this M has its own per-thread CPU profiling interval timer, we |
| // should track the SIGPROF signals that come from that timer (for |
| // accurate reporting of its CPU usage; see issue 35057) and ignore any |
| // that it gets from the process-wide setitimer (to not over-count its |
| // CPU consumption). |
| return timer_create |
| } |
| |
| // No active per-thread timer means the only valid profiler is setitimer. |
| return setitimer |
| } |
| |
| func setProcessCPUProfiler(hz int32) { |
| setProcessCPUProfilerTimer(hz) |
| } |
| |
| func setThreadCPUProfiler(hz int32) { |
| mp := getg().m |
| mp.profilehz = hz |
| |
| if !go118UseTimerCreateProfiler { |
| return |
| } |
| |
| // destroy any active timer |
| if atomic.Load(&mp.profileTimerValid) != 0 { |
| timerid := mp.profileTimer |
| atomic.Store(&mp.profileTimerValid, 0) |
| mp.profileTimer = 0 |
| |
| ret := timer_delete(timerid) |
| if ret != 0 { |
| print("runtime: failed to disable profiling timer; timer_delete(", timerid, ") errno=", -ret, "\n") |
| throw("timer_delete") |
| } |
| } |
| |
| if hz == 0 { |
| // If the goal was to disable profiling for this thread, then the job's done. |
| return |
| } |
| |
| // The period of the timer should be 1/Hz. For every "1/Hz" of additional |
| // work, the user should expect one additional sample in the profile. |
| // |
| // But to scale down to very small amounts of application work, to observe |
| // even CPU usage of "one tenth" of the requested period, set the initial |
| // timing delay in a different way: So that "one tenth" of a period of CPU |
| // spend shows up as a 10% chance of one sample (for an expected value of |
| // 0.1 samples), and so that "two and six tenths" periods of CPU spend show |
| // up as a 60% chance of 3 samples and a 40% chance of 2 samples (for an |
| // expected value of 2.6). Set the initial delay to a value in the unifom |
| // random distribution between 0 and the desired period. And because "0" |
| // means "disable timer", add 1 so the half-open interval [0,period) turns |
| // into (0,period]. |
| // |
| // Otherwise, this would show up as a bias away from short-lived threads and |
| // from threads that are only occasionally active: for example, when the |
| // garbage collector runs on a mostly-idle system, the additional threads it |
| // activates may do a couple milliseconds of GC-related work and nothing |
| // else in the few seconds that the profiler observes. |
| spec := new(itimerspec) |
| spec.it_value.setNsec(1 + int64(fastrandn(uint32(1e9/hz)))) |
| spec.it_interval.setNsec(1e9 / int64(hz)) |
| |
| var timerid int32 |
| var sevp sigevent |
| sevp.notify = _SIGEV_THREAD_ID |
| sevp.signo = _SIGPROF |
| sevp.sigev_notify_thread_id = int32(mp.procid) |
| ret := timer_create(_CLOCK_THREAD_CPUTIME_ID, &sevp, &timerid) |
| if ret != 0 { |
| // If we cannot create a timer for this M, leave profileTimerValid false |
| // to fall back to the process-wide setitimer profiler. |
| return |
| } |
| |
| ret = timer_settime(timerid, 0, spec, nil) |
| if ret != 0 { |
| print("runtime: failed to configure profiling timer; timer_settime(", timerid, |
| ", 0, {interval: {", |
| spec.it_interval.tv_sec, "s + ", spec.it_interval.tv_nsec, "ns} value: {", |
| spec.it_value.tv_sec, "s + ", spec.it_value.tv_nsec, "ns}}, nil) errno=", -ret, "\n") |
| throw("timer_settime") |
| } |
| |
| mp.profileTimer = timerid |
| atomic.Store(&mp.profileTimerValid, 1) |
| } |