| // Copyright 2011 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package color |
| |
| // RGBToYCbCr converts an RGB triple to a Y'CbCr triple. |
| func RGBToYCbCr(r, g, b uint8) (uint8, uint8, uint8) { |
| // The JFIF specification says: |
| // Y' = 0.2990*R + 0.5870*G + 0.1140*B |
| // Cb = -0.1687*R - 0.3313*G + 0.5000*B + 128 |
| // Cr = 0.5000*R - 0.4187*G - 0.0813*B + 128 |
| // https://www.w3.org/Graphics/JPEG/jfif3.pdf says Y but means Y'. |
| |
| r1 := int32(r) |
| g1 := int32(g) |
| b1 := int32(b) |
| |
| // yy is in range [0,0xff]. |
| // |
| // Note that 19595 + 38470 + 7471 equals 65536. |
| yy := (19595*r1 + 38470*g1 + 7471*b1 + 1<<15) >> 16 |
| |
| // The bit twiddling below is equivalent to |
| // |
| // cb := (-11056*r1 - 21712*g1 + 32768*b1 + 257<<15) >> 16 |
| // if cb < 0 { |
| // cb = 0 |
| // } else if cb > 0xff { |
| // cb = ^int32(0) |
| // } |
| // |
| // but uses fewer branches and is faster. |
| // Note that the uint8 type conversion in the return |
| // statement will convert ^int32(0) to 0xff. |
| // The code below to compute cr uses a similar pattern. |
| // |
| // Note that -11056 - 21712 + 32768 equals 0. |
| cb := -11056*r1 - 21712*g1 + 32768*b1 + 257<<15 |
| if uint32(cb)&0xff000000 == 0 { |
| cb >>= 16 |
| } else { |
| cb = ^(cb >> 31) |
| } |
| |
| // Note that 32768 - 27440 - 5328 equals 0. |
| cr := 32768*r1 - 27440*g1 - 5328*b1 + 257<<15 |
| if uint32(cr)&0xff000000 == 0 { |
| cr >>= 16 |
| } else { |
| cr = ^(cr >> 31) |
| } |
| |
| return uint8(yy), uint8(cb), uint8(cr) |
| } |
| |
| // YCbCrToRGB converts a Y'CbCr triple to an RGB triple. |
| func YCbCrToRGB(y, cb, cr uint8) (uint8, uint8, uint8) { |
| // The JFIF specification says: |
| // R = Y' + 1.40200*(Cr-128) |
| // G = Y' - 0.34414*(Cb-128) - 0.71414*(Cr-128) |
| // B = Y' + 1.77200*(Cb-128) |
| // https://www.w3.org/Graphics/JPEG/jfif3.pdf says Y but means Y'. |
| // |
| // Those formulae use non-integer multiplication factors. When computing, |
| // integer math is generally faster than floating point math. We multiply |
| // all of those factors by 1<<16 and round to the nearest integer: |
| // 91881 = roundToNearestInteger(1.40200 * 65536). |
| // 22554 = roundToNearestInteger(0.34414 * 65536). |
| // 46802 = roundToNearestInteger(0.71414 * 65536). |
| // 116130 = roundToNearestInteger(1.77200 * 65536). |
| // |
| // Adding a rounding adjustment in the range [0, 1<<16-1] and then shifting |
| // right by 16 gives us an integer math version of the original formulae. |
| // R = (65536*Y' + 91881 *(Cr-128) + adjustment) >> 16 |
| // G = (65536*Y' - 22554 *(Cb-128) - 46802*(Cr-128) + adjustment) >> 16 |
| // B = (65536*Y' + 116130 *(Cb-128) + adjustment) >> 16 |
| // A constant rounding adjustment of 1<<15, one half of 1<<16, would mean |
| // round-to-nearest when dividing by 65536 (shifting right by 16). |
| // Similarly, a constant rounding adjustment of 0 would mean round-down. |
| // |
| // Defining YY1 = 65536*Y' + adjustment simplifies the formulae and |
| // requires fewer CPU operations: |
| // R = (YY1 + 91881 *(Cr-128) ) >> 16 |
| // G = (YY1 - 22554 *(Cb-128) - 46802*(Cr-128)) >> 16 |
| // B = (YY1 + 116130 *(Cb-128) ) >> 16 |
| // |
| // The inputs (y, cb, cr) are 8 bit color, ranging in [0x00, 0xff]. In this |
| // function, the output is also 8 bit color, but in the related YCbCr.RGBA |
| // method, below, the output is 16 bit color, ranging in [0x0000, 0xffff]. |
| // Outputting 16 bit color simply requires changing the 16 to 8 in the "R = |
| // etc >> 16" equation, and likewise for G and B. |
| // |
| // As mentioned above, a constant rounding adjustment of 1<<15 is a natural |
| // choice, but there is an additional constraint: if c0 := YCbCr{Y: y, Cb: |
| // 0x80, Cr: 0x80} and c1 := Gray{Y: y} then c0.RGBA() should equal |
| // c1.RGBA(). Specifically, if y == 0 then "R = etc >> 8" should yield |
| // 0x0000 and if y == 0xff then "R = etc >> 8" should yield 0xffff. If we |
| // used a constant rounding adjustment of 1<<15, then it would yield 0x0080 |
| // and 0xff80 respectively. |
| // |
| // Note that when cb == 0x80 and cr == 0x80 then the formulae collapse to: |
| // R = YY1 >> n |
| // G = YY1 >> n |
| // B = YY1 >> n |
| // where n is 16 for this function (8 bit color output) and 8 for the |
| // YCbCr.RGBA method (16 bit color output). |
| // |
| // The solution is to make the rounding adjustment non-constant, and equal |
| // to 257*Y', which ranges over [0, 1<<16-1] as Y' ranges over [0, 255]. |
| // YY1 is then defined as: |
| // YY1 = 65536*Y' + 257*Y' |
| // or equivalently: |
| // YY1 = Y' * 0x10101 |
| yy1 := int32(y) * 0x10101 |
| cb1 := int32(cb) - 128 |
| cr1 := int32(cr) - 128 |
| |
| // The bit twiddling below is equivalent to |
| // |
| // r := (yy1 + 91881*cr1) >> 16 |
| // if r < 0 { |
| // r = 0 |
| // } else if r > 0xff { |
| // r = ^int32(0) |
| // } |
| // |
| // but uses fewer branches and is faster. |
| // Note that the uint8 type conversion in the return |
| // statement will convert ^int32(0) to 0xff. |
| // The code below to compute g and b uses a similar pattern. |
| r := yy1 + 91881*cr1 |
| if uint32(r)&0xff000000 == 0 { |
| r >>= 16 |
| } else { |
| r = ^(r >> 31) |
| } |
| |
| g := yy1 - 22554*cb1 - 46802*cr1 |
| if uint32(g)&0xff000000 == 0 { |
| g >>= 16 |
| } else { |
| g = ^(g >> 31) |
| } |
| |
| b := yy1 + 116130*cb1 |
| if uint32(b)&0xff000000 == 0 { |
| b >>= 16 |
| } else { |
| b = ^(b >> 31) |
| } |
| |
| return uint8(r), uint8(g), uint8(b) |
| } |
| |
| // YCbCr represents a fully opaque 24-bit Y'CbCr color, having 8 bits each for |
| // one luma and two chroma components. |
| // |
| // JPEG, VP8, the MPEG family and other codecs use this color model. Such |
| // codecs often use the terms YUV and Y'CbCr interchangeably, but strictly |
| // speaking, the term YUV applies only to analog video signals, and Y' (luma) |
| // is Y (luminance) after applying gamma correction. |
| // |
| // Conversion between RGB and Y'CbCr is lossy and there are multiple, slightly |
| // different formulae for converting between the two. This package follows |
| // the JFIF specification at https://www.w3.org/Graphics/JPEG/jfif3.pdf. |
| type YCbCr struct { |
| Y, Cb, Cr uint8 |
| } |
| |
| func (c YCbCr) RGBA() (uint32, uint32, uint32, uint32) { |
| // This code is a copy of the YCbCrToRGB function above, except that it |
| // returns values in the range [0, 0xffff] instead of [0, 0xff]. There is a |
| // subtle difference between doing this and having YCbCr satisfy the Color |
| // interface by first converting to an RGBA. The latter loses some |
| // information by going to and from 8 bits per channel. |
| // |
| // For example, this code: |
| // const y, cb, cr = 0x7f, 0x7f, 0x7f |
| // r, g, b := color.YCbCrToRGB(y, cb, cr) |
| // r0, g0, b0, _ := color.YCbCr{y, cb, cr}.RGBA() |
| // r1, g1, b1, _ := color.RGBA{r, g, b, 0xff}.RGBA() |
| // fmt.Printf("0x%04x 0x%04x 0x%04x\n", r0, g0, b0) |
| // fmt.Printf("0x%04x 0x%04x 0x%04x\n", r1, g1, b1) |
| // prints: |
| // 0x7e18 0x808d 0x7db9 |
| // 0x7e7e 0x8080 0x7d7d |
| |
| yy1 := int32(c.Y) * 0x10101 |
| cb1 := int32(c.Cb) - 128 |
| cr1 := int32(c.Cr) - 128 |
| |
| // The bit twiddling below is equivalent to |
| // |
| // r := (yy1 + 91881*cr1) >> 8 |
| // if r < 0 { |
| // r = 0 |
| // } else if r > 0xff { |
| // r = 0xffff |
| // } |
| // |
| // but uses fewer branches and is faster. |
| // The code below to compute g and b uses a similar pattern. |
| r := yy1 + 91881*cr1 |
| if uint32(r)&0xff000000 == 0 { |
| r >>= 8 |
| } else { |
| r = ^(r >> 31) & 0xffff |
| } |
| |
| g := yy1 - 22554*cb1 - 46802*cr1 |
| if uint32(g)&0xff000000 == 0 { |
| g >>= 8 |
| } else { |
| g = ^(g >> 31) & 0xffff |
| } |
| |
| b := yy1 + 116130*cb1 |
| if uint32(b)&0xff000000 == 0 { |
| b >>= 8 |
| } else { |
| b = ^(b >> 31) & 0xffff |
| } |
| |
| return uint32(r), uint32(g), uint32(b), 0xffff |
| } |
| |
| // YCbCrModel is the Model for Y'CbCr colors. |
| var YCbCrModel Model = ModelFunc(yCbCrModel) |
| |
| func yCbCrModel(c Color) Color { |
| if _, ok := c.(YCbCr); ok { |
| return c |
| } |
| r, g, b, _ := c.RGBA() |
| y, u, v := RGBToYCbCr(uint8(r>>8), uint8(g>>8), uint8(b>>8)) |
| return YCbCr{y, u, v} |
| } |
| |
| // NYCbCrA represents a non-alpha-premultiplied Y'CbCr-with-alpha color, having |
| // 8 bits each for one luma, two chroma and one alpha component. |
| type NYCbCrA struct { |
| YCbCr |
| A uint8 |
| } |
| |
| func (c NYCbCrA) RGBA() (uint32, uint32, uint32, uint32) { |
| // The first part of this method is the same as YCbCr.RGBA. |
| yy1 := int32(c.Y) * 0x10101 |
| cb1 := int32(c.Cb) - 128 |
| cr1 := int32(c.Cr) - 128 |
| |
| // The bit twiddling below is equivalent to |
| // |
| // r := (yy1 + 91881*cr1) >> 8 |
| // if r < 0 { |
| // r = 0 |
| // } else if r > 0xff { |
| // r = 0xffff |
| // } |
| // |
| // but uses fewer branches and is faster. |
| // The code below to compute g and b uses a similar pattern. |
| r := yy1 + 91881*cr1 |
| if uint32(r)&0xff000000 == 0 { |
| r >>= 8 |
| } else { |
| r = ^(r >> 31) & 0xffff |
| } |
| |
| g := yy1 - 22554*cb1 - 46802*cr1 |
| if uint32(g)&0xff000000 == 0 { |
| g >>= 8 |
| } else { |
| g = ^(g >> 31) & 0xffff |
| } |
| |
| b := yy1 + 116130*cb1 |
| if uint32(b)&0xff000000 == 0 { |
| b >>= 8 |
| } else { |
| b = ^(b >> 31) & 0xffff |
| } |
| |
| // The second part of this method applies the alpha. |
| a := uint32(c.A) * 0x101 |
| return uint32(r) * a / 0xffff, uint32(g) * a / 0xffff, uint32(b) * a / 0xffff, a |
| } |
| |
| // NYCbCrAModel is the Model for non-alpha-premultiplied Y'CbCr-with-alpha |
| // colors. |
| var NYCbCrAModel Model = ModelFunc(nYCbCrAModel) |
| |
| func nYCbCrAModel(c Color) Color { |
| switch c := c.(type) { |
| case NYCbCrA: |
| return c |
| case YCbCr: |
| return NYCbCrA{c, 0xff} |
| } |
| r, g, b, a := c.RGBA() |
| |
| // Convert from alpha-premultiplied to non-alpha-premultiplied. |
| if a != 0 { |
| r = (r * 0xffff) / a |
| g = (g * 0xffff) / a |
| b = (b * 0xffff) / a |
| } |
| |
| y, u, v := RGBToYCbCr(uint8(r>>8), uint8(g>>8), uint8(b>>8)) |
| return NYCbCrA{YCbCr{Y: y, Cb: u, Cr: v}, uint8(a >> 8)} |
| } |
| |
| // RGBToCMYK converts an RGB triple to a CMYK quadruple. |
| func RGBToCMYK(r, g, b uint8) (uint8, uint8, uint8, uint8) { |
| rr := uint32(r) |
| gg := uint32(g) |
| bb := uint32(b) |
| w := rr |
| if w < gg { |
| w = gg |
| } |
| if w < bb { |
| w = bb |
| } |
| if w == 0 { |
| return 0, 0, 0, 0xff |
| } |
| c := (w - rr) * 0xff / w |
| m := (w - gg) * 0xff / w |
| y := (w - bb) * 0xff / w |
| return uint8(c), uint8(m), uint8(y), uint8(0xff - w) |
| } |
| |
| // CMYKToRGB converts a CMYK quadruple to an RGB triple. |
| func CMYKToRGB(c, m, y, k uint8) (uint8, uint8, uint8) { |
| w := 0xffff - uint32(k)*0x101 |
| r := (0xffff - uint32(c)*0x101) * w / 0xffff |
| g := (0xffff - uint32(m)*0x101) * w / 0xffff |
| b := (0xffff - uint32(y)*0x101) * w / 0xffff |
| return uint8(r >> 8), uint8(g >> 8), uint8(b >> 8) |
| } |
| |
| // CMYK represents a fully opaque CMYK color, having 8 bits for each of cyan, |
| // magenta, yellow and black. |
| // |
| // It is not associated with any particular color profile. |
| type CMYK struct { |
| C, M, Y, K uint8 |
| } |
| |
| func (c CMYK) RGBA() (uint32, uint32, uint32, uint32) { |
| // This code is a copy of the CMYKToRGB function above, except that it |
| // returns values in the range [0, 0xffff] instead of [0, 0xff]. |
| |
| w := 0xffff - uint32(c.K)*0x101 |
| r := (0xffff - uint32(c.C)*0x101) * w / 0xffff |
| g := (0xffff - uint32(c.M)*0x101) * w / 0xffff |
| b := (0xffff - uint32(c.Y)*0x101) * w / 0xffff |
| return r, g, b, 0xffff |
| } |
| |
| // CMYKModel is the Model for CMYK colors. |
| var CMYKModel Model = ModelFunc(cmykModel) |
| |
| func cmykModel(c Color) Color { |
| if _, ok := c.(CMYK); ok { |
| return c |
| } |
| r, g, b, _ := c.RGBA() |
| cc, mm, yy, kk := RGBToCMYK(uint8(r>>8), uint8(g>>8), uint8(b>>8)) |
| return CMYK{cc, mm, yy, kk} |
| } |