| // Copyright 2021 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Code generated by generate.go. DO NOT EDIT. |
| |
| package fiat |
| |
| import ( |
| "crypto/subtle" |
| "errors" |
| ) |
| |
| // P384Element is an integer modulo 2^384 - 2^128 - 2^96 + 2^32 - 1. |
| // |
| // The zero value is a valid zero element. |
| type P384Element struct { |
| // Values are represented internally always in the Montgomery domain, and |
| // converted in Bytes and SetBytes. |
| x p384MontgomeryDomainFieldElement |
| } |
| |
| const p384ElementLen = 48 |
| |
| type p384UntypedFieldElement = [6]uint64 |
| |
| // One sets e = 1, and returns e. |
| func (e *P384Element) One() *P384Element { |
| p384SetOne(&e.x) |
| return e |
| } |
| |
| // Equal returns 1 if e == t, and zero otherwise. |
| func (e *P384Element) Equal(t *P384Element) int { |
| eBytes := e.Bytes() |
| tBytes := t.Bytes() |
| return subtle.ConstantTimeCompare(eBytes, tBytes) |
| } |
| |
| // IsZero returns 1 if e == 0, and zero otherwise. |
| func (e *P384Element) IsZero() int { |
| zero := make([]byte, p384ElementLen) |
| eBytes := e.Bytes() |
| return subtle.ConstantTimeCompare(eBytes, zero) |
| } |
| |
| // Set sets e = t, and returns e. |
| func (e *P384Element) Set(t *P384Element) *P384Element { |
| e.x = t.x |
| return e |
| } |
| |
| // Bytes returns the 48-byte big-endian encoding of e. |
| func (e *P384Element) Bytes() []byte { |
| // This function is outlined to make the allocations inline in the caller |
| // rather than happen on the heap. |
| var out [p384ElementLen]byte |
| return e.bytes(&out) |
| } |
| |
| func (e *P384Element) bytes(out *[p384ElementLen]byte) []byte { |
| var tmp p384NonMontgomeryDomainFieldElement |
| p384FromMontgomery(&tmp, &e.x) |
| p384ToBytes(out, (*p384UntypedFieldElement)(&tmp)) |
| p384InvertEndianness(out[:]) |
| return out[:] |
| } |
| |
| // SetBytes sets e = v, where v is a big-endian 48-byte encoding, and returns e. |
| // If v is not 48 bytes or it encodes a value higher than 2^384 - 2^128 - 2^96 + 2^32 - 1, |
| // SetBytes returns nil and an error, and e is unchanged. |
| func (e *P384Element) SetBytes(v []byte) (*P384Element, error) { |
| if len(v) != p384ElementLen { |
| return nil, errors.New("invalid P384Element encoding") |
| } |
| |
| // Check for non-canonical encodings (p + k, 2p + k, etc.) by comparing to |
| // the encoding of -1 mod p, so p - 1, the highest canonical encoding. |
| var minusOneEncoding = new(P384Element).Sub( |
| new(P384Element), new(P384Element).One()).Bytes() |
| for i := range v { |
| if v[i] < minusOneEncoding[i] { |
| break |
| } |
| if v[i] > minusOneEncoding[i] { |
| return nil, errors.New("invalid P384Element encoding") |
| } |
| } |
| |
| var in [p384ElementLen]byte |
| copy(in[:], v) |
| p384InvertEndianness(in[:]) |
| var tmp p384NonMontgomeryDomainFieldElement |
| p384FromBytes((*p384UntypedFieldElement)(&tmp), &in) |
| p384ToMontgomery(&e.x, &tmp) |
| return e, nil |
| } |
| |
| // Add sets e = t1 + t2, and returns e. |
| func (e *P384Element) Add(t1, t2 *P384Element) *P384Element { |
| p384Add(&e.x, &t1.x, &t2.x) |
| return e |
| } |
| |
| // Sub sets e = t1 - t2, and returns e. |
| func (e *P384Element) Sub(t1, t2 *P384Element) *P384Element { |
| p384Sub(&e.x, &t1.x, &t2.x) |
| return e |
| } |
| |
| // Mul sets e = t1 * t2, and returns e. |
| func (e *P384Element) Mul(t1, t2 *P384Element) *P384Element { |
| p384Mul(&e.x, &t1.x, &t2.x) |
| return e |
| } |
| |
| // Square sets e = t * t, and returns e. |
| func (e *P384Element) Square(t *P384Element) *P384Element { |
| p384Square(&e.x, &t.x) |
| return e |
| } |
| |
| // Select sets v to a if cond == 1, and to b if cond == 0. |
| func (v *P384Element) Select(a, b *P384Element, cond int) *P384Element { |
| p384Selectznz((*p384UntypedFieldElement)(&v.x), p384Uint1(cond), |
| (*p384UntypedFieldElement)(&b.x), (*p384UntypedFieldElement)(&a.x)) |
| return v |
| } |
| |
| func p384InvertEndianness(v []byte) { |
| for i := 0; i < len(v)/2; i++ { |
| v[i], v[len(v)-1-i] = v[len(v)-1-i], v[i] |
| } |
| } |