| // Copyright 2011 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package jpeg |
| |
| import ( |
| "bytes" |
| "fmt" |
| "image" |
| "image/color" |
| "image/png" |
| "io" |
| "math/rand" |
| "os" |
| "strings" |
| "testing" |
| ) |
| |
| // zigzag maps from the natural ordering to the zig-zag ordering. For example, |
| // zigzag[0*8 + 3] is the zig-zag sequence number of the element in the fourth |
| // column and first row. |
| var zigzag = [blockSize]int{ |
| 0, 1, 5, 6, 14, 15, 27, 28, |
| 2, 4, 7, 13, 16, 26, 29, 42, |
| 3, 8, 12, 17, 25, 30, 41, 43, |
| 9, 11, 18, 24, 31, 40, 44, 53, |
| 10, 19, 23, 32, 39, 45, 52, 54, |
| 20, 22, 33, 38, 46, 51, 55, 60, |
| 21, 34, 37, 47, 50, 56, 59, 61, |
| 35, 36, 48, 49, 57, 58, 62, 63, |
| } |
| |
| func TestZigUnzig(t *testing.T) { |
| for i := 0; i < blockSize; i++ { |
| if unzig[zigzag[i]] != i { |
| t.Errorf("unzig[zigzag[%d]] == %d", i, unzig[zigzag[i]]) |
| } |
| if zigzag[unzig[i]] != i { |
| t.Errorf("zigzag[unzig[%d]] == %d", i, zigzag[unzig[i]]) |
| } |
| } |
| } |
| |
| // unscaledQuantInNaturalOrder are the unscaled quantization tables in |
| // natural (not zig-zag) order, as specified in section K.1. |
| var unscaledQuantInNaturalOrder = [nQuantIndex][blockSize]byte{ |
| // Luminance. |
| { |
| 16, 11, 10, 16, 24, 40, 51, 61, |
| 12, 12, 14, 19, 26, 58, 60, 55, |
| 14, 13, 16, 24, 40, 57, 69, 56, |
| 14, 17, 22, 29, 51, 87, 80, 62, |
| 18, 22, 37, 56, 68, 109, 103, 77, |
| 24, 35, 55, 64, 81, 104, 113, 92, |
| 49, 64, 78, 87, 103, 121, 120, 101, |
| 72, 92, 95, 98, 112, 100, 103, 99, |
| }, |
| // Chrominance. |
| { |
| 17, 18, 24, 47, 99, 99, 99, 99, |
| 18, 21, 26, 66, 99, 99, 99, 99, |
| 24, 26, 56, 99, 99, 99, 99, 99, |
| 47, 66, 99, 99, 99, 99, 99, 99, |
| 99, 99, 99, 99, 99, 99, 99, 99, |
| 99, 99, 99, 99, 99, 99, 99, 99, |
| 99, 99, 99, 99, 99, 99, 99, 99, |
| 99, 99, 99, 99, 99, 99, 99, 99, |
| }, |
| } |
| |
| func TestUnscaledQuant(t *testing.T) { |
| bad := false |
| for i := quantIndex(0); i < nQuantIndex; i++ { |
| for zig := 0; zig < blockSize; zig++ { |
| got := unscaledQuant[i][zig] |
| want := unscaledQuantInNaturalOrder[i][unzig[zig]] |
| if got != want { |
| t.Errorf("i=%d, zig=%d: got %d, want %d", i, zig, got, want) |
| bad = true |
| } |
| } |
| } |
| if bad { |
| names := [nQuantIndex]string{"Luminance", "Chrominance"} |
| buf := &strings.Builder{} |
| for i, name := range names { |
| fmt.Fprintf(buf, "// %s.\n{\n", name) |
| for zig := 0; zig < blockSize; zig++ { |
| fmt.Fprintf(buf, "%d, ", unscaledQuantInNaturalOrder[i][unzig[zig]]) |
| if zig%8 == 7 { |
| buf.WriteString("\n") |
| } |
| } |
| buf.WriteString("},\n") |
| } |
| t.Logf("expected unscaledQuant values:\n%s", buf.String()) |
| } |
| } |
| |
| var testCase = []struct { |
| filename string |
| quality int |
| tolerance int64 |
| }{ |
| {"../testdata/video-001.png", 1, 24 << 8}, |
| {"../testdata/video-001.png", 20, 12 << 8}, |
| {"../testdata/video-001.png", 60, 8 << 8}, |
| {"../testdata/video-001.png", 80, 6 << 8}, |
| {"../testdata/video-001.png", 90, 4 << 8}, |
| {"../testdata/video-001.png", 100, 2 << 8}, |
| } |
| |
| func delta(u0, u1 uint32) int64 { |
| d := int64(u0) - int64(u1) |
| if d < 0 { |
| return -d |
| } |
| return d |
| } |
| |
| func readPng(filename string) (image.Image, error) { |
| f, err := os.Open(filename) |
| if err != nil { |
| return nil, err |
| } |
| defer f.Close() |
| return png.Decode(f) |
| } |
| |
| func TestWriter(t *testing.T) { |
| for _, tc := range testCase { |
| // Read the image. |
| m0, err := readPng(tc.filename) |
| if err != nil { |
| t.Error(tc.filename, err) |
| continue |
| } |
| // Encode that image as JPEG. |
| var buf bytes.Buffer |
| err = Encode(&buf, m0, &Options{Quality: tc.quality}) |
| if err != nil { |
| t.Error(tc.filename, err) |
| continue |
| } |
| // Decode that JPEG. |
| m1, err := Decode(&buf) |
| if err != nil { |
| t.Error(tc.filename, err) |
| continue |
| } |
| if m0.Bounds() != m1.Bounds() { |
| t.Errorf("%s, bounds differ: %v and %v", tc.filename, m0.Bounds(), m1.Bounds()) |
| continue |
| } |
| // Compare the average delta to the tolerance level. |
| if averageDelta(m0, m1) > tc.tolerance { |
| t.Errorf("%s, quality=%d: average delta is too high", tc.filename, tc.quality) |
| continue |
| } |
| } |
| } |
| |
| // TestWriteGrayscale tests that a grayscale images survives a round-trip |
| // through encode/decode cycle. |
| func TestWriteGrayscale(t *testing.T) { |
| m0 := image.NewGray(image.Rect(0, 0, 32, 32)) |
| for i := range m0.Pix { |
| m0.Pix[i] = uint8(i) |
| } |
| var buf bytes.Buffer |
| if err := Encode(&buf, m0, nil); err != nil { |
| t.Fatal(err) |
| } |
| m1, err := Decode(&buf) |
| if err != nil { |
| t.Fatal(err) |
| } |
| if m0.Bounds() != m1.Bounds() { |
| t.Fatalf("bounds differ: %v and %v", m0.Bounds(), m1.Bounds()) |
| } |
| if _, ok := m1.(*image.Gray); !ok { |
| t.Errorf("got %T, want *image.Gray", m1) |
| } |
| // Compare the average delta to the tolerance level. |
| want := int64(2 << 8) |
| if got := averageDelta(m0, m1); got > want { |
| t.Errorf("average delta too high; got %d, want <= %d", got, want) |
| } |
| } |
| |
| // averageDelta returns the average delta in RGB space. The two images must |
| // have the same bounds. |
| func averageDelta(m0, m1 image.Image) int64 { |
| b := m0.Bounds() |
| var sum, n int64 |
| for y := b.Min.Y; y < b.Max.Y; y++ { |
| for x := b.Min.X; x < b.Max.X; x++ { |
| c0 := m0.At(x, y) |
| c1 := m1.At(x, y) |
| r0, g0, b0, _ := c0.RGBA() |
| r1, g1, b1, _ := c1.RGBA() |
| sum += delta(r0, r1) |
| sum += delta(g0, g1) |
| sum += delta(b0, b1) |
| n += 3 |
| } |
| } |
| return sum / n |
| } |
| |
| func TestEncodeYCbCr(t *testing.T) { |
| bo := image.Rect(0, 0, 640, 480) |
| imgRGBA := image.NewRGBA(bo) |
| // Must use 444 subsampling to avoid lossy RGBA to YCbCr conversion. |
| imgYCbCr := image.NewYCbCr(bo, image.YCbCrSubsampleRatio444) |
| rnd := rand.New(rand.NewSource(123)) |
| // Create identical rgba and ycbcr images. |
| for y := bo.Min.Y; y < bo.Max.Y; y++ { |
| for x := bo.Min.X; x < bo.Max.X; x++ { |
| col := color.RGBA{ |
| uint8(rnd.Intn(256)), |
| uint8(rnd.Intn(256)), |
| uint8(rnd.Intn(256)), |
| 255, |
| } |
| imgRGBA.SetRGBA(x, y, col) |
| yo := imgYCbCr.YOffset(x, y) |
| co := imgYCbCr.COffset(x, y) |
| cy, ccr, ccb := color.RGBToYCbCr(col.R, col.G, col.B) |
| imgYCbCr.Y[yo] = cy |
| imgYCbCr.Cb[co] = ccr |
| imgYCbCr.Cr[co] = ccb |
| } |
| } |
| |
| // Now check that both images are identical after an encode. |
| var bufRGBA, bufYCbCr bytes.Buffer |
| Encode(&bufRGBA, imgRGBA, nil) |
| Encode(&bufYCbCr, imgYCbCr, nil) |
| if !bytes.Equal(bufRGBA.Bytes(), bufYCbCr.Bytes()) { |
| t.Errorf("RGBA and YCbCr encoded bytes differ") |
| } |
| } |
| |
| func BenchmarkEncodeRGBA(b *testing.B) { |
| img := image.NewRGBA(image.Rect(0, 0, 640, 480)) |
| bo := img.Bounds() |
| rnd := rand.New(rand.NewSource(123)) |
| for y := bo.Min.Y; y < bo.Max.Y; y++ { |
| for x := bo.Min.X; x < bo.Max.X; x++ { |
| img.SetRGBA(x, y, color.RGBA{ |
| uint8(rnd.Intn(256)), |
| uint8(rnd.Intn(256)), |
| uint8(rnd.Intn(256)), |
| 255, |
| }) |
| } |
| } |
| b.SetBytes(640 * 480 * 4) |
| b.ReportAllocs() |
| b.ResetTimer() |
| options := &Options{Quality: 90} |
| for i := 0; i < b.N; i++ { |
| Encode(io.Discard, img, options) |
| } |
| } |
| |
| func BenchmarkEncodeYCbCr(b *testing.B) { |
| img := image.NewYCbCr(image.Rect(0, 0, 640, 480), image.YCbCrSubsampleRatio420) |
| bo := img.Bounds() |
| rnd := rand.New(rand.NewSource(123)) |
| for y := bo.Min.Y; y < bo.Max.Y; y++ { |
| for x := bo.Min.X; x < bo.Max.X; x++ { |
| cy := img.YOffset(x, y) |
| ci := img.COffset(x, y) |
| img.Y[cy] = uint8(rnd.Intn(256)) |
| img.Cb[ci] = uint8(rnd.Intn(256)) |
| img.Cr[ci] = uint8(rnd.Intn(256)) |
| } |
| } |
| b.SetBytes(640 * 480 * 3) |
| b.ReportAllocs() |
| b.ResetTimer() |
| options := &Options{Quality: 90} |
| for i := 0; i < b.N; i++ { |
| Encode(io.Discard, img, options) |
| } |
| } |