| package ssa |
| |
| type indVar struct { |
| ind *Value // induction variable |
| inc *Value // increment, a constant |
| nxt *Value // ind+inc variable |
| min *Value // minimum value. inclusive, |
| max *Value // maximum value. exclusive. |
| entry *Block // entry block in the loop. |
| // Invariants: for all blocks dominated by entry: |
| // min <= ind < max |
| // min <= nxt <= max |
| } |
| |
| // findIndVar finds induction variables in a function. |
| // |
| // Look for variables and blocks that satisfy the following |
| // |
| // loop: |
| // ind = (Phi min nxt), |
| // if ind < max |
| // then goto enter_loop |
| // else goto exit_loop |
| // |
| // enter_loop: |
| // do something |
| // nxt = inc + ind |
| // goto loop |
| // |
| // exit_loop: |
| // |
| // |
| // TODO: handle 32 bit operations |
| func findIndVar(f *Func) []indVar { |
| var iv []indVar |
| sdom := f.sdom() |
| |
| nextb: |
| for _, b := range f.Blocks { |
| if b.Kind != BlockIf || len(b.Preds) != 2 { |
| continue |
| } |
| |
| var ind, max *Value // induction, and maximum |
| entry := -1 // which successor of b enters the loop |
| |
| // Check thet the control if it either ind < max or max > ind. |
| // TODO: Handle Leq64, Geq64. |
| switch b.Control.Op { |
| case OpLess64: |
| entry = 0 |
| ind, max = b.Control.Args[0], b.Control.Args[1] |
| case OpGreater64: |
| entry = 0 |
| ind, max = b.Control.Args[1], b.Control.Args[0] |
| default: |
| continue nextb |
| } |
| |
| // Check that the induction variable is a phi that depends on itself. |
| if ind.Op != OpPhi { |
| continue |
| } |
| |
| // Extract min and nxt knowing that nxt is an addition (e.g. Add64). |
| var min, nxt *Value // minimum, and next value |
| if n := ind.Args[0]; n.Op == OpAdd64 && (n.Args[0] == ind || n.Args[1] == ind) { |
| min, nxt = ind.Args[1], n |
| } else if n := ind.Args[1]; n.Op == OpAdd64 && (n.Args[0] == ind || n.Args[1] == ind) { |
| min, nxt = ind.Args[0], n |
| } else { |
| // Not a recognized induction variable. |
| continue |
| } |
| |
| var inc *Value |
| if nxt.Args[0] == ind { // nxt = ind + inc |
| inc = nxt.Args[1] |
| } else if nxt.Args[1] == ind { // nxt = inc + ind |
| inc = nxt.Args[0] |
| } else { |
| panic("unreachable") // one of the cases must be true from the above. |
| } |
| |
| // Expect the increment to be a positive constant. |
| // TODO: handle negative increment. |
| if inc.Op != OpConst64 || inc.AuxInt <= 0 { |
| continue |
| } |
| |
| // Up to now we extracted the induction variable (ind), |
| // the increment delta (inc), the temporary sum (nxt), |
| // the mininum value (min) and the maximum value (max). |
| // |
| // We also know that ind has the form (Phi min nxt) where |
| // nxt is (Add inc nxt) which means: 1) inc dominates nxt |
| // and 2) there is a loop starting at inc and containing nxt. |
| // |
| // We need to prove that the induction variable is incremented |
| // only when it's smaller than the maximum value. |
| // Two conditions must happen listed below to accept ind |
| // as an induction variable. |
| |
| // First condition: loop entry has a single predecessor, which |
| // is the header block. This implies that b.Succs[entry] is |
| // reached iff ind < max. |
| if len(b.Succs[entry].b.Preds) != 1 { |
| // b.Succs[1-entry] must exit the loop. |
| continue |
| } |
| |
| // Second condition: b.Succs[entry] dominates nxt so that |
| // nxt is computed when inc < max, meaning nxt <= max. |
| if !sdom.isAncestorEq(b.Succs[entry].b, nxt.Block) { |
| // inc+ind can only be reached through the branch that enters the loop. |
| continue |
| } |
| |
| // If max is c + SliceLen with c <= 0 then we drop c. |
| // Makes sure c + SliceLen doesn't overflow when SliceLen == 0. |
| // TODO: save c as an offset from max. |
| if w, c := dropAdd64(max); (w.Op == OpStringLen || w.Op == OpSliceLen) && 0 >= c && -c >= 0 { |
| max = w |
| } |
| |
| // We can only guarantee that the loops runs within limits of induction variable |
| // if the increment is 1 or when the limits are constants. |
| if inc.AuxInt != 1 { |
| ok := false |
| if min.Op == OpConst64 && max.Op == OpConst64 { |
| if max.AuxInt > min.AuxInt && max.AuxInt%inc.AuxInt == min.AuxInt%inc.AuxInt { // handle overflow |
| ok = true |
| } |
| } |
| if !ok { |
| continue |
| } |
| } |
| |
| if f.pass.debug > 1 { |
| if min.Op == OpConst64 { |
| b.Func.Warnl(b.Pos, "Induction variable with minimum %d and increment %d", min.AuxInt, inc.AuxInt) |
| } else { |
| b.Func.Warnl(b.Pos, "Induction variable with non-const minimum and increment %d", inc.AuxInt) |
| } |
| } |
| |
| iv = append(iv, indVar{ |
| ind: ind, |
| inc: inc, |
| nxt: nxt, |
| min: min, |
| max: max, |
| entry: b.Succs[entry].b, |
| }) |
| b.Logf("found induction variable %v (inc = %v, min = %v, max = %v)\n", ind, inc, min, max) |
| } |
| |
| return iv |
| } |
| |
| // loopbce performs loop based bounds check elimination. |
| func loopbce(f *Func) { |
| ivList := findIndVar(f) |
| |
| m := make(map[*Value]indVar) |
| for _, iv := range ivList { |
| m[iv.ind] = iv |
| } |
| |
| removeBoundsChecks(f, m) |
| } |
| |
| // removesBoundsChecks remove IsInBounds and IsSliceInBounds based on the induction variables. |
| func removeBoundsChecks(f *Func, m map[*Value]indVar) { |
| sdom := f.sdom() |
| for _, b := range f.Blocks { |
| if b.Kind != BlockIf { |
| continue |
| } |
| |
| v := b.Control |
| |
| // Simplify: |
| // (IsInBounds ind max) where 0 <= const == min <= ind < max. |
| // (IsSliceInBounds ind max) where 0 <= const == min <= ind < max. |
| // Found in: |
| // for i := range a { |
| // use a[i] |
| // use a[i:] |
| // use a[:i] |
| // } |
| if v.Op == OpIsInBounds || v.Op == OpIsSliceInBounds { |
| ind, add := dropAdd64(v.Args[0]) |
| if ind.Op != OpPhi { |
| goto skip1 |
| } |
| if v.Op == OpIsInBounds && add != 0 { |
| goto skip1 |
| } |
| if v.Op == OpIsSliceInBounds && (0 > add || add > 1) { |
| goto skip1 |
| } |
| |
| if iv, has := m[ind]; has && sdom.isAncestorEq(iv.entry, b) && isNonNegative(iv.min) { |
| if v.Args[1] == iv.max { |
| if f.pass.debug > 0 { |
| f.Warnl(b.Pos, "Found redundant %s", v.Op) |
| } |
| goto simplify |
| } |
| } |
| } |
| skip1: |
| |
| // Simplify: |
| // (IsSliceInBounds ind (SliceCap a)) where 0 <= min <= ind < max == (SliceLen a) |
| // Found in: |
| // for i := range a { |
| // use a[:i] |
| // use a[:i+1] |
| // } |
| if v.Op == OpIsSliceInBounds { |
| ind, add := dropAdd64(v.Args[0]) |
| if ind.Op != OpPhi { |
| goto skip2 |
| } |
| if 0 > add || add > 1 { |
| goto skip2 |
| } |
| |
| if iv, has := m[ind]; has && sdom.isAncestorEq(iv.entry, b) && isNonNegative(iv.min) { |
| if v.Args[1].Op == OpSliceCap && iv.max.Op == OpSliceLen && v.Args[1].Args[0] == iv.max.Args[0] { |
| if f.pass.debug > 0 { |
| f.Warnl(b.Pos, "Found redundant %s (len promoted to cap)", v.Op) |
| } |
| goto simplify |
| } |
| } |
| } |
| skip2: |
| |
| // Simplify |
| // (IsInBounds (Add64 ind) (Const64 [c])) where 0 <= min <= ind < max <= (Const64 [c]) |
| // (IsSliceInBounds ind (Const64 [c])) where 0 <= min <= ind < max <= (Const64 [c]) |
| if v.Op == OpIsInBounds || v.Op == OpIsSliceInBounds { |
| ind, add := dropAdd64(v.Args[0]) |
| if ind.Op != OpPhi { |
| goto skip3 |
| } |
| |
| // ind + add >= 0 <-> min + add >= 0 <-> min >= -add |
| if iv, has := m[ind]; has && sdom.isAncestorEq(iv.entry, b) && isGreaterOrEqualThan(iv.min, -add) { |
| if !v.Args[1].isGenericIntConst() || !iv.max.isGenericIntConst() { |
| goto skip3 |
| } |
| |
| limit := v.Args[1].AuxInt |
| if v.Op == OpIsSliceInBounds { |
| // If limit++ overflows signed integer then 0 <= max && max <= limit will be false. |
| limit++ |
| } |
| |
| if max := iv.max.AuxInt + add; 0 <= max && max <= limit { // handle overflow |
| if f.pass.debug > 0 { |
| f.Warnl(b.Pos, "Found redundant (%s ind %d), ind < %d", v.Op, v.Args[1].AuxInt, iv.max.AuxInt+add) |
| } |
| goto simplify |
| } |
| } |
| } |
| skip3: |
| |
| continue |
| |
| simplify: |
| f.Logf("removing bounds check %v at %v in %s\n", b.Control, b, f.Name) |
| b.Kind = BlockFirst |
| b.SetControl(nil) |
| } |
| } |
| |
| func dropAdd64(v *Value) (*Value, int64) { |
| if v.Op == OpAdd64 && v.Args[0].Op == OpConst64 { |
| return v.Args[1], v.Args[0].AuxInt |
| } |
| if v.Op == OpAdd64 && v.Args[1].Op == OpConst64 { |
| return v.Args[0], v.Args[1].AuxInt |
| } |
| return v, 0 |
| } |
| |
| func isGreaterOrEqualThan(v *Value, c int64) bool { |
| if c == 0 { |
| return isNonNegative(v) |
| } |
| if v.isGenericIntConst() && v.AuxInt >= c { |
| return true |
| } |
| return false |
| } |