| // Copyright 2017 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package math |
| |
| /* |
| Inverse of the floating-point error function. |
| */ |
| |
| // This implementation is based on the rational approximation |
| // of percentage points of normal distribution available from |
| // https://www.jstor.org/stable/2347330. |
| |
| const ( |
| // Coefficients for approximation to erf in |x| <= 0.85 |
| a0 = 1.1975323115670912564578e0 |
| a1 = 4.7072688112383978012285e1 |
| a2 = 6.9706266534389598238465e2 |
| a3 = 4.8548868893843886794648e3 |
| a4 = 1.6235862515167575384252e4 |
| a5 = 2.3782041382114385731252e4 |
| a6 = 1.1819493347062294404278e4 |
| a7 = 8.8709406962545514830200e2 |
| b0 = 1.0000000000000000000e0 |
| b1 = 4.2313330701600911252e1 |
| b2 = 6.8718700749205790830e2 |
| b3 = 5.3941960214247511077e3 |
| b4 = 2.1213794301586595867e4 |
| b5 = 3.9307895800092710610e4 |
| b6 = 2.8729085735721942674e4 |
| b7 = 5.2264952788528545610e3 |
| // Coefficients for approximation to erf in 0.85 < |x| <= 1-2*exp(-25) |
| c0 = 1.42343711074968357734e0 |
| c1 = 4.63033784615654529590e0 |
| c2 = 5.76949722146069140550e0 |
| c3 = 3.64784832476320460504e0 |
| c4 = 1.27045825245236838258e0 |
| c5 = 2.41780725177450611770e-1 |
| c6 = 2.27238449892691845833e-2 |
| c7 = 7.74545014278341407640e-4 |
| d0 = 1.4142135623730950488016887e0 |
| d1 = 2.9036514445419946173133295e0 |
| d2 = 2.3707661626024532365971225e0 |
| d3 = 9.7547832001787427186894837e-1 |
| d4 = 2.0945065210512749128288442e-1 |
| d5 = 2.1494160384252876777097297e-2 |
| d6 = 7.7441459065157709165577218e-4 |
| d7 = 1.4859850019840355905497876e-9 |
| // Coefficients for approximation to erf in 1-2*exp(-25) < |x| < 1 |
| e0 = 6.65790464350110377720e0 |
| e1 = 5.46378491116411436990e0 |
| e2 = 1.78482653991729133580e0 |
| e3 = 2.96560571828504891230e-1 |
| e4 = 2.65321895265761230930e-2 |
| e5 = 1.24266094738807843860e-3 |
| e6 = 2.71155556874348757815e-5 |
| e7 = 2.01033439929228813265e-7 |
| f0 = 1.414213562373095048801689e0 |
| f1 = 8.482908416595164588112026e-1 |
| f2 = 1.936480946950659106176712e-1 |
| f3 = 2.103693768272068968719679e-2 |
| f4 = 1.112800997078859844711555e-3 |
| f5 = 2.611088405080593625138020e-5 |
| f6 = 2.010321207683943062279931e-7 |
| f7 = 2.891024605872965461538222e-15 |
| ) |
| |
| // Erfinv returns the inverse error function of x. |
| // |
| // Special cases are: |
| // Erfinv(1) = +Inf |
| // Erfinv(-1) = -Inf |
| // Erfinv(x) = NaN if x < -1 or x > 1 |
| // Erfinv(NaN) = NaN |
| func Erfinv(x float64) float64 { |
| // special cases |
| if IsNaN(x) || x <= -1 || x >= 1 { |
| if x == -1 || x == 1 { |
| return Inf(int(x)) |
| } |
| return NaN() |
| } |
| |
| sign := false |
| if x < 0 { |
| x = -x |
| sign = true |
| } |
| |
| var ans float64 |
| if x <= 0.85 { // |x| <= 0.85 |
| r := 0.180625 - 0.25*x*x |
| z1 := ((((((a7*r+a6)*r+a5)*r+a4)*r+a3)*r+a2)*r+a1)*r + a0 |
| z2 := ((((((b7*r+b6)*r+b5)*r+b4)*r+b3)*r+b2)*r+b1)*r + b0 |
| ans = (x * z1) / z2 |
| } else { |
| var z1, z2 float64 |
| r := Sqrt(Ln2 - Log(1.0-x)) |
| if r <= 5.0 { |
| r -= 1.6 |
| z1 = ((((((c7*r+c6)*r+c5)*r+c4)*r+c3)*r+c2)*r+c1)*r + c0 |
| z2 = ((((((d7*r+d6)*r+d5)*r+d4)*r+d3)*r+d2)*r+d1)*r + d0 |
| } else { |
| r -= 5.0 |
| z1 = ((((((e7*r+e6)*r+e5)*r+e4)*r+e3)*r+e2)*r+e1)*r + e0 |
| z2 = ((((((f7*r+f6)*r+f5)*r+f4)*r+f3)*r+f2)*r+f1)*r + f0 |
| } |
| ans = z1 / z2 |
| } |
| |
| if sign { |
| return -ans |
| } |
| return ans |
| } |
| |
| // Erfcinv returns the inverse of Erfc(x). |
| // |
| // Special cases are: |
| // Erfcinv(0) = +Inf |
| // Erfcinv(2) = -Inf |
| // Erfcinv(x) = NaN if x < 0 or x > 2 |
| // Erfcinv(NaN) = NaN |
| func Erfcinv(x float64) float64 { |
| return Erfinv(1 - x) |
| } |