blob: 81b9d3456c829edf2671e260be4062c6f2cdc0af [file] [log] [blame]
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file shows some examples of type-parameterized functions.
package p
// Reverse is a generic function that takes a []T argument and
// reverses that slice in place.
func Reverse[T any](list []T) {
i := 0
j := len(list)-1
for i < j {
list[i], list[j] = list[j], list[i]
i++
j--
}
}
func _() {
// Reverse can be called with an explicit type argument.
Reverse[int](nil)
Reverse[string]([]string{"foo", "bar"})
Reverse[struct{x, y int}]([]struct{x, y int}{{1, 2}, {2, 3}, {3, 4}})
// Since the type parameter is used for an incoming argument,
// it can be inferred from the provided argument's type.
Reverse([]string{"foo", "bar"})
Reverse([]struct{x, y int}{{1, 2}, {2, 3}, {3, 4}})
// But the incoming argument must have a type, even if it's a
// default type. An untyped nil won't work.
// Reverse(nil) // this won't type-check
// A typed nil will work, though.
Reverse([]int(nil))
}
// Certain functions, such as the built-in `new` could be written using
// type parameters.
func new[T any]() *T {
var x T
return &x
}
// When calling our own `new`, we need to pass the type parameter
// explicitly since there is no (value) argument from which the
// result type could be inferred. We don't try to infer the
// result type from the assignment to keep things simple and
// easy to understand.
var _ = new[int]()
var _ *float64 = new[float64]() // the result type is indeed *float64
// A function may have multiple type parameters, of course.
func foo[A, B, C any](a A, b []B, c *C) B {
// do something here
return b[0]
}
// As before, we can pass type parameters explicitly.
var s = foo[int, string, float64](1, []string{"first"}, new[float64]())
// Or we can use type inference.
var _ float64 = foo(42, []float64{1.0}, &s)
// Type inference works in a straight-forward manner even
// for variadic functions.
func variadic[A, B any](A, B, ...B) int
// var _ = variadic(1) // ERROR not enough arguments
var _ = variadic(1, 2.3)
var _ = variadic(1, 2.3, 3.4, 4.5)
var _ = variadic[int, float64](1, 2.3, 3.4, 4)
// Type inference also works in recursive function calls where
// the inferred type is the type parameter of the caller.
func f1[T any](x T) {
f1(x)
}
func f2a[T any](x, y T) {
f2a(x, y)
}
func f2b[T any](x, y T) {
f2b(y, x)
}
func g2a[P, Q any](x P, y Q) {
g2a(x, y)
}
func g2b[P, Q any](x P, y Q) {
g2b(y, x)
}
// Here's an example of a recursive function call with variadic
// arguments and type inference inferring the type parameter of
// the caller (i.e., itself).
func max[T interface{ ~int }](x ...T) T {
var x0 T
if len(x) > 0 {
x0 = x[0]
}
if len(x) > 1 {
x1 := max(x[1:]...)
if x1 > x0 {
return x1
}
}
return x0
}
// When inferring channel types, the channel direction is ignored
// for the purpose of type inference. Once the type has been in-
// fered, the usual parameter passing rules are applied.
// Thus even if a type can be inferred successfully, the function
// call may not be valid.
func fboth[T any](chan T)
func frecv[T any](<-chan T)
func fsend[T any](chan<- T)
func _() {
var both chan int
var recv <-chan int
var send chan<-int
fboth(both)
fboth(recv /* ERROR cannot use */ )
fboth(send /* ERROR cannot use */ )
frecv(both)
frecv(recv)
frecv(send /* ERROR cannot use */ )
fsend(both)
fsend(recv /* ERROR cannot use */)
fsend(send)
}
func ffboth[T any](func(chan T))
func ffrecv[T any](func(<-chan T))
func ffsend[T any](func(chan<- T))
func _() {
var both func(chan int)
var recv func(<-chan int)
var send func(chan<- int)
ffboth(both)
ffboth(recv /* ERROR cannot use */ )
ffboth(send /* ERROR cannot use */ )
ffrecv(both /* ERROR cannot use */ )
ffrecv(recv)
ffrecv(send /* ERROR cannot use */ )
ffsend(both /* ERROR cannot use */ )
ffsend(recv /* ERROR cannot use */ )
ffsend(send)
}
// When inferring elements of unnamed composite parameter types,
// if the arguments are defined types, use their underlying types.
// Even though the matching types are not exactly structurally the
// same (one is a type literal, the other a named type), because
// assignment is permitted, parameter passing is permitted as well,
// so type inference should be able to handle these cases well.
func g1[T any]([]T)
func g2[T any]([]T, T)
func g3[T any](*T, ...T)
func _() {
type intSlize []int
g1([]int{})
g1(intSlize{})
g2(nil, 0)
type myString string
var s1 string
g3(nil, "1", myString("2"), "3")
g3(&s1, "1", myString /* ERROR does not match */ ("2"), "3")
type myStruct struct{x int}
var s2 myStruct
g3(nil, struct{x int}{}, myStruct{})
g3(&s2, struct{x int}{}, myStruct{})
g3(nil, myStruct{}, struct{x int}{})
g3(&s2, myStruct{}, struct{x int}{})
}
// Here's a realistic example.
func append[T any](s []T, t ...T) []T
func _() {
var f func()
type Funcs []func()
var funcs Funcs
_ = append(funcs, f)
}
// Generic type declarations cannot have empty type parameter lists
// (that would indicate a slice type). Thus, generic functions cannot
// have empty type parameter lists, either. This is a syntax error.
func h[] /* ERROR empty type parameter list */ ()
func _() {
h /* ERROR cannot index */ [] /* ERROR operand */ ()
}