| // Derived from Inferno utils/6l/l.h and related files. |
| // https://bitbucket.org/inferno-os/inferno-os/src/master/utils/6l/l.h |
| // |
| // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. |
| // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) |
| // Portions Copyright © 1997-1999 Vita Nuova Limited |
| // Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) |
| // Portions Copyright © 2004,2006 Bruce Ellis |
| // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) |
| // Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others |
| // Portions Copyright © 2009 The Go Authors. All rights reserved. |
| // |
| // Permission is hereby granted, free of charge, to any person obtaining a copy |
| // of this software and associated documentation files (the "Software"), to deal |
| // in the Software without restriction, including without limitation the rights |
| // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| // copies of the Software, and to permit persons to whom the Software is |
| // furnished to do so, subject to the following conditions: |
| // |
| // The above copyright notice and this permission notice shall be included in |
| // all copies or substantial portions of the Software. |
| // |
| // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| // THE SOFTWARE. |
| |
| package obj |
| |
| import ( |
| "bufio" |
| "cmd/internal/dwarf" |
| "cmd/internal/goobj" |
| "cmd/internal/objabi" |
| "cmd/internal/src" |
| "cmd/internal/sys" |
| "fmt" |
| "sync" |
| "sync/atomic" |
| ) |
| |
| // An Addr is an argument to an instruction. |
| // The general forms and their encodings are: |
| // |
| // sym±offset(symkind)(reg)(index*scale) |
| // Memory reference at address &sym(symkind) + offset + reg + index*scale. |
| // Any of sym(symkind), ±offset, (reg), (index*scale), and *scale can be omitted. |
| // If (reg) and *scale are both omitted, the resulting expression (index) is parsed as (reg). |
| // To force a parsing as index*scale, write (index*1). |
| // Encoding: |
| // type = TYPE_MEM |
| // name = symkind (NAME_AUTO, ...) or 0 (NAME_NONE) |
| // sym = sym |
| // offset = ±offset |
| // reg = reg (REG_*) |
| // index = index (REG_*) |
| // scale = scale (1, 2, 4, 8) |
| // |
| // $<mem> |
| // Effective address of memory reference <mem>, defined above. |
| // Encoding: same as memory reference, but type = TYPE_ADDR. |
| // |
| // $<±integer value> |
| // This is a special case of $<mem>, in which only ±offset is present. |
| // It has a separate type for easy recognition. |
| // Encoding: |
| // type = TYPE_CONST |
| // offset = ±integer value |
| // |
| // *<mem> |
| // Indirect reference through memory reference <mem>, defined above. |
| // Only used on x86 for CALL/JMP *sym(SB), which calls/jumps to a function |
| // pointer stored in the data word sym(SB), not a function named sym(SB). |
| // Encoding: same as above, but type = TYPE_INDIR. |
| // |
| // $*$<mem> |
| // No longer used. |
| // On machines with actual SB registers, $*$<mem> forced the |
| // instruction encoding to use a full 32-bit constant, never a |
| // reference relative to SB. |
| // |
| // $<floating point literal> |
| // Floating point constant value. |
| // Encoding: |
| // type = TYPE_FCONST |
| // val = floating point value |
| // |
| // $<string literal, up to 8 chars> |
| // String literal value (raw bytes used for DATA instruction). |
| // Encoding: |
| // type = TYPE_SCONST |
| // val = string |
| // |
| // <register name> |
| // Any register: integer, floating point, control, segment, and so on. |
| // If looking for specific register kind, must check type and reg value range. |
| // Encoding: |
| // type = TYPE_REG |
| // reg = reg (REG_*) |
| // |
| // x(PC) |
| // Encoding: |
| // type = TYPE_BRANCH |
| // val = Prog* reference OR ELSE offset = target pc (branch takes priority) |
| // |
| // $±x-±y |
| // Final argument to TEXT, specifying local frame size x and argument size y. |
| // In this form, x and y are integer literals only, not arbitrary expressions. |
| // This avoids parsing ambiguities due to the use of - as a separator. |
| // The ± are optional. |
| // If the final argument to TEXT omits the -±y, the encoding should still |
| // use TYPE_TEXTSIZE (not TYPE_CONST), with u.argsize = ArgsSizeUnknown. |
| // Encoding: |
| // type = TYPE_TEXTSIZE |
| // offset = x |
| // val = int32(y) |
| // |
| // reg<<shift, reg>>shift, reg->shift, reg@>shift |
| // Shifted register value, for ARM and ARM64. |
| // In this form, reg must be a register and shift can be a register or an integer constant. |
| // Encoding: |
| // type = TYPE_SHIFT |
| // On ARM: |
| // offset = (reg&15) | shifttype<<5 | count |
| // shifttype = 0, 1, 2, 3 for <<, >>, ->, @> |
| // count = (reg&15)<<8 | 1<<4 for a register shift count, (n&31)<<7 for an integer constant. |
| // On ARM64: |
| // offset = (reg&31)<<16 | shifttype<<22 | (count&63)<<10 |
| // shifttype = 0, 1, 2 for <<, >>, -> |
| // |
| // (reg, reg) |
| // A destination register pair. When used as the last argument of an instruction, |
| // this form makes clear that both registers are destinations. |
| // Encoding: |
| // type = TYPE_REGREG |
| // reg = first register |
| // offset = second register |
| // |
| // [reg, reg, reg-reg] |
| // Register list for ARM, ARM64, 386/AMD64. |
| // Encoding: |
| // type = TYPE_REGLIST |
| // On ARM: |
| // offset = bit mask of registers in list; R0 is low bit. |
| // On ARM64: |
| // offset = register count (Q:size) | arrangement (opcode) | first register |
| // On 386/AMD64: |
| // reg = range low register |
| // offset = 2 packed registers + kind tag (see x86.EncodeRegisterRange) |
| // |
| // reg, reg |
| // Register pair for ARM. |
| // TYPE_REGREG2 |
| // |
| // (reg+reg) |
| // Register pair for PPC64. |
| // Encoding: |
| // type = TYPE_MEM |
| // reg = first register |
| // index = second register |
| // scale = 1 |
| // |
| // reg.[US]XT[BHWX] |
| // Register extension for ARM64 |
| // Encoding: |
| // type = TYPE_REG |
| // reg = REG_[US]XT[BHWX] + register + shift amount |
| // offset = ((reg&31) << 16) | (exttype << 13) | (amount<<10) |
| // |
| // reg.<T> |
| // Register arrangement for ARM64 SIMD register |
| // e.g.: V1.S4, V2.S2, V7.D2, V2.H4, V6.B16 |
| // Encoding: |
| // type = TYPE_REG |
| // reg = REG_ARNG + register + arrangement |
| // |
| // reg.<T>[index] |
| // Register element for ARM64 |
| // Encoding: |
| // type = TYPE_REG |
| // reg = REG_ELEM + register + arrangement |
| // index = element index |
| |
| type Addr struct { |
| Reg int16 |
| Index int16 |
| Scale int16 // Sometimes holds a register. |
| Type AddrType |
| Name AddrName |
| Class int8 |
| Offset int64 |
| Sym *LSym |
| |
| // argument value: |
| // for TYPE_SCONST, a string |
| // for TYPE_FCONST, a float64 |
| // for TYPE_BRANCH, a *Prog (optional) |
| // for TYPE_TEXTSIZE, an int32 (optional) |
| Val interface{} |
| } |
| |
| type AddrName int8 |
| |
| const ( |
| NAME_NONE AddrName = iota |
| NAME_EXTERN |
| NAME_STATIC |
| NAME_AUTO |
| NAME_PARAM |
| // A reference to name@GOT(SB) is a reference to the entry in the global offset |
| // table for 'name'. |
| NAME_GOTREF |
| // Indicates that this is a reference to a TOC anchor. |
| NAME_TOCREF |
| ) |
| |
| //go:generate stringer -type AddrType |
| |
| type AddrType uint8 |
| |
| const ( |
| TYPE_NONE AddrType = iota |
| TYPE_BRANCH |
| TYPE_TEXTSIZE |
| TYPE_MEM |
| TYPE_CONST |
| TYPE_FCONST |
| TYPE_SCONST |
| TYPE_REG |
| TYPE_ADDR |
| TYPE_SHIFT |
| TYPE_REGREG |
| TYPE_REGREG2 |
| TYPE_INDIR |
| TYPE_REGLIST |
| ) |
| |
| func (a *Addr) Target() *Prog { |
| if a.Type == TYPE_BRANCH && a.Val != nil { |
| return a.Val.(*Prog) |
| } |
| return nil |
| } |
| func (a *Addr) SetTarget(t *Prog) { |
| if a.Type != TYPE_BRANCH { |
| panic("setting branch target when type is not TYPE_BRANCH") |
| } |
| a.Val = t |
| } |
| |
| func (a *Addr) SetConst(v int64) { |
| a.Sym = nil |
| a.Type = TYPE_CONST |
| a.Offset = v |
| } |
| |
| // Prog describes a single machine instruction. |
| // |
| // The general instruction form is: |
| // |
| // (1) As.Scond From [, ...RestArgs], To |
| // (2) As.Scond From, Reg [, ...RestArgs], To, RegTo2 |
| // |
| // where As is an opcode and the others are arguments: |
| // From, Reg are sources, and To, RegTo2 are destinations. |
| // RestArgs can hold additional sources and destinations. |
| // Usually, not all arguments are present. |
| // For example, MOVL R1, R2 encodes using only As=MOVL, From=R1, To=R2. |
| // The Scond field holds additional condition bits for systems (like arm) |
| // that have generalized conditional execution. |
| // (2) form is present for compatibility with older code, |
| // to avoid too much changes in a single swing. |
| // (1) scheme is enough to express any kind of operand combination. |
| // |
| // Jump instructions use the To.Val field to point to the target *Prog, |
| // which must be in the same linked list as the jump instruction. |
| // |
| // The Progs for a given function are arranged in a list linked through the Link field. |
| // |
| // Each Prog is charged to a specific source line in the debug information, |
| // specified by Pos.Line(). |
| // Every Prog has a Ctxt field that defines its context. |
| // For performance reasons, Progs are usually bulk allocated, cached, and reused; |
| // those bulk allocators should always be used, rather than new(Prog). |
| // |
| // The other fields not yet mentioned are for use by the back ends and should |
| // be left zeroed by creators of Prog lists. |
| type Prog struct { |
| Ctxt *Link // linker context |
| Link *Prog // next Prog in linked list |
| From Addr // first source operand |
| RestArgs []AddrPos // can pack any operands that not fit into {Prog.From, Prog.To} |
| To Addr // destination operand (second is RegTo2 below) |
| Pool *Prog // constant pool entry, for arm,arm64 back ends |
| Forwd *Prog // for x86 back end |
| Rel *Prog // for x86, arm back ends |
| Pc int64 // for back ends or assembler: virtual or actual program counter, depending on phase |
| Pos src.XPos // source position of this instruction |
| Spadj int32 // effect of instruction on stack pointer (increment or decrement amount) |
| As As // assembler opcode |
| Reg int16 // 2nd source operand |
| RegTo2 int16 // 2nd destination operand |
| Mark uint16 // bitmask of arch-specific items |
| Optab uint16 // arch-specific opcode index |
| Scond uint8 // bits that describe instruction suffixes (e.g. ARM conditions) |
| Back uint8 // for x86 back end: backwards branch state |
| Ft uint8 // for x86 back end: type index of Prog.From |
| Tt uint8 // for x86 back end: type index of Prog.To |
| Isize uint8 // for x86 back end: size of the instruction in bytes |
| } |
| |
| // Pos indicates whether the oprand is the source or the destination. |
| type AddrPos struct { |
| Addr |
| Pos OperandPos |
| } |
| |
| type OperandPos int8 |
| |
| const ( |
| Source OperandPos = iota |
| Destination |
| ) |
| |
| // From3Type returns p.GetFrom3().Type, or TYPE_NONE when |
| // p.GetFrom3() returns nil. |
| // |
| // Deprecated: for the same reasons as Prog.GetFrom3. |
| func (p *Prog) From3Type() AddrType { |
| if p.RestArgs == nil { |
| return TYPE_NONE |
| } |
| return p.RestArgs[0].Type |
| } |
| |
| // GetFrom3 returns second source operand (the first is Prog.From). |
| // In combination with Prog.From and Prog.To it makes common 3 operand |
| // case easier to use. |
| // |
| // Should be used only when RestArgs is set with SetFrom3. |
| // |
| // Deprecated: better use RestArgs directly or define backend-specific getters. |
| // Introduced to simplify transition to []Addr. |
| // Usage of this is discouraged due to fragility and lack of guarantees. |
| func (p *Prog) GetFrom3() *Addr { |
| if p.RestArgs == nil { |
| return nil |
| } |
| return &p.RestArgs[0].Addr |
| } |
| |
| // SetFrom3 assigns []Args{{a, 0}} to p.RestArgs. |
| // In pair with Prog.GetFrom3 it can help in emulation of Prog.From3. |
| // |
| // Deprecated: for the same reasons as Prog.GetFrom3. |
| func (p *Prog) SetFrom3(a Addr) { |
| p.RestArgs = []AddrPos{{a, Source}} |
| } |
| |
| // SetFrom3Reg calls p.SetFrom3 with a register Addr containing reg. |
| // |
| // Deprecated: for the same reasons as Prog.GetFrom3. |
| func (p *Prog) SetFrom3Reg(reg int16) { |
| p.SetFrom3(Addr{Type: TYPE_REG, Reg: reg}) |
| } |
| |
| // SetFrom3Const calls p.SetFrom3 with a const Addr containing x. |
| // |
| // Deprecated: for the same reasons as Prog.GetFrom3. |
| func (p *Prog) SetFrom3Const(off int64) { |
| p.SetFrom3(Addr{Type: TYPE_CONST, Offset: off}) |
| } |
| |
| // SetTo2 assigns []Args{{a, 1}} to p.RestArgs when the second destination |
| // operand does not fit into prog.RegTo2. |
| func (p *Prog) SetTo2(a Addr) { |
| p.RestArgs = []AddrPos{{a, Destination}} |
| } |
| |
| // GetTo2 returns the second destination operand. |
| func (p *Prog) GetTo2() *Addr { |
| if p.RestArgs == nil { |
| return nil |
| } |
| return &p.RestArgs[0].Addr |
| } |
| |
| // SetRestArgs assigns more than one source operands to p.RestArgs. |
| func (p *Prog) SetRestArgs(args []Addr) { |
| for i := range args { |
| p.RestArgs = append(p.RestArgs, AddrPos{args[i], Source}) |
| } |
| } |
| |
| // An As denotes an assembler opcode. |
| // There are some portable opcodes, declared here in package obj, |
| // that are common to all architectures. |
| // However, the majority of opcodes are arch-specific |
| // and are declared in their respective architecture's subpackage. |
| type As int16 |
| |
| // These are the portable opcodes. |
| const ( |
| AXXX As = iota |
| ACALL |
| ADUFFCOPY |
| ADUFFZERO |
| AEND |
| AFUNCDATA |
| AJMP |
| ANOP |
| APCALIGN |
| APCDATA |
| ARET |
| AGETCALLERPC |
| ATEXT |
| AUNDEF |
| A_ARCHSPECIFIC |
| ) |
| |
| // Each architecture is allotted a distinct subspace of opcode values |
| // for declaring its arch-specific opcodes. |
| // Within this subspace, the first arch-specific opcode should be |
| // at offset A_ARCHSPECIFIC. |
| // |
| // Subspaces are aligned to a power of two so opcodes can be masked |
| // with AMask and used as compact array indices. |
| const ( |
| ABase386 = (1 + iota) << 11 |
| ABaseARM |
| ABaseAMD64 |
| ABasePPC64 |
| ABaseARM64 |
| ABaseMIPS |
| ABaseRISCV |
| ABaseS390X |
| ABaseWasm |
| |
| AllowedOpCodes = 1 << 11 // The number of opcodes available for any given architecture. |
| AMask = AllowedOpCodes - 1 // AND with this to use the opcode as an array index. |
| ) |
| |
| // An LSym is the sort of symbol that is written to an object file. |
| // It represents Go symbols in a flat pkg+"."+name namespace. |
| type LSym struct { |
| Name string |
| Type objabi.SymKind |
| Attribute |
| |
| Size int64 |
| Gotype *LSym |
| P []byte |
| R []Reloc |
| |
| Extra *interface{} // *FuncInfo or *FileInfo, if present |
| |
| Pkg string |
| PkgIdx int32 |
| SymIdx int32 |
| } |
| |
| // A FuncInfo contains extra fields for STEXT symbols. |
| type FuncInfo struct { |
| Args int32 |
| Locals int32 |
| Align int32 |
| FuncID objabi.FuncID |
| FuncFlag objabi.FuncFlag |
| Text *Prog |
| Autot map[*LSym]struct{} |
| Pcln Pcln |
| InlMarks []InlMark |
| spills []RegSpill |
| |
| dwarfInfoSym *LSym |
| dwarfLocSym *LSym |
| dwarfRangesSym *LSym |
| dwarfAbsFnSym *LSym |
| dwarfDebugLinesSym *LSym |
| |
| GCArgs *LSym |
| GCLocals *LSym |
| StackObjects *LSym |
| OpenCodedDeferInfo *LSym |
| ArgInfo *LSym // argument info for traceback |
| ArgLiveInfo *LSym // argument liveness info for traceback |
| |
| FuncInfoSym *LSym |
| } |
| |
| // NewFuncInfo allocates and returns a FuncInfo for LSym. |
| func (s *LSym) NewFuncInfo() *FuncInfo { |
| if s.Extra != nil { |
| panic(fmt.Sprintf("invalid use of LSym - NewFuncInfo with Extra of type %T", *s.Extra)) |
| } |
| f := new(FuncInfo) |
| s.Extra = new(interface{}) |
| *s.Extra = f |
| return f |
| } |
| |
| // Func returns the *FuncInfo associated with s, or else nil. |
| func (s *LSym) Func() *FuncInfo { |
| if s.Extra == nil { |
| return nil |
| } |
| f, _ := (*s.Extra).(*FuncInfo) |
| return f |
| } |
| |
| // A FileInfo contains extra fields for SDATA symbols backed by files. |
| // (If LSym.Extra is a *FileInfo, LSym.P == nil.) |
| type FileInfo struct { |
| Name string // name of file to read into object file |
| Size int64 // length of file |
| } |
| |
| // NewFileInfo allocates and returns a FileInfo for LSym. |
| func (s *LSym) NewFileInfo() *FileInfo { |
| if s.Extra != nil { |
| panic(fmt.Sprintf("invalid use of LSym - NewFileInfo with Extra of type %T", *s.Extra)) |
| } |
| f := new(FileInfo) |
| s.Extra = new(interface{}) |
| *s.Extra = f |
| return f |
| } |
| |
| // File returns the *FileInfo associated with s, or else nil. |
| func (s *LSym) File() *FileInfo { |
| if s.Extra == nil { |
| return nil |
| } |
| f, _ := (*s.Extra).(*FileInfo) |
| return f |
| } |
| |
| type InlMark struct { |
| // When unwinding from an instruction in an inlined body, mark |
| // where we should unwind to. |
| // id records the global inlining id of the inlined body. |
| // p records the location of an instruction in the parent (inliner) frame. |
| p *Prog |
| id int32 |
| } |
| |
| // Mark p as the instruction to set as the pc when |
| // "unwinding" the inlining global frame id. Usually it should be |
| // instruction with a file:line at the callsite, and occur |
| // just before the body of the inlined function. |
| func (fi *FuncInfo) AddInlMark(p *Prog, id int32) { |
| fi.InlMarks = append(fi.InlMarks, InlMark{p: p, id: id}) |
| } |
| |
| // AddSpill appends a spill record to the list for FuncInfo fi |
| func (fi *FuncInfo) AddSpill(s RegSpill) { |
| fi.spills = append(fi.spills, s) |
| } |
| |
| // Record the type symbol for an auto variable so that the linker |
| // an emit DWARF type information for the type. |
| func (fi *FuncInfo) RecordAutoType(gotype *LSym) { |
| if fi.Autot == nil { |
| fi.Autot = make(map[*LSym]struct{}) |
| } |
| fi.Autot[gotype] = struct{}{} |
| } |
| |
| //go:generate stringer -type ABI |
| |
| // ABI is the calling convention of a text symbol. |
| type ABI uint8 |
| |
| const ( |
| // ABI0 is the stable stack-based ABI. It's important that the |
| // value of this is "0": we can't distinguish between |
| // references to data and ABI0 text symbols in assembly code, |
| // and hence this doesn't distinguish between symbols without |
| // an ABI and text symbols with ABI0. |
| ABI0 ABI = iota |
| |
| // ABIInternal is the internal ABI that may change between Go |
| // versions. All Go functions use the internal ABI and the |
| // compiler generates wrappers for calls to and from other |
| // ABIs. |
| ABIInternal |
| |
| ABICount |
| ) |
| |
| // ParseABI converts from a string representation in 'abistr' to the |
| // corresponding ABI value. Second return value is TRUE if the |
| // abi string is recognized, FALSE otherwise. |
| func ParseABI(abistr string) (ABI, bool) { |
| switch abistr { |
| default: |
| return ABI0, false |
| case "ABI0": |
| return ABI0, true |
| case "ABIInternal": |
| return ABIInternal, true |
| } |
| } |
| |
| // ABISet is a bit set of ABI values. |
| type ABISet uint8 |
| |
| const ( |
| // ABISetCallable is the set of all ABIs any function could |
| // potentially be called using. |
| ABISetCallable ABISet = (1 << ABI0) | (1 << ABIInternal) |
| ) |
| |
| // Ensure ABISet is big enough to hold all ABIs. |
| var _ ABISet = 1 << (ABICount - 1) |
| |
| func ABISetOf(abi ABI) ABISet { |
| return 1 << abi |
| } |
| |
| func (a *ABISet) Set(abi ABI, value bool) { |
| if value { |
| *a |= 1 << abi |
| } else { |
| *a &^= 1 << abi |
| } |
| } |
| |
| func (a *ABISet) Get(abi ABI) bool { |
| return (*a>>abi)&1 != 0 |
| } |
| |
| func (a ABISet) String() string { |
| s := "{" |
| for i := ABI(0); a != 0; i++ { |
| if a&(1<<i) != 0 { |
| if s != "{" { |
| s += "," |
| } |
| s += i.String() |
| a &^= 1 << i |
| } |
| } |
| return s + "}" |
| } |
| |
| // Attribute is a set of symbol attributes. |
| type Attribute uint32 |
| |
| const ( |
| AttrDuplicateOK Attribute = 1 << iota |
| AttrCFunc |
| AttrNoSplit |
| AttrLeaf |
| AttrWrapper |
| AttrNeedCtxt |
| AttrNoFrame |
| AttrOnList |
| AttrStatic |
| |
| // MakeTypelink means that the type should have an entry in the typelink table. |
| AttrMakeTypelink |
| |
| // ReflectMethod means the function may call reflect.Type.Method or |
| // reflect.Type.MethodByName. Matching is imprecise (as reflect.Type |
| // can be used through a custom interface), so ReflectMethod may be |
| // set in some cases when the reflect package is not called. |
| // |
| // Used by the linker to determine what methods can be pruned. |
| AttrReflectMethod |
| |
| // Local means make the symbol local even when compiling Go code to reference Go |
| // symbols in other shared libraries, as in this mode symbols are global by |
| // default. "local" here means in the sense of the dynamic linker, i.e. not |
| // visible outside of the module (shared library or executable) that contains its |
| // definition. (When not compiling to support Go shared libraries, all symbols are |
| // local in this sense unless there is a cgo_export_* directive). |
| AttrLocal |
| |
| // For function symbols; indicates that the specified function was the |
| // target of an inline during compilation |
| AttrWasInlined |
| |
| // Indexed indicates this symbol has been assigned with an index (when using the |
| // new object file format). |
| AttrIndexed |
| |
| // Only applied on type descriptor symbols, UsedInIface indicates this type is |
| // converted to an interface. |
| // |
| // Used by the linker to determine what methods can be pruned. |
| AttrUsedInIface |
| |
| // ContentAddressable indicates this is a content-addressable symbol. |
| AttrContentAddressable |
| |
| // ABI wrapper is set for compiler-generated text symbols that |
| // convert between ABI0 and ABIInternal calling conventions. |
| AttrABIWrapper |
| |
| // IsPcdata indicates this is a pcdata symbol. |
| AttrPcdata |
| |
| // attrABIBase is the value at which the ABI is encoded in |
| // Attribute. This must be last; all bits after this are |
| // assumed to be an ABI value. |
| // |
| // MUST BE LAST since all bits above this comprise the ABI. |
| attrABIBase |
| ) |
| |
| func (a *Attribute) load() Attribute { return Attribute(atomic.LoadUint32((*uint32)(a))) } |
| |
| func (a *Attribute) DuplicateOK() bool { return a.load()&AttrDuplicateOK != 0 } |
| func (a *Attribute) MakeTypelink() bool { return a.load()&AttrMakeTypelink != 0 } |
| func (a *Attribute) CFunc() bool { return a.load()&AttrCFunc != 0 } |
| func (a *Attribute) NoSplit() bool { return a.load()&AttrNoSplit != 0 } |
| func (a *Attribute) Leaf() bool { return a.load()&AttrLeaf != 0 } |
| func (a *Attribute) OnList() bool { return a.load()&AttrOnList != 0 } |
| func (a *Attribute) ReflectMethod() bool { return a.load()&AttrReflectMethod != 0 } |
| func (a *Attribute) Local() bool { return a.load()&AttrLocal != 0 } |
| func (a *Attribute) Wrapper() bool { return a.load()&AttrWrapper != 0 } |
| func (a *Attribute) NeedCtxt() bool { return a.load()&AttrNeedCtxt != 0 } |
| func (a *Attribute) NoFrame() bool { return a.load()&AttrNoFrame != 0 } |
| func (a *Attribute) Static() bool { return a.load()&AttrStatic != 0 } |
| func (a *Attribute) WasInlined() bool { return a.load()&AttrWasInlined != 0 } |
| func (a *Attribute) Indexed() bool { return a.load()&AttrIndexed != 0 } |
| func (a *Attribute) UsedInIface() bool { return a.load()&AttrUsedInIface != 0 } |
| func (a *Attribute) ContentAddressable() bool { return a.load()&AttrContentAddressable != 0 } |
| func (a *Attribute) ABIWrapper() bool { return a.load()&AttrABIWrapper != 0 } |
| func (a *Attribute) IsPcdata() bool { return a.load()&AttrPcdata != 0 } |
| |
| func (a *Attribute) Set(flag Attribute, value bool) { |
| for { |
| v0 := a.load() |
| v := v0 |
| if value { |
| v |= flag |
| } else { |
| v &^= flag |
| } |
| if atomic.CompareAndSwapUint32((*uint32)(a), uint32(v0), uint32(v)) { |
| break |
| } |
| } |
| } |
| |
| func (a *Attribute) ABI() ABI { return ABI(a.load() / attrABIBase) } |
| func (a *Attribute) SetABI(abi ABI) { |
| const mask = 1 // Only one ABI bit for now. |
| for { |
| v0 := a.load() |
| v := (v0 &^ (mask * attrABIBase)) | Attribute(abi)*attrABIBase |
| if atomic.CompareAndSwapUint32((*uint32)(a), uint32(v0), uint32(v)) { |
| break |
| } |
| } |
| } |
| |
| var textAttrStrings = [...]struct { |
| bit Attribute |
| s string |
| }{ |
| {bit: AttrDuplicateOK, s: "DUPOK"}, |
| {bit: AttrMakeTypelink, s: ""}, |
| {bit: AttrCFunc, s: "CFUNC"}, |
| {bit: AttrNoSplit, s: "NOSPLIT"}, |
| {bit: AttrLeaf, s: "LEAF"}, |
| {bit: AttrOnList, s: ""}, |
| {bit: AttrReflectMethod, s: "REFLECTMETHOD"}, |
| {bit: AttrLocal, s: "LOCAL"}, |
| {bit: AttrWrapper, s: "WRAPPER"}, |
| {bit: AttrNeedCtxt, s: "NEEDCTXT"}, |
| {bit: AttrNoFrame, s: "NOFRAME"}, |
| {bit: AttrStatic, s: "STATIC"}, |
| {bit: AttrWasInlined, s: ""}, |
| {bit: AttrIndexed, s: ""}, |
| {bit: AttrContentAddressable, s: ""}, |
| {bit: AttrABIWrapper, s: "ABIWRAPPER"}, |
| } |
| |
| // String formats a for printing in as part of a TEXT prog. |
| func (a Attribute) String() string { |
| var s string |
| for _, x := range textAttrStrings { |
| if a&x.bit != 0 { |
| if x.s != "" { |
| s += x.s + "|" |
| } |
| a &^= x.bit |
| } |
| } |
| switch a.ABI() { |
| case ABI0: |
| case ABIInternal: |
| s += "ABIInternal|" |
| a.SetABI(0) // Clear ABI so we don't print below. |
| } |
| if a != 0 { |
| s += fmt.Sprintf("UnknownAttribute(%d)|", a) |
| } |
| // Chop off trailing |, if present. |
| if len(s) > 0 { |
| s = s[:len(s)-1] |
| } |
| return s |
| } |
| |
| // TextAttrString formats the symbol attributes for printing in as part of a TEXT prog. |
| func (s *LSym) TextAttrString() string { |
| attr := s.Attribute.String() |
| if s.Func().FuncFlag&objabi.FuncFlag_TOPFRAME != 0 { |
| if attr != "" { |
| attr += "|" |
| } |
| attr += "TOPFRAME" |
| } |
| return attr |
| } |
| |
| func (s *LSym) String() string { |
| return s.Name |
| } |
| |
| // The compiler needs *LSym to be assignable to cmd/compile/internal/ssa.Sym. |
| func (*LSym) CanBeAnSSASym() {} |
| func (*LSym) CanBeAnSSAAux() {} |
| |
| type Pcln struct { |
| // Aux symbols for pcln |
| Pcsp *LSym |
| Pcfile *LSym |
| Pcline *LSym |
| Pcinline *LSym |
| Pcdata []*LSym |
| Funcdata []*LSym |
| UsedFiles map[goobj.CUFileIndex]struct{} // file indices used while generating pcfile |
| InlTree InlTree // per-function inlining tree extracted from the global tree |
| } |
| |
| type Reloc struct { |
| Off int32 |
| Siz uint8 |
| Type objabi.RelocType |
| Add int64 |
| Sym *LSym |
| } |
| |
| type Auto struct { |
| Asym *LSym |
| Aoffset int32 |
| Name AddrName |
| Gotype *LSym |
| } |
| |
| // RegSpill provides spill/fill information for a register-resident argument |
| // to a function. These need spilling/filling in the safepoint/stackgrowth case. |
| // At the time of fill/spill, the offset must be adjusted by the architecture-dependent |
| // adjustment to hardware SP that occurs in a call instruction. E.g., for AMD64, |
| // at Offset+8 because the return address was pushed. |
| type RegSpill struct { |
| Addr Addr |
| Reg int16 |
| Spill, Unspill As |
| } |
| |
| // Link holds the context for writing object code from a compiler |
| // to be linker input or for reading that input into the linker. |
| type Link struct { |
| Headtype objabi.HeadType |
| Arch *LinkArch |
| Debugasm int |
| Debugvlog bool |
| Debugpcln string |
| Flag_shared bool |
| Flag_dynlink bool |
| Flag_linkshared bool |
| Flag_optimize bool |
| Flag_locationlists bool |
| Retpoline bool // emit use of retpoline stubs for indirect jmp/call |
| Bso *bufio.Writer |
| Pathname string |
| Pkgpath string // the current package's import path, "" if unknown |
| hashmu sync.Mutex // protects hash, funchash |
| hash map[string]*LSym // name -> sym mapping |
| funchash map[string]*LSym // name -> sym mapping for ABIInternal syms |
| statichash map[string]*LSym // name -> sym mapping for static syms |
| PosTable src.PosTable |
| InlTree InlTree // global inlining tree used by gc/inl.go |
| DwFixups *DwarfFixupTable |
| Imports []goobj.ImportedPkg |
| DiagFunc func(string, ...interface{}) |
| DiagFlush func() |
| DebugInfo func(fn *LSym, info *LSym, curfn interface{}) ([]dwarf.Scope, dwarf.InlCalls) // if non-nil, curfn is a *gc.Node |
| GenAbstractFunc func(fn *LSym) |
| Errors int |
| |
| InParallel bool // parallel backend phase in effect |
| UseBASEntries bool // use Base Address Selection Entries in location lists and PC ranges |
| IsAsm bool // is the source assembly language, which may contain surprising idioms (e.g., call tables) |
| |
| // state for writing objects |
| Text []*LSym |
| Data []*LSym |
| |
| // Constant symbols (e.g. $i64.*) are data symbols created late |
| // in the concurrent phase. To ensure a deterministic order, we |
| // add them to a separate list, sort at the end, and append it |
| // to Data. |
| constSyms []*LSym |
| |
| // pkgIdx maps package path to index. The index is used for |
| // symbol reference in the object file. |
| pkgIdx map[string]int32 |
| |
| defs []*LSym // list of defined symbols in the current package |
| hashed64defs []*LSym // list of defined short (64-bit or less) hashed (content-addressable) symbols |
| hasheddefs []*LSym // list of defined hashed (content-addressable) symbols |
| nonpkgdefs []*LSym // list of defined non-package symbols |
| nonpkgrefs []*LSym // list of referenced non-package symbols |
| |
| Fingerprint goobj.FingerprintType // fingerprint of symbol indices, to catch index mismatch |
| } |
| |
| func (ctxt *Link) Diag(format string, args ...interface{}) { |
| ctxt.Errors++ |
| ctxt.DiagFunc(format, args...) |
| } |
| |
| func (ctxt *Link) Logf(format string, args ...interface{}) { |
| fmt.Fprintf(ctxt.Bso, format, args...) |
| ctxt.Bso.Flush() |
| } |
| |
| // SpillRegisterArgs emits the code to spill register args into whatever |
| // locations the spill records specify. |
| func (fi *FuncInfo) SpillRegisterArgs(last *Prog, pa ProgAlloc) *Prog { |
| // Spill register args. |
| for _, ra := range fi.spills { |
| spill := Appendp(last, pa) |
| spill.As = ra.Spill |
| spill.From.Type = TYPE_REG |
| spill.From.Reg = ra.Reg |
| spill.To = ra.Addr |
| last = spill |
| } |
| return last |
| } |
| |
| // UnspillRegisterArgs emits the code to restore register args from whatever |
| // locations the spill records specify. |
| func (fi *FuncInfo) UnspillRegisterArgs(last *Prog, pa ProgAlloc) *Prog { |
| // Unspill any spilled register args |
| for _, ra := range fi.spills { |
| unspill := Appendp(last, pa) |
| unspill.As = ra.Unspill |
| unspill.From = ra.Addr |
| unspill.To.Type = TYPE_REG |
| unspill.To.Reg = ra.Reg |
| last = unspill |
| } |
| return last |
| } |
| |
| // The smallest possible offset from the hardware stack pointer to a local |
| // variable on the stack. Architectures that use a link register save its value |
| // on the stack in the function prologue and so always have a pointer between |
| // the hardware stack pointer and the local variable area. |
| func (ctxt *Link) FixedFrameSize() int64 { |
| switch ctxt.Arch.Family { |
| case sys.AMD64, sys.I386, sys.Wasm: |
| return 0 |
| case sys.PPC64: |
| // PIC code on ppc64le requires 32 bytes of stack, and it's easier to |
| // just use that much stack always on ppc64x. |
| return int64(4 * ctxt.Arch.PtrSize) |
| default: |
| return int64(ctxt.Arch.PtrSize) |
| } |
| } |
| |
| // LinkArch is the definition of a single architecture. |
| type LinkArch struct { |
| *sys.Arch |
| Init func(*Link) |
| ErrorCheck func(*Link, *LSym) |
| Preprocess func(*Link, *LSym, ProgAlloc) |
| Assemble func(*Link, *LSym, ProgAlloc) |
| Progedit func(*Link, *Prog, ProgAlloc) |
| UnaryDst map[As]bool // Instruction takes one operand, a destination. |
| DWARFRegisters map[int16]int16 |
| } |