|  | // Copyright 2011 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | package x509 | 
|  |  | 
|  | import ( | 
|  | "bytes" | 
|  | "errors" | 
|  | "fmt" | 
|  | "net" | 
|  | "net/url" | 
|  | "os" | 
|  | "reflect" | 
|  | "runtime" | 
|  | "strings" | 
|  | "time" | 
|  | "unicode/utf8" | 
|  | ) | 
|  |  | 
|  | // ignoreCN disables interpreting Common Name as a hostname. See issue 24151. | 
|  | var ignoreCN = strings.Contains(os.Getenv("GODEBUG"), "x509ignoreCN=1") | 
|  |  | 
|  | type InvalidReason int | 
|  |  | 
|  | const ( | 
|  | // NotAuthorizedToSign results when a certificate is signed by another | 
|  | // which isn't marked as a CA certificate. | 
|  | NotAuthorizedToSign InvalidReason = iota | 
|  | // Expired results when a certificate has expired, based on the time | 
|  | // given in the VerifyOptions. | 
|  | Expired | 
|  | // CANotAuthorizedForThisName results when an intermediate or root | 
|  | // certificate has a name constraint which doesn't permit a DNS or | 
|  | // other name (including IP address) in the leaf certificate. | 
|  | CANotAuthorizedForThisName | 
|  | // TooManyIntermediates results when a path length constraint is | 
|  | // violated. | 
|  | TooManyIntermediates | 
|  | // IncompatibleUsage results when the certificate's key usage indicates | 
|  | // that it may only be used for a different purpose. | 
|  | IncompatibleUsage | 
|  | // NameMismatch results when the subject name of a parent certificate | 
|  | // does not match the issuer name in the child. | 
|  | NameMismatch | 
|  | // NameConstraintsWithoutSANs results when a leaf certificate doesn't | 
|  | // contain a Subject Alternative Name extension, but a CA certificate | 
|  | // contains name constraints, and the Common Name can be interpreted as | 
|  | // a hostname. | 
|  | // | 
|  | // You can avoid this error by setting the experimental GODEBUG environment | 
|  | // variable to "x509ignoreCN=1", disabling Common Name matching entirely. | 
|  | // This behavior might become the default in the future. | 
|  | NameConstraintsWithoutSANs | 
|  | // UnconstrainedName results when a CA certificate contains permitted | 
|  | // name constraints, but leaf certificate contains a name of an | 
|  | // unsupported or unconstrained type. | 
|  | UnconstrainedName | 
|  | // TooManyConstraints results when the number of comparison operations | 
|  | // needed to check a certificate exceeds the limit set by | 
|  | // VerifyOptions.MaxConstraintComparisions. This limit exists to | 
|  | // prevent pathological certificates can consuming excessive amounts of | 
|  | // CPU time to verify. | 
|  | TooManyConstraints | 
|  | // CANotAuthorizedForExtKeyUsage results when an intermediate or root | 
|  | // certificate does not permit a requested extended key usage. | 
|  | CANotAuthorizedForExtKeyUsage | 
|  | ) | 
|  |  | 
|  | // CertificateInvalidError results when an odd error occurs. Users of this | 
|  | // library probably want to handle all these errors uniformly. | 
|  | type CertificateInvalidError struct { | 
|  | Cert   *Certificate | 
|  | Reason InvalidReason | 
|  | Detail string | 
|  | } | 
|  |  | 
|  | func (e CertificateInvalidError) Error() string { | 
|  | switch e.Reason { | 
|  | case NotAuthorizedToSign: | 
|  | return "x509: certificate is not authorized to sign other certificates" | 
|  | case Expired: | 
|  | return "x509: certificate has expired or is not yet valid" | 
|  | case CANotAuthorizedForThisName: | 
|  | return "x509: a root or intermediate certificate is not authorized to sign for this name: " + e.Detail | 
|  | case CANotAuthorizedForExtKeyUsage: | 
|  | return "x509: a root or intermediate certificate is not authorized for an extended key usage: " + e.Detail | 
|  | case TooManyIntermediates: | 
|  | return "x509: too many intermediates for path length constraint" | 
|  | case IncompatibleUsage: | 
|  | return "x509: certificate specifies an incompatible key usage" | 
|  | case NameMismatch: | 
|  | return "x509: issuer name does not match subject from issuing certificate" | 
|  | case NameConstraintsWithoutSANs: | 
|  | return "x509: issuer has name constraints but leaf doesn't have a SAN extension" | 
|  | case UnconstrainedName: | 
|  | return "x509: issuer has name constraints but leaf contains unknown or unconstrained name: " + e.Detail | 
|  | } | 
|  | return "x509: unknown error" | 
|  | } | 
|  |  | 
|  | // HostnameError results when the set of authorized names doesn't match the | 
|  | // requested name. | 
|  | type HostnameError struct { | 
|  | Certificate *Certificate | 
|  | Host        string | 
|  | } | 
|  |  | 
|  | func (h HostnameError) Error() string { | 
|  | c := h.Certificate | 
|  |  | 
|  | if !c.hasSANExtension() && !validHostname(c.Subject.CommonName) && | 
|  | matchHostnames(toLowerCaseASCII(c.Subject.CommonName), toLowerCaseASCII(h.Host)) { | 
|  | // This would have validated, if it weren't for the validHostname check on Common Name. | 
|  | return "x509: Common Name is not a valid hostname: " + c.Subject.CommonName | 
|  | } | 
|  |  | 
|  | var valid string | 
|  | if ip := net.ParseIP(h.Host); ip != nil { | 
|  | // Trying to validate an IP | 
|  | if len(c.IPAddresses) == 0 { | 
|  | return "x509: cannot validate certificate for " + h.Host + " because it doesn't contain any IP SANs" | 
|  | } | 
|  | for _, san := range c.IPAddresses { | 
|  | if len(valid) > 0 { | 
|  | valid += ", " | 
|  | } | 
|  | valid += san.String() | 
|  | } | 
|  | } else { | 
|  | if c.commonNameAsHostname() { | 
|  | valid = c.Subject.CommonName | 
|  | } else { | 
|  | valid = strings.Join(c.DNSNames, ", ") | 
|  | } | 
|  | } | 
|  |  | 
|  | if len(valid) == 0 { | 
|  | return "x509: certificate is not valid for any names, but wanted to match " + h.Host | 
|  | } | 
|  | return "x509: certificate is valid for " + valid + ", not " + h.Host | 
|  | } | 
|  |  | 
|  | // UnknownAuthorityError results when the certificate issuer is unknown | 
|  | type UnknownAuthorityError struct { | 
|  | Cert *Certificate | 
|  | // hintErr contains an error that may be helpful in determining why an | 
|  | // authority wasn't found. | 
|  | hintErr error | 
|  | // hintCert contains a possible authority certificate that was rejected | 
|  | // because of the error in hintErr. | 
|  | hintCert *Certificate | 
|  | } | 
|  |  | 
|  | func (e UnknownAuthorityError) Error() string { | 
|  | s := "x509: certificate signed by unknown authority" | 
|  | if e.hintErr != nil { | 
|  | certName := e.hintCert.Subject.CommonName | 
|  | if len(certName) == 0 { | 
|  | if len(e.hintCert.Subject.Organization) > 0 { | 
|  | certName = e.hintCert.Subject.Organization[0] | 
|  | } else { | 
|  | certName = "serial:" + e.hintCert.SerialNumber.String() | 
|  | } | 
|  | } | 
|  | s += fmt.Sprintf(" (possibly because of %q while trying to verify candidate authority certificate %q)", e.hintErr, certName) | 
|  | } | 
|  | return s | 
|  | } | 
|  |  | 
|  | // SystemRootsError results when we fail to load the system root certificates. | 
|  | type SystemRootsError struct { | 
|  | Err error | 
|  | } | 
|  |  | 
|  | func (se SystemRootsError) Error() string { | 
|  | msg := "x509: failed to load system roots and no roots provided" | 
|  | if se.Err != nil { | 
|  | return msg + "; " + se.Err.Error() | 
|  | } | 
|  | return msg | 
|  | } | 
|  |  | 
|  | // errNotParsed is returned when a certificate without ASN.1 contents is | 
|  | // verified. Platform-specific verification needs the ASN.1 contents. | 
|  | var errNotParsed = errors.New("x509: missing ASN.1 contents; use ParseCertificate") | 
|  |  | 
|  | // VerifyOptions contains parameters for Certificate.Verify. It's a structure | 
|  | // because other PKIX verification APIs have ended up needing many options. | 
|  | type VerifyOptions struct { | 
|  | DNSName       string | 
|  | Intermediates *CertPool | 
|  | Roots         *CertPool // if nil, the system roots are used | 
|  | CurrentTime   time.Time // if zero, the current time is used | 
|  | // KeyUsage specifies which Extended Key Usage values are acceptable. A leaf | 
|  | // certificate is accepted if it contains any of the listed values. An empty | 
|  | // list means ExtKeyUsageServerAuth. To accept any key usage, include | 
|  | // ExtKeyUsageAny. | 
|  | // | 
|  | // Certificate chains are required to nest these extended key usage values. | 
|  | // (This matches the Windows CryptoAPI behavior, but not the spec.) | 
|  | KeyUsages []ExtKeyUsage | 
|  | // MaxConstraintComparisions is the maximum number of comparisons to | 
|  | // perform when checking a given certificate's name constraints. If | 
|  | // zero, a sensible default is used. This limit prevents pathological | 
|  | // certificates from consuming excessive amounts of CPU time when | 
|  | // validating. | 
|  | MaxConstraintComparisions int | 
|  | } | 
|  |  | 
|  | const ( | 
|  | leafCertificate = iota | 
|  | intermediateCertificate | 
|  | rootCertificate | 
|  | ) | 
|  |  | 
|  | // rfc2821Mailbox represents a “mailbox” (which is an email address to most | 
|  | // people) by breaking it into the “local” (i.e. before the '@') and “domain” | 
|  | // parts. | 
|  | type rfc2821Mailbox struct { | 
|  | local, domain string | 
|  | } | 
|  |  | 
|  | // parseRFC2821Mailbox parses an email address into local and domain parts, | 
|  | // based on the ABNF for a “Mailbox” from RFC 2821. According to RFC 5280, | 
|  | // Section 4.2.1.6 that's correct for an rfc822Name from a certificate: “The | 
|  | // format of an rfc822Name is a "Mailbox" as defined in RFC 2821, Section 4.1.2”. | 
|  | func parseRFC2821Mailbox(in string) (mailbox rfc2821Mailbox, ok bool) { | 
|  | if len(in) == 0 { | 
|  | return mailbox, false | 
|  | } | 
|  |  | 
|  | localPartBytes := make([]byte, 0, len(in)/2) | 
|  |  | 
|  | if in[0] == '"' { | 
|  | // Quoted-string = DQUOTE *qcontent DQUOTE | 
|  | // non-whitespace-control = %d1-8 / %d11 / %d12 / %d14-31 / %d127 | 
|  | // qcontent = qtext / quoted-pair | 
|  | // qtext = non-whitespace-control / | 
|  | //         %d33 / %d35-91 / %d93-126 | 
|  | // quoted-pair = ("\" text) / obs-qp | 
|  | // text = %d1-9 / %d11 / %d12 / %d14-127 / obs-text | 
|  | // | 
|  | // (Names beginning with “obs-” are the obsolete syntax from RFC 2822, | 
|  | // Section 4. Since it has been 16 years, we no longer accept that.) | 
|  | in = in[1:] | 
|  | QuotedString: | 
|  | for { | 
|  | if len(in) == 0 { | 
|  | return mailbox, false | 
|  | } | 
|  | c := in[0] | 
|  | in = in[1:] | 
|  |  | 
|  | switch { | 
|  | case c == '"': | 
|  | break QuotedString | 
|  |  | 
|  | case c == '\\': | 
|  | // quoted-pair | 
|  | if len(in) == 0 { | 
|  | return mailbox, false | 
|  | } | 
|  | if in[0] == 11 || | 
|  | in[0] == 12 || | 
|  | (1 <= in[0] && in[0] <= 9) || | 
|  | (14 <= in[0] && in[0] <= 127) { | 
|  | localPartBytes = append(localPartBytes, in[0]) | 
|  | in = in[1:] | 
|  | } else { | 
|  | return mailbox, false | 
|  | } | 
|  |  | 
|  | case c == 11 || | 
|  | c == 12 || | 
|  | // Space (char 32) is not allowed based on the | 
|  | // BNF, but RFC 3696 gives an example that | 
|  | // assumes that it is. Several “verified” | 
|  | // errata continue to argue about this point. | 
|  | // We choose to accept it. | 
|  | c == 32 || | 
|  | c == 33 || | 
|  | c == 127 || | 
|  | (1 <= c && c <= 8) || | 
|  | (14 <= c && c <= 31) || | 
|  | (35 <= c && c <= 91) || | 
|  | (93 <= c && c <= 126): | 
|  | // qtext | 
|  | localPartBytes = append(localPartBytes, c) | 
|  |  | 
|  | default: | 
|  | return mailbox, false | 
|  | } | 
|  | } | 
|  | } else { | 
|  | // Atom ("." Atom)* | 
|  | NextChar: | 
|  | for len(in) > 0 { | 
|  | // atext from RFC 2822, Section 3.2.4 | 
|  | c := in[0] | 
|  |  | 
|  | switch { | 
|  | case c == '\\': | 
|  | // Examples given in RFC 3696 suggest that | 
|  | // escaped characters can appear outside of a | 
|  | // quoted string. Several “verified” errata | 
|  | // continue to argue the point. We choose to | 
|  | // accept it. | 
|  | in = in[1:] | 
|  | if len(in) == 0 { | 
|  | return mailbox, false | 
|  | } | 
|  | fallthrough | 
|  |  | 
|  | case ('0' <= c && c <= '9') || | 
|  | ('a' <= c && c <= 'z') || | 
|  | ('A' <= c && c <= 'Z') || | 
|  | c == '!' || c == '#' || c == '$' || c == '%' || | 
|  | c == '&' || c == '\'' || c == '*' || c == '+' || | 
|  | c == '-' || c == '/' || c == '=' || c == '?' || | 
|  | c == '^' || c == '_' || c == '`' || c == '{' || | 
|  | c == '|' || c == '}' || c == '~' || c == '.': | 
|  | localPartBytes = append(localPartBytes, in[0]) | 
|  | in = in[1:] | 
|  |  | 
|  | default: | 
|  | break NextChar | 
|  | } | 
|  | } | 
|  |  | 
|  | if len(localPartBytes) == 0 { | 
|  | return mailbox, false | 
|  | } | 
|  |  | 
|  | // From RFC 3696, Section 3: | 
|  | // “period (".") may also appear, but may not be used to start | 
|  | // or end the local part, nor may two or more consecutive | 
|  | // periods appear.” | 
|  | twoDots := []byte{'.', '.'} | 
|  | if localPartBytes[0] == '.' || | 
|  | localPartBytes[len(localPartBytes)-1] == '.' || | 
|  | bytes.Contains(localPartBytes, twoDots) { | 
|  | return mailbox, false | 
|  | } | 
|  | } | 
|  |  | 
|  | if len(in) == 0 || in[0] != '@' { | 
|  | return mailbox, false | 
|  | } | 
|  | in = in[1:] | 
|  |  | 
|  | // The RFC species a format for domains, but that's known to be | 
|  | // violated in practice so we accept that anything after an '@' is the | 
|  | // domain part. | 
|  | if _, ok := domainToReverseLabels(in); !ok { | 
|  | return mailbox, false | 
|  | } | 
|  |  | 
|  | mailbox.local = string(localPartBytes) | 
|  | mailbox.domain = in | 
|  | return mailbox, true | 
|  | } | 
|  |  | 
|  | // domainToReverseLabels converts a textual domain name like foo.example.com to | 
|  | // the list of labels in reverse order, e.g. ["com", "example", "foo"]. | 
|  | func domainToReverseLabels(domain string) (reverseLabels []string, ok bool) { | 
|  | for len(domain) > 0 { | 
|  | if i := strings.LastIndexByte(domain, '.'); i == -1 { | 
|  | reverseLabels = append(reverseLabels, domain) | 
|  | domain = "" | 
|  | } else { | 
|  | reverseLabels = append(reverseLabels, domain[i+1:len(domain)]) | 
|  | domain = domain[:i] | 
|  | } | 
|  | } | 
|  |  | 
|  | if len(reverseLabels) > 0 && len(reverseLabels[0]) == 0 { | 
|  | // An empty label at the end indicates an absolute value. | 
|  | return nil, false | 
|  | } | 
|  |  | 
|  | for _, label := range reverseLabels { | 
|  | if len(label) == 0 { | 
|  | // Empty labels are otherwise invalid. | 
|  | return nil, false | 
|  | } | 
|  |  | 
|  | for _, c := range label { | 
|  | if c < 33 || c > 126 { | 
|  | // Invalid character. | 
|  | return nil, false | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return reverseLabels, true | 
|  | } | 
|  |  | 
|  | func matchEmailConstraint(mailbox rfc2821Mailbox, constraint string) (bool, error) { | 
|  | // If the constraint contains an @, then it specifies an exact mailbox | 
|  | // name. | 
|  | if strings.Contains(constraint, "@") { | 
|  | constraintMailbox, ok := parseRFC2821Mailbox(constraint) | 
|  | if !ok { | 
|  | return false, fmt.Errorf("x509: internal error: cannot parse constraint %q", constraint) | 
|  | } | 
|  | return mailbox.local == constraintMailbox.local && strings.EqualFold(mailbox.domain, constraintMailbox.domain), nil | 
|  | } | 
|  |  | 
|  | // Otherwise the constraint is like a DNS constraint of the domain part | 
|  | // of the mailbox. | 
|  | return matchDomainConstraint(mailbox.domain, constraint) | 
|  | } | 
|  |  | 
|  | func matchURIConstraint(uri *url.URL, constraint string) (bool, error) { | 
|  | // From RFC 5280, Section 4.2.1.10: | 
|  | // “a uniformResourceIdentifier that does not include an authority | 
|  | // component with a host name specified as a fully qualified domain | 
|  | // name (e.g., if the URI either does not include an authority | 
|  | // component or includes an authority component in which the host name | 
|  | // is specified as an IP address), then the application MUST reject the | 
|  | // certificate.” | 
|  |  | 
|  | host := uri.Host | 
|  | if len(host) == 0 { | 
|  | return false, fmt.Errorf("URI with empty host (%q) cannot be matched against constraints", uri.String()) | 
|  | } | 
|  |  | 
|  | if strings.Contains(host, ":") && !strings.HasSuffix(host, "]") { | 
|  | var err error | 
|  | host, _, err = net.SplitHostPort(uri.Host) | 
|  | if err != nil { | 
|  | return false, err | 
|  | } | 
|  | } | 
|  |  | 
|  | if strings.HasPrefix(host, "[") && strings.HasSuffix(host, "]") || | 
|  | net.ParseIP(host) != nil { | 
|  | return false, fmt.Errorf("URI with IP (%q) cannot be matched against constraints", uri.String()) | 
|  | } | 
|  |  | 
|  | return matchDomainConstraint(host, constraint) | 
|  | } | 
|  |  | 
|  | func matchIPConstraint(ip net.IP, constraint *net.IPNet) (bool, error) { | 
|  | if len(ip) != len(constraint.IP) { | 
|  | return false, nil | 
|  | } | 
|  |  | 
|  | for i := range ip { | 
|  | if mask := constraint.Mask[i]; ip[i]&mask != constraint.IP[i]&mask { | 
|  | return false, nil | 
|  | } | 
|  | } | 
|  |  | 
|  | return true, nil | 
|  | } | 
|  |  | 
|  | func matchDomainConstraint(domain, constraint string) (bool, error) { | 
|  | // The meaning of zero length constraints is not specified, but this | 
|  | // code follows NSS and accepts them as matching everything. | 
|  | if len(constraint) == 0 { | 
|  | return true, nil | 
|  | } | 
|  |  | 
|  | domainLabels, ok := domainToReverseLabels(domain) | 
|  | if !ok { | 
|  | return false, fmt.Errorf("x509: internal error: cannot parse domain %q", domain) | 
|  | } | 
|  |  | 
|  | // RFC 5280 says that a leading period in a domain name means that at | 
|  | // least one label must be prepended, but only for URI and email | 
|  | // constraints, not DNS constraints. The code also supports that | 
|  | // behaviour for DNS constraints. | 
|  |  | 
|  | mustHaveSubdomains := false | 
|  | if constraint[0] == '.' { | 
|  | mustHaveSubdomains = true | 
|  | constraint = constraint[1:] | 
|  | } | 
|  |  | 
|  | constraintLabels, ok := domainToReverseLabels(constraint) | 
|  | if !ok { | 
|  | return false, fmt.Errorf("x509: internal error: cannot parse domain %q", constraint) | 
|  | } | 
|  |  | 
|  | if len(domainLabels) < len(constraintLabels) || | 
|  | (mustHaveSubdomains && len(domainLabels) == len(constraintLabels)) { | 
|  | return false, nil | 
|  | } | 
|  |  | 
|  | for i, constraintLabel := range constraintLabels { | 
|  | if !strings.EqualFold(constraintLabel, domainLabels[i]) { | 
|  | return false, nil | 
|  | } | 
|  | } | 
|  |  | 
|  | return true, nil | 
|  | } | 
|  |  | 
|  | // checkNameConstraints checks that c permits a child certificate to claim the | 
|  | // given name, of type nameType. The argument parsedName contains the parsed | 
|  | // form of name, suitable for passing to the match function. The total number | 
|  | // of comparisons is tracked in the given count and should not exceed the given | 
|  | // limit. | 
|  | func (c *Certificate) checkNameConstraints(count *int, | 
|  | maxConstraintComparisons int, | 
|  | nameType string, | 
|  | name string, | 
|  | parsedName interface{}, | 
|  | match func(parsedName, constraint interface{}) (match bool, err error), | 
|  | permitted, excluded interface{}) error { | 
|  |  | 
|  | excludedValue := reflect.ValueOf(excluded) | 
|  |  | 
|  | *count += excludedValue.Len() | 
|  | if *count > maxConstraintComparisons { | 
|  | return CertificateInvalidError{c, TooManyConstraints, ""} | 
|  | } | 
|  |  | 
|  | for i := 0; i < excludedValue.Len(); i++ { | 
|  | constraint := excludedValue.Index(i).Interface() | 
|  | match, err := match(parsedName, constraint) | 
|  | if err != nil { | 
|  | return CertificateInvalidError{c, CANotAuthorizedForThisName, err.Error()} | 
|  | } | 
|  |  | 
|  | if match { | 
|  | return CertificateInvalidError{c, CANotAuthorizedForThisName, fmt.Sprintf("%s %q is excluded by constraint %q", nameType, name, constraint)} | 
|  | } | 
|  | } | 
|  |  | 
|  | permittedValue := reflect.ValueOf(permitted) | 
|  |  | 
|  | *count += permittedValue.Len() | 
|  | if *count > maxConstraintComparisons { | 
|  | return CertificateInvalidError{c, TooManyConstraints, ""} | 
|  | } | 
|  |  | 
|  | ok := true | 
|  | for i := 0; i < permittedValue.Len(); i++ { | 
|  | constraint := permittedValue.Index(i).Interface() | 
|  |  | 
|  | var err error | 
|  | if ok, err = match(parsedName, constraint); err != nil { | 
|  | return CertificateInvalidError{c, CANotAuthorizedForThisName, err.Error()} | 
|  | } | 
|  |  | 
|  | if ok { | 
|  | break | 
|  | } | 
|  | } | 
|  |  | 
|  | if !ok { | 
|  | return CertificateInvalidError{c, CANotAuthorizedForThisName, fmt.Sprintf("%s %q is not permitted by any constraint", nameType, name)} | 
|  | } | 
|  |  | 
|  | return nil | 
|  | } | 
|  |  | 
|  | // isValid performs validity checks on c given that it is a candidate to append | 
|  | // to the chain in currentChain. | 
|  | func (c *Certificate) isValid(certType int, currentChain []*Certificate, opts *VerifyOptions) error { | 
|  | if len(c.UnhandledCriticalExtensions) > 0 { | 
|  | return UnhandledCriticalExtension{} | 
|  | } | 
|  |  | 
|  | if len(currentChain) > 0 { | 
|  | child := currentChain[len(currentChain)-1] | 
|  | if !bytes.Equal(child.RawIssuer, c.RawSubject) { | 
|  | return CertificateInvalidError{c, NameMismatch, ""} | 
|  | } | 
|  | } | 
|  |  | 
|  | now := opts.CurrentTime | 
|  | if now.IsZero() { | 
|  | now = time.Now() | 
|  | } | 
|  | if now.Before(c.NotBefore) || now.After(c.NotAfter) { | 
|  | return CertificateInvalidError{c, Expired, ""} | 
|  | } | 
|  |  | 
|  | maxConstraintComparisons := opts.MaxConstraintComparisions | 
|  | if maxConstraintComparisons == 0 { | 
|  | maxConstraintComparisons = 250000 | 
|  | } | 
|  | comparisonCount := 0 | 
|  |  | 
|  | var leaf *Certificate | 
|  | if certType == intermediateCertificate || certType == rootCertificate { | 
|  | if len(currentChain) == 0 { | 
|  | return errors.New("x509: internal error: empty chain when appending CA cert") | 
|  | } | 
|  | leaf = currentChain[0] | 
|  | } | 
|  |  | 
|  | checkNameConstraints := (certType == intermediateCertificate || certType == rootCertificate) && c.hasNameConstraints() | 
|  | if checkNameConstraints && leaf.commonNameAsHostname() { | 
|  | // This is the deprecated, legacy case of depending on the commonName as | 
|  | // a hostname. We don't enforce name constraints against the CN, but | 
|  | // VerifyHostname will look for hostnames in there if there are no SANs. | 
|  | // In order to ensure VerifyHostname will not accept an unchecked name, | 
|  | // return an error here. | 
|  | return CertificateInvalidError{c, NameConstraintsWithoutSANs, ""} | 
|  | } else if checkNameConstraints && leaf.hasSANExtension() { | 
|  | err := forEachSAN(leaf.getSANExtension(), func(tag int, data []byte) error { | 
|  | switch tag { | 
|  | case nameTypeEmail: | 
|  | name := string(data) | 
|  | mailbox, ok := parseRFC2821Mailbox(name) | 
|  | if !ok { | 
|  | return fmt.Errorf("x509: cannot parse rfc822Name %q", mailbox) | 
|  | } | 
|  |  | 
|  | if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "email address", name, mailbox, | 
|  | func(parsedName, constraint interface{}) (bool, error) { | 
|  | return matchEmailConstraint(parsedName.(rfc2821Mailbox), constraint.(string)) | 
|  | }, c.PermittedEmailAddresses, c.ExcludedEmailAddresses); err != nil { | 
|  | return err | 
|  | } | 
|  |  | 
|  | case nameTypeDNS: | 
|  | name := string(data) | 
|  | if _, ok := domainToReverseLabels(name); !ok { | 
|  | return fmt.Errorf("x509: cannot parse dnsName %q", name) | 
|  | } | 
|  |  | 
|  | if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "DNS name", name, name, | 
|  | func(parsedName, constraint interface{}) (bool, error) { | 
|  | return matchDomainConstraint(parsedName.(string), constraint.(string)) | 
|  | }, c.PermittedDNSDomains, c.ExcludedDNSDomains); err != nil { | 
|  | return err | 
|  | } | 
|  |  | 
|  | case nameTypeURI: | 
|  | name := string(data) | 
|  | uri, err := url.Parse(name) | 
|  | if err != nil { | 
|  | return fmt.Errorf("x509: internal error: URI SAN %q failed to parse", name) | 
|  | } | 
|  |  | 
|  | if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "URI", name, uri, | 
|  | func(parsedName, constraint interface{}) (bool, error) { | 
|  | return matchURIConstraint(parsedName.(*url.URL), constraint.(string)) | 
|  | }, c.PermittedURIDomains, c.ExcludedURIDomains); err != nil { | 
|  | return err | 
|  | } | 
|  |  | 
|  | case nameTypeIP: | 
|  | ip := net.IP(data) | 
|  | if l := len(ip); l != net.IPv4len && l != net.IPv6len { | 
|  | return fmt.Errorf("x509: internal error: IP SAN %x failed to parse", data) | 
|  | } | 
|  |  | 
|  | if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "IP address", ip.String(), ip, | 
|  | func(parsedName, constraint interface{}) (bool, error) { | 
|  | return matchIPConstraint(parsedName.(net.IP), constraint.(*net.IPNet)) | 
|  | }, c.PermittedIPRanges, c.ExcludedIPRanges); err != nil { | 
|  | return err | 
|  | } | 
|  |  | 
|  | default: | 
|  | // Unknown SAN types are ignored. | 
|  | } | 
|  |  | 
|  | return nil | 
|  | }) | 
|  |  | 
|  | if err != nil { | 
|  | return err | 
|  | } | 
|  | } | 
|  |  | 
|  | // KeyUsage status flags are ignored. From Engineering Security, Peter | 
|  | // Gutmann: A European government CA marked its signing certificates as | 
|  | // being valid for encryption only, but no-one noticed. Another | 
|  | // European CA marked its signature keys as not being valid for | 
|  | // signatures. A different CA marked its own trusted root certificate | 
|  | // as being invalid for certificate signing. Another national CA | 
|  | // distributed a certificate to be used to encrypt data for the | 
|  | // country’s tax authority that was marked as only being usable for | 
|  | // digital signatures but not for encryption. Yet another CA reversed | 
|  | // the order of the bit flags in the keyUsage due to confusion over | 
|  | // encoding endianness, essentially setting a random keyUsage in | 
|  | // certificates that it issued. Another CA created a self-invalidating | 
|  | // certificate by adding a certificate policy statement stipulating | 
|  | // that the certificate had to be used strictly as specified in the | 
|  | // keyUsage, and a keyUsage containing a flag indicating that the RSA | 
|  | // encryption key could only be used for Diffie-Hellman key agreement. | 
|  |  | 
|  | if certType == intermediateCertificate && (!c.BasicConstraintsValid || !c.IsCA) { | 
|  | return CertificateInvalidError{c, NotAuthorizedToSign, ""} | 
|  | } | 
|  |  | 
|  | if c.BasicConstraintsValid && c.MaxPathLen >= 0 { | 
|  | numIntermediates := len(currentChain) - 1 | 
|  | if numIntermediates > c.MaxPathLen { | 
|  | return CertificateInvalidError{c, TooManyIntermediates, ""} | 
|  | } | 
|  | } | 
|  |  | 
|  | return nil | 
|  | } | 
|  |  | 
|  | // Verify attempts to verify c by building one or more chains from c to a | 
|  | // certificate in opts.Roots, using certificates in opts.Intermediates if | 
|  | // needed. If successful, it returns one or more chains where the first | 
|  | // element of the chain is c and the last element is from opts.Roots. | 
|  | // | 
|  | // If opts.Roots is nil and system roots are unavailable the returned error | 
|  | // will be of type SystemRootsError. | 
|  | // | 
|  | // Name constraints in the intermediates will be applied to all names claimed | 
|  | // in the chain, not just opts.DNSName. Thus it is invalid for a leaf to claim | 
|  | // example.com if an intermediate doesn't permit it, even if example.com is not | 
|  | // the name being validated. Note that DirectoryName constraints are not | 
|  | // supported. | 
|  | // | 
|  | // Extended Key Usage values are enforced down a chain, so an intermediate or | 
|  | // root that enumerates EKUs prevents a leaf from asserting an EKU not in that | 
|  | // list. | 
|  | // | 
|  | // WARNING: this function doesn't do any revocation checking. | 
|  | func (c *Certificate) Verify(opts VerifyOptions) (chains [][]*Certificate, err error) { | 
|  | // Platform-specific verification needs the ASN.1 contents so | 
|  | // this makes the behavior consistent across platforms. | 
|  | if len(c.Raw) == 0 { | 
|  | return nil, errNotParsed | 
|  | } | 
|  | if opts.Intermediates != nil { | 
|  | for _, intermediate := range opts.Intermediates.certs { | 
|  | if len(intermediate.Raw) == 0 { | 
|  | return nil, errNotParsed | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Use Windows's own verification and chain building. | 
|  | if opts.Roots == nil && runtime.GOOS == "windows" { | 
|  | return c.systemVerify(&opts) | 
|  | } | 
|  |  | 
|  | if opts.Roots == nil { | 
|  | opts.Roots = systemRootsPool() | 
|  | if opts.Roots == nil { | 
|  | return nil, SystemRootsError{systemRootsErr} | 
|  | } | 
|  | } | 
|  |  | 
|  | err = c.isValid(leafCertificate, nil, &opts) | 
|  | if err != nil { | 
|  | return | 
|  | } | 
|  |  | 
|  | if len(opts.DNSName) > 0 { | 
|  | err = c.VerifyHostname(opts.DNSName) | 
|  | if err != nil { | 
|  | return | 
|  | } | 
|  | } | 
|  |  | 
|  | var candidateChains [][]*Certificate | 
|  | if opts.Roots.contains(c) { | 
|  | candidateChains = append(candidateChains, []*Certificate{c}) | 
|  | } else { | 
|  | if candidateChains, err = c.buildChains(make(map[int][][]*Certificate), []*Certificate{c}, &opts); err != nil { | 
|  | return nil, err | 
|  | } | 
|  | } | 
|  |  | 
|  | keyUsages := opts.KeyUsages | 
|  | if len(keyUsages) == 0 { | 
|  | keyUsages = []ExtKeyUsage{ExtKeyUsageServerAuth} | 
|  | } | 
|  |  | 
|  | // If any key usage is acceptable then we're done. | 
|  | for _, usage := range keyUsages { | 
|  | if usage == ExtKeyUsageAny { | 
|  | return candidateChains, nil | 
|  | } | 
|  | } | 
|  |  | 
|  | for _, candidate := range candidateChains { | 
|  | if checkChainForKeyUsage(candidate, keyUsages) { | 
|  | chains = append(chains, candidate) | 
|  | } | 
|  | } | 
|  |  | 
|  | if len(chains) == 0 { | 
|  | return nil, CertificateInvalidError{c, IncompatibleUsage, ""} | 
|  | } | 
|  |  | 
|  | return chains, nil | 
|  | } | 
|  |  | 
|  | func appendToFreshChain(chain []*Certificate, cert *Certificate) []*Certificate { | 
|  | n := make([]*Certificate, len(chain)+1) | 
|  | copy(n, chain) | 
|  | n[len(chain)] = cert | 
|  | return n | 
|  | } | 
|  |  | 
|  | func (c *Certificate) buildChains(cache map[int][][]*Certificate, currentChain []*Certificate, opts *VerifyOptions) (chains [][]*Certificate, err error) { | 
|  | possibleRoots, failedRoot, rootErr := opts.Roots.findVerifiedParents(c) | 
|  | nextRoot: | 
|  | for _, rootNum := range possibleRoots { | 
|  | root := opts.Roots.certs[rootNum] | 
|  |  | 
|  | for _, cert := range currentChain { | 
|  | if cert.Equal(root) { | 
|  | continue nextRoot | 
|  | } | 
|  | } | 
|  |  | 
|  | err = root.isValid(rootCertificate, currentChain, opts) | 
|  | if err != nil { | 
|  | continue | 
|  | } | 
|  | chains = append(chains, appendToFreshChain(currentChain, root)) | 
|  | } | 
|  |  | 
|  | possibleIntermediates, failedIntermediate, intermediateErr := opts.Intermediates.findVerifiedParents(c) | 
|  | nextIntermediate: | 
|  | for _, intermediateNum := range possibleIntermediates { | 
|  | intermediate := opts.Intermediates.certs[intermediateNum] | 
|  | for _, cert := range currentChain { | 
|  | if cert.Equal(intermediate) { | 
|  | continue nextIntermediate | 
|  | } | 
|  | } | 
|  | err = intermediate.isValid(intermediateCertificate, currentChain, opts) | 
|  | if err != nil { | 
|  | continue | 
|  | } | 
|  | var childChains [][]*Certificate | 
|  | childChains, ok := cache[intermediateNum] | 
|  | if !ok { | 
|  | childChains, err = intermediate.buildChains(cache, appendToFreshChain(currentChain, intermediate), opts) | 
|  | cache[intermediateNum] = childChains | 
|  | } | 
|  | chains = append(chains, childChains...) | 
|  | } | 
|  |  | 
|  | if len(chains) > 0 { | 
|  | err = nil | 
|  | } | 
|  |  | 
|  | if len(chains) == 0 && err == nil { | 
|  | hintErr := rootErr | 
|  | hintCert := failedRoot | 
|  | if hintErr == nil { | 
|  | hintErr = intermediateErr | 
|  | hintCert = failedIntermediate | 
|  | } | 
|  | err = UnknownAuthorityError{c, hintErr, hintCert} | 
|  | } | 
|  |  | 
|  | return | 
|  | } | 
|  |  | 
|  | // validHostname returns whether host is a valid hostname that can be matched or | 
|  | // matched against according to RFC 6125 2.2, with some leniency to accommodate | 
|  | // legacy values. | 
|  | func validHostname(host string) bool { | 
|  | host = strings.TrimSuffix(host, ".") | 
|  |  | 
|  | if len(host) == 0 { | 
|  | return false | 
|  | } | 
|  |  | 
|  | for i, part := range strings.Split(host, ".") { | 
|  | if part == "" { | 
|  | // Empty label. | 
|  | return false | 
|  | } | 
|  | if i == 0 && part == "*" { | 
|  | // Only allow full left-most wildcards, as those are the only ones | 
|  | // we match, and matching literal '*' characters is probably never | 
|  | // the expected behavior. | 
|  | continue | 
|  | } | 
|  | for j, c := range part { | 
|  | if 'a' <= c && c <= 'z' { | 
|  | continue | 
|  | } | 
|  | if '0' <= c && c <= '9' { | 
|  | continue | 
|  | } | 
|  | if 'A' <= c && c <= 'Z' { | 
|  | continue | 
|  | } | 
|  | if c == '-' && j != 0 { | 
|  | continue | 
|  | } | 
|  | if c == '_' || c == ':' { | 
|  | // Not valid characters in hostnames, but commonly | 
|  | // found in deployments outside the WebPKI. | 
|  | continue | 
|  | } | 
|  | return false | 
|  | } | 
|  | } | 
|  |  | 
|  | return true | 
|  | } | 
|  |  | 
|  | // commonNameAsHostname reports whether the Common Name field should be | 
|  | // considered the hostname that the certificate is valid for. This is a legacy | 
|  | // behavior, disabled if the Subject Alt Name extension is present. | 
|  | // | 
|  | // It applies the strict validHostname check to the Common Name field, so that | 
|  | // certificates without SANs can still be validated against CAs with name | 
|  | // constraints if there is no risk the CN would be matched as a hostname. | 
|  | // See NameConstraintsWithoutSANs and issue 24151. | 
|  | func (c *Certificate) commonNameAsHostname() bool { | 
|  | return !ignoreCN && !c.hasSANExtension() && validHostname(c.Subject.CommonName) | 
|  | } | 
|  |  | 
|  | func matchHostnames(pattern, host string) bool { | 
|  | host = strings.TrimSuffix(host, ".") | 
|  | pattern = strings.TrimSuffix(pattern, ".") | 
|  |  | 
|  | if len(pattern) == 0 || len(host) == 0 { | 
|  | return false | 
|  | } | 
|  |  | 
|  | patternParts := strings.Split(pattern, ".") | 
|  | hostParts := strings.Split(host, ".") | 
|  |  | 
|  | if len(patternParts) != len(hostParts) { | 
|  | return false | 
|  | } | 
|  |  | 
|  | for i, patternPart := range patternParts { | 
|  | if i == 0 && patternPart == "*" { | 
|  | continue | 
|  | } | 
|  | if patternPart != hostParts[i] { | 
|  | return false | 
|  | } | 
|  | } | 
|  |  | 
|  | return true | 
|  | } | 
|  |  | 
|  | // toLowerCaseASCII returns a lower-case version of in. See RFC 6125 6.4.1. We use | 
|  | // an explicitly ASCII function to avoid any sharp corners resulting from | 
|  | // performing Unicode operations on DNS labels. | 
|  | func toLowerCaseASCII(in string) string { | 
|  | // If the string is already lower-case then there's nothing to do. | 
|  | isAlreadyLowerCase := true | 
|  | for _, c := range in { | 
|  | if c == utf8.RuneError { | 
|  | // If we get a UTF-8 error then there might be | 
|  | // upper-case ASCII bytes in the invalid sequence. | 
|  | isAlreadyLowerCase = false | 
|  | break | 
|  | } | 
|  | if 'A' <= c && c <= 'Z' { | 
|  | isAlreadyLowerCase = false | 
|  | break | 
|  | } | 
|  | } | 
|  |  | 
|  | if isAlreadyLowerCase { | 
|  | return in | 
|  | } | 
|  |  | 
|  | out := []byte(in) | 
|  | for i, c := range out { | 
|  | if 'A' <= c && c <= 'Z' { | 
|  | out[i] += 'a' - 'A' | 
|  | } | 
|  | } | 
|  | return string(out) | 
|  | } | 
|  |  | 
|  | // VerifyHostname returns nil if c is a valid certificate for the named host. | 
|  | // Otherwise it returns an error describing the mismatch. | 
|  | func (c *Certificate) VerifyHostname(h string) error { | 
|  | // IP addresses may be written in [ ]. | 
|  | candidateIP := h | 
|  | if len(h) >= 3 && h[0] == '[' && h[len(h)-1] == ']' { | 
|  | candidateIP = h[1 : len(h)-1] | 
|  | } | 
|  | if ip := net.ParseIP(candidateIP); ip != nil { | 
|  | // We only match IP addresses against IP SANs. | 
|  | // See RFC 6125, Appendix B.2. | 
|  | for _, candidate := range c.IPAddresses { | 
|  | if ip.Equal(candidate) { | 
|  | return nil | 
|  | } | 
|  | } | 
|  | return HostnameError{c, candidateIP} | 
|  | } | 
|  |  | 
|  | lowered := toLowerCaseASCII(h) | 
|  |  | 
|  | if c.commonNameAsHostname() { | 
|  | if matchHostnames(toLowerCaseASCII(c.Subject.CommonName), lowered) { | 
|  | return nil | 
|  | } | 
|  | } else { | 
|  | for _, match := range c.DNSNames { | 
|  | if matchHostnames(toLowerCaseASCII(match), lowered) { | 
|  | return nil | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return HostnameError{c, h} | 
|  | } | 
|  |  | 
|  | func checkChainForKeyUsage(chain []*Certificate, keyUsages []ExtKeyUsage) bool { | 
|  | usages := make([]ExtKeyUsage, len(keyUsages)) | 
|  | copy(usages, keyUsages) | 
|  |  | 
|  | if len(chain) == 0 { | 
|  | return false | 
|  | } | 
|  |  | 
|  | usagesRemaining := len(usages) | 
|  |  | 
|  | // We walk down the list and cross out any usages that aren't supported | 
|  | // by each certificate. If we cross out all the usages, then the chain | 
|  | // is unacceptable. | 
|  |  | 
|  | NextCert: | 
|  | for i := len(chain) - 1; i >= 0; i-- { | 
|  | cert := chain[i] | 
|  | if len(cert.ExtKeyUsage) == 0 && len(cert.UnknownExtKeyUsage) == 0 { | 
|  | // The certificate doesn't have any extended key usage specified. | 
|  | continue | 
|  | } | 
|  |  | 
|  | for _, usage := range cert.ExtKeyUsage { | 
|  | if usage == ExtKeyUsageAny { | 
|  | // The certificate is explicitly good for any usage. | 
|  | continue NextCert | 
|  | } | 
|  | } | 
|  |  | 
|  | const invalidUsage ExtKeyUsage = -1 | 
|  |  | 
|  | NextRequestedUsage: | 
|  | for i, requestedUsage := range usages { | 
|  | if requestedUsage == invalidUsage { | 
|  | continue | 
|  | } | 
|  |  | 
|  | for _, usage := range cert.ExtKeyUsage { | 
|  | if requestedUsage == usage { | 
|  | continue NextRequestedUsage | 
|  | } else if requestedUsage == ExtKeyUsageServerAuth && | 
|  | (usage == ExtKeyUsageNetscapeServerGatedCrypto || | 
|  | usage == ExtKeyUsageMicrosoftServerGatedCrypto) { | 
|  | // In order to support COMODO | 
|  | // certificate chains, we have to | 
|  | // accept Netscape or Microsoft SGC | 
|  | // usages as equal to ServerAuth. | 
|  | continue NextRequestedUsage | 
|  | } | 
|  | } | 
|  |  | 
|  | usages[i] = invalidUsage | 
|  | usagesRemaining-- | 
|  | if usagesRemaining == 0 { | 
|  | return false | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return true | 
|  | } |