| // Copyright 2021 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Package slices defines various functions useful with slices of any type. |
| package slices |
| |
| import ( |
| "cmp" |
| "math/bits" |
| "unsafe" |
| ) |
| |
| // Equal reports whether two slices are equal: the same length and all |
| // elements equal. If the lengths are different, Equal returns false. |
| // Otherwise, the elements are compared in increasing index order, and the |
| // comparison stops at the first unequal pair. |
| // Floating point NaNs are not considered equal. |
| func Equal[S ~[]E, E comparable](s1, s2 S) bool { |
| if len(s1) != len(s2) { |
| return false |
| } |
| for i := range s1 { |
| if s1[i] != s2[i] { |
| return false |
| } |
| } |
| return true |
| } |
| |
| // EqualFunc reports whether two slices are equal using an equality |
| // function on each pair of elements. If the lengths are different, |
| // EqualFunc returns false. Otherwise, the elements are compared in |
| // increasing index order, and the comparison stops at the first index |
| // for which eq returns false. |
| func EqualFunc[S1 ~[]E1, S2 ~[]E2, E1, E2 any](s1 S1, s2 S2, eq func(E1, E2) bool) bool { |
| if len(s1) != len(s2) { |
| return false |
| } |
| for i, v1 := range s1 { |
| v2 := s2[i] |
| if !eq(v1, v2) { |
| return false |
| } |
| } |
| return true |
| } |
| |
| // Compare compares the elements of s1 and s2, using [cmp.Compare] on each pair |
| // of elements. The elements are compared sequentially, starting at index 0, |
| // until one element is not equal to the other. |
| // The result of comparing the first non-matching elements is returned. |
| // If both slices are equal until one of them ends, the shorter slice is |
| // considered less than the longer one. |
| // The result is 0 if s1 == s2, -1 if s1 < s2, and +1 if s1 > s2. |
| func Compare[S ~[]E, E cmp.Ordered](s1, s2 S) int { |
| for i, v1 := range s1 { |
| if i >= len(s2) { |
| return +1 |
| } |
| v2 := s2[i] |
| if c := cmp.Compare(v1, v2); c != 0 { |
| return c |
| } |
| } |
| if len(s1) < len(s2) { |
| return -1 |
| } |
| return 0 |
| } |
| |
| // CompareFunc is like [Compare] but uses a custom comparison function on each |
| // pair of elements. |
| // The result is the first non-zero result of cmp; if cmp always |
| // returns 0 the result is 0 if len(s1) == len(s2), -1 if len(s1) < len(s2), |
| // and +1 if len(s1) > len(s2). |
| func CompareFunc[S1 ~[]E1, S2 ~[]E2, E1, E2 any](s1 S1, s2 S2, cmp func(E1, E2) int) int { |
| for i, v1 := range s1 { |
| if i >= len(s2) { |
| return +1 |
| } |
| v2 := s2[i] |
| if c := cmp(v1, v2); c != 0 { |
| return c |
| } |
| } |
| if len(s1) < len(s2) { |
| return -1 |
| } |
| return 0 |
| } |
| |
| // Index returns the index of the first occurrence of v in s, |
| // or -1 if not present. |
| func Index[S ~[]E, E comparable](s S, v E) int { |
| for i := range s { |
| if v == s[i] { |
| return i |
| } |
| } |
| return -1 |
| } |
| |
| // IndexFunc returns the first index i satisfying f(s[i]), |
| // or -1 if none do. |
| func IndexFunc[S ~[]E, E any](s S, f func(E) bool) int { |
| for i := range s { |
| if f(s[i]) { |
| return i |
| } |
| } |
| return -1 |
| } |
| |
| // Contains reports whether v is present in s. |
| func Contains[S ~[]E, E comparable](s S, v E) bool { |
| return Index(s, v) >= 0 |
| } |
| |
| // ContainsFunc reports whether at least one |
| // element e of s satisfies f(e). |
| func ContainsFunc[S ~[]E, E any](s S, f func(E) bool) bool { |
| return IndexFunc(s, f) >= 0 |
| } |
| |
| // Insert inserts the values v... into s at index i, |
| // returning the modified slice. |
| // The elements at s[i:] are shifted up to make room. |
| // In the returned slice r, r[i] == v[0], |
| // and r[i+len(v)] == value originally at r[i]. |
| // Insert panics if i is out of range. |
| // This function is O(len(s) + len(v)). |
| func Insert[S ~[]E, E any](s S, i int, v ...E) S { |
| _ = s[i:] // bounds check |
| |
| m := len(v) |
| if m == 0 { |
| return s |
| } |
| n := len(s) |
| if i == n { |
| return append(s, v...) |
| } |
| if n+m > cap(s) { |
| // Use append rather than make so that we bump the size of |
| // the slice up to the next storage class. |
| // This is what Grow does but we don't call Grow because |
| // that might copy the values twice. |
| s2 := append(s[:i], make(S, n+m-i)...) |
| copy(s2[i:], v) |
| copy(s2[i+m:], s[i:]) |
| return s2 |
| } |
| s = s[:n+m] |
| |
| // before: |
| // s: aaaaaaaabbbbccccccccdddd |
| // ^ ^ ^ ^ |
| // i i+m n n+m |
| // after: |
| // s: aaaaaaaavvvvbbbbcccccccc |
| // ^ ^ ^ ^ |
| // i i+m n n+m |
| // |
| // a are the values that don't move in s. |
| // v are the values copied in from v. |
| // b and c are the values from s that are shifted up in index. |
| // d are the values that get overwritten, never to be seen again. |
| |
| if !overlaps(v, s[i+m:]) { |
| // Easy case - v does not overlap either the c or d regions. |
| // (It might be in some of a or b, or elsewhere entirely.) |
| // The data we copy up doesn't write to v at all, so just do it. |
| |
| copy(s[i+m:], s[i:]) |
| |
| // Now we have |
| // s: aaaaaaaabbbbbbbbcccccccc |
| // ^ ^ ^ ^ |
| // i i+m n n+m |
| // Note the b values are duplicated. |
| |
| copy(s[i:], v) |
| |
| // Now we have |
| // s: aaaaaaaavvvvbbbbcccccccc |
| // ^ ^ ^ ^ |
| // i i+m n n+m |
| // That's the result we want. |
| return s |
| } |
| |
| // The hard case - v overlaps c or d. We can't just shift up |
| // the data because we'd move or clobber the values we're trying |
| // to insert. |
| // So instead, write v on top of d, then rotate. |
| copy(s[n:], v) |
| |
| // Now we have |
| // s: aaaaaaaabbbbccccccccvvvv |
| // ^ ^ ^ ^ |
| // i i+m n n+m |
| |
| rotateRight(s[i:], m) |
| |
| // Now we have |
| // s: aaaaaaaavvvvbbbbcccccccc |
| // ^ ^ ^ ^ |
| // i i+m n n+m |
| // That's the result we want. |
| return s |
| } |
| |
| // Delete removes the elements s[i:j] from s, returning the modified slice. |
| // Delete panics if j > len(s) or s[i:j] is not a valid slice of s. |
| // Delete is O(len(s)-i), so if many items must be deleted, it is better to |
| // make a single call deleting them all together than to delete one at a time. |
| // Delete zeroes the elements s[len(s)-(j-i):len(s)]. |
| func Delete[S ~[]E, E any](s S, i, j int) S { |
| _ = s[i:j:len(s)] // bounds check |
| |
| if i == j { |
| return s |
| } |
| |
| oldlen := len(s) |
| s = append(s[:i], s[j:]...) |
| clear(s[len(s):oldlen]) // zero/nil out the obsolete elements, for GC |
| return s |
| } |
| |
| // DeleteFunc removes any elements from s for which del returns true, |
| // returning the modified slice. |
| // DeleteFunc zeroes the elements between the new length and the original length. |
| func DeleteFunc[S ~[]E, E any](s S, del func(E) bool) S { |
| i := IndexFunc(s, del) |
| if i == -1 { |
| return s |
| } |
| // Don't start copying elements until we find one to delete. |
| for j := i + 1; j < len(s); j++ { |
| if v := s[j]; !del(v) { |
| s[i] = v |
| i++ |
| } |
| } |
| clear(s[i:]) // zero/nil out the obsolete elements, for GC |
| return s[:i] |
| } |
| |
| // Replace replaces the elements s[i:j] by the given v, and returns the |
| // modified slice. |
| // Replace panics if j > len(s) or s[i:j] is not a valid slice of s. |
| // When len(v) < (j-i), Replace zeroes the elements between the new length and the original length. |
| func Replace[S ~[]E, E any](s S, i, j int, v ...E) S { |
| _ = s[i:j] // bounds check |
| |
| if i == j { |
| return Insert(s, i, v...) |
| } |
| if j == len(s) { |
| s2 := append(s[:i], v...) |
| if len(s2) < len(s) { |
| clear(s[len(s2):]) // zero/nil out the obsolete elements, for GC |
| } |
| return s2 |
| } |
| |
| tot := len(s[:i]) + len(v) + len(s[j:]) |
| if tot > cap(s) { |
| // Too big to fit, allocate and copy over. |
| s2 := append(s[:i], make(S, tot-i)...) // See Insert |
| copy(s2[i:], v) |
| copy(s2[i+len(v):], s[j:]) |
| return s2 |
| } |
| |
| r := s[:tot] |
| |
| if i+len(v) <= j { |
| // Easy, as v fits in the deleted portion. |
| copy(r[i:], v) |
| copy(r[i+len(v):], s[j:]) |
| clear(s[tot:]) // zero/nil out the obsolete elements, for GC |
| return r |
| } |
| |
| // We are expanding (v is bigger than j-i). |
| // The situation is something like this: |
| // (example has i=4,j=8,len(s)=16,len(v)=6) |
| // s: aaaaxxxxbbbbbbbbyy |
| // ^ ^ ^ ^ |
| // i j len(s) tot |
| // a: prefix of s |
| // x: deleted range |
| // b: more of s |
| // y: area to expand into |
| |
| if !overlaps(r[i+len(v):], v) { |
| // Easy, as v is not clobbered by the first copy. |
| copy(r[i+len(v):], s[j:]) |
| copy(r[i:], v) |
| return r |
| } |
| |
| // This is a situation where we don't have a single place to which |
| // we can copy v. Parts of it need to go to two different places. |
| // We want to copy the prefix of v into y and the suffix into x, then |
| // rotate |y| spots to the right. |
| // |
| // v[2:] v[:2] |
| // | | |
| // s: aaaavvvvbbbbbbbbvv |
| // ^ ^ ^ ^ |
| // i j len(s) tot |
| // |
| // If either of those two destinations don't alias v, then we're good. |
| y := len(v) - (j - i) // length of y portion |
| |
| if !overlaps(r[i:j], v) { |
| copy(r[i:j], v[y:]) |
| copy(r[len(s):], v[:y]) |
| rotateRight(r[i:], y) |
| return r |
| } |
| if !overlaps(r[len(s):], v) { |
| copy(r[len(s):], v[:y]) |
| copy(r[i:j], v[y:]) |
| rotateRight(r[i:], y) |
| return r |
| } |
| |
| // Now we know that v overlaps both x and y. |
| // That means that the entirety of b is *inside* v. |
| // So we don't need to preserve b at all; instead we |
| // can copy v first, then copy the b part of v out of |
| // v to the right destination. |
| k := startIdx(v, s[j:]) |
| copy(r[i:], v) |
| copy(r[i+len(v):], r[i+k:]) |
| return r |
| } |
| |
| // Clone returns a copy of the slice. |
| // The elements are copied using assignment, so this is a shallow clone. |
| // The result may have additional unused capacity. |
| func Clone[S ~[]E, E any](s S) S { |
| // The s[:0:0] preserves nil in case it matters. |
| return append(s[:0:0], s...) |
| } |
| |
| // Compact replaces consecutive runs of equal elements with a single copy. |
| // This is like the uniq command found on Unix. |
| // Compact modifies the contents of the slice s and returns the modified slice, |
| // which may have a smaller length. |
| // Compact zeroes the elements between the new length and the original length. |
| func Compact[S ~[]E, E comparable](s S) S { |
| if len(s) < 2 { |
| return s |
| } |
| i := 1 |
| for k := 1; k < len(s); k++ { |
| if s[k] != s[k-1] { |
| if i != k { |
| s[i] = s[k] |
| } |
| i++ |
| } |
| } |
| clear(s[i:]) // zero/nil out the obsolete elements, for GC |
| return s[:i] |
| } |
| |
| // CompactFunc is like [Compact] but uses an equality function to compare elements. |
| // For runs of elements that compare equal, CompactFunc keeps the first one. |
| // CompactFunc zeroes the elements between the new length and the original length. |
| func CompactFunc[S ~[]E, E any](s S, eq func(E, E) bool) S { |
| if len(s) < 2 { |
| return s |
| } |
| i := 1 |
| for k := 1; k < len(s); k++ { |
| if !eq(s[k], s[k-1]) { |
| if i != k { |
| s[i] = s[k] |
| } |
| i++ |
| } |
| } |
| clear(s[i:]) // zero/nil out the obsolete elements, for GC |
| return s[:i] |
| } |
| |
| // Grow increases the slice's capacity, if necessary, to guarantee space for |
| // another n elements. After Grow(n), at least n elements can be appended |
| // to the slice without another allocation. If n is negative or too large to |
| // allocate the memory, Grow panics. |
| func Grow[S ~[]E, E any](s S, n int) S { |
| if n < 0 { |
| panic("cannot be negative") |
| } |
| if n -= cap(s) - len(s); n > 0 { |
| s = append(s[:cap(s)], make([]E, n)...)[:len(s)] |
| } |
| return s |
| } |
| |
| // Clip removes unused capacity from the slice, returning s[:len(s):len(s)]. |
| func Clip[S ~[]E, E any](s S) S { |
| return s[:len(s):len(s)] |
| } |
| |
| // TODO: There are other rotate algorithms. |
| // This algorithm has the desirable property that it moves each element at most twice. |
| // The follow-cycles algorithm can be 1-write but it is not very cache friendly. |
| |
| // rotateLeft rotates s left by r spaces. |
| // s_final[i] = s_orig[i+r], wrapping around. |
| func rotateLeft[E any](s []E, r int) { |
| Reverse(s[:r]) |
| Reverse(s[r:]) |
| Reverse(s) |
| } |
| func rotateRight[E any](s []E, r int) { |
| rotateLeft(s, len(s)-r) |
| } |
| |
| // overlaps reports whether the memory ranges a[0:len(a)] and b[0:len(b)] overlap. |
| func overlaps[E any](a, b []E) bool { |
| if len(a) == 0 || len(b) == 0 { |
| return false |
| } |
| elemSize := unsafe.Sizeof(a[0]) |
| if elemSize == 0 { |
| return false |
| } |
| // TODO: use a runtime/unsafe facility once one becomes available. See issue 12445. |
| // Also see crypto/internal/alias/alias.go:AnyOverlap |
| return uintptr(unsafe.Pointer(&a[0])) <= uintptr(unsafe.Pointer(&b[len(b)-1]))+(elemSize-1) && |
| uintptr(unsafe.Pointer(&b[0])) <= uintptr(unsafe.Pointer(&a[len(a)-1]))+(elemSize-1) |
| } |
| |
| // startIdx returns the index in haystack where the needle starts. |
| // prerequisite: the needle must be aliased entirely inside the haystack. |
| func startIdx[E any](haystack, needle []E) int { |
| p := &needle[0] |
| for i := range haystack { |
| if p == &haystack[i] { |
| return i |
| } |
| } |
| // TODO: what if the overlap is by a non-integral number of Es? |
| panic("needle not found") |
| } |
| |
| // Reverse reverses the elements of the slice in place. |
| func Reverse[S ~[]E, E any](s S) { |
| for i, j := 0, len(s)-1; i < j; i, j = i+1, j-1 { |
| s[i], s[j] = s[j], s[i] |
| } |
| } |
| |
| // Concat returns a new slice concatenating the passed in slices. |
| func Concat[S ~[]E, E any](slices ...S) S { |
| size := 0 |
| for _, s := range slices { |
| size += len(s) |
| if size < 0 { |
| panic("len out of range") |
| } |
| } |
| newslice := Grow[S](nil, size) |
| for _, s := range slices { |
| newslice = append(newslice, s...) |
| } |
| return newslice |
| } |
| |
| // Repeat returns a new slice that repeats the provided slice the given number of times. |
| // The result has length and capacity (len(x) * count). |
| // The result is never nil. |
| // Repeat panics if count is negative or if the result of (len(x) * count) |
| // overflows. |
| func Repeat[S ~[]E, E any](x S, count int) S { |
| if count < 0 { |
| panic("cannot be negative") |
| } |
| |
| const maxInt = ^uint(0) >> 1 |
| if hi, lo := bits.Mul(uint(len(x)), uint(count)); hi > 0 || lo > maxInt { |
| panic("the result of (len(x) * count) overflows") |
| } |
| |
| newslice := make(S, len(x)*count) |
| n := copy(newslice, x) |
| for n < len(newslice) { |
| n += copy(newslice[n:], newslice[:n]) |
| } |
| return newslice |
| } |