blob: 7cb65dad0d29ebb55224f8db31639f73f125aea7 [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Malloc small size classes.
//
// See malloc.h for overview.
//
// The size classes are chosen so that rounding an allocation
// request up to the next size class wastes at most 12.5% (1.125x).
//
// Each size class has its own page count that gets allocated
// and chopped up when new objects of the size class are needed.
// That page count is chosen so that chopping up the run of
// pages into objects of the given size wastes at most 12.5% (1.125x)
// of the memory. It is not necessary that the cutoff here be
// the same as above.
//
// The two sources of waste multiply, so the worst possible case
// for the above constraints would be that allocations of some
// size might have a 26.6% (1.266x) overhead.
// In practice, only one of the wastes comes into play for a
// given size (sizes < 512 waste mainly on the round-up,
// sizes > 512 waste mainly on the page chopping).
//
// TODO(rsc): Compute max waste for any given size.
#include "runtime.h"
#include "arch_GOARCH.h"
#include "malloc.h"
#include "textflag.h"
#pragma dataflag NOPTR
int32 runtime·class_to_size[NumSizeClasses];
#pragma dataflag NOPTR
int32 runtime·class_to_allocnpages[NumSizeClasses];
// The SizeToClass lookup is implemented using two arrays,
// one mapping sizes <= 1024 to their class and one mapping
// sizes >= 1024 and <= MaxSmallSize to their class.
// All objects are 8-aligned, so the first array is indexed by
// the size divided by 8 (rounded up). Objects >= 1024 bytes
// are 128-aligned, so the second array is indexed by the
// size divided by 128 (rounded up). The arrays are filled in
// by InitSizes.
#pragma dataflag NOPTR
int8 runtime·size_to_class8[1024/8 + 1];
#pragma dataflag NOPTR
int8 runtime·size_to_class128[(MaxSmallSize-1024)/128 + 1];
void runtime·testdefersizes(void);
int32
runtime·SizeToClass(int32 size)
{
if(size > MaxSmallSize)
runtime·throw("SizeToClass - invalid size");
if(size > 1024-8)
return runtime·size_to_class128[(size-1024+127) >> 7];
return runtime·size_to_class8[(size+7)>>3];
}
void
runtime·InitSizes(void)
{
int32 align, sizeclass, size, nextsize, n;
uint32 i;
uintptr allocsize, npages;
// Initialize the runtime·class_to_size table (and choose class sizes in the process).
runtime·class_to_size[0] = 0;
sizeclass = 1; // 0 means no class
align = 8;
for(size = align; size <= MaxSmallSize; size += align) {
if((size&(size-1)) == 0) { // bump alignment once in a while
if(size >= 2048)
align = 256;
else if(size >= 128)
align = size / 8;
else if(size >= 16)
align = 16; // required for x86 SSE instructions, if we want to use them
}
if((align&(align-1)) != 0)
runtime·throw("InitSizes - bug");
// Make the allocnpages big enough that
// the leftover is less than 1/8 of the total,
// so wasted space is at most 12.5%.
allocsize = PageSize;
while(allocsize%size > allocsize/8)
allocsize += PageSize;
npages = allocsize >> PageShift;
// If the previous sizeclass chose the same
// allocation size and fit the same number of
// objects into the page, we might as well
// use just this size instead of having two
// different sizes.
if(sizeclass > 1 &&
npages == runtime·class_to_allocnpages[sizeclass-1] &&
allocsize/size == allocsize/runtime·class_to_size[sizeclass-1]) {
runtime·class_to_size[sizeclass-1] = size;
continue;
}
runtime·class_to_allocnpages[sizeclass] = npages;
runtime·class_to_size[sizeclass] = size;
sizeclass++;
}
if(sizeclass != NumSizeClasses) {
runtime·printf("sizeclass=%d NumSizeClasses=%d\n", sizeclass, NumSizeClasses);
runtime·throw("InitSizes - bad NumSizeClasses");
}
// Initialize the size_to_class tables.
nextsize = 0;
for (sizeclass = 1; sizeclass < NumSizeClasses; sizeclass++) {
for(; nextsize < 1024 && nextsize <= runtime·class_to_size[sizeclass]; nextsize+=8)
runtime·size_to_class8[nextsize/8] = sizeclass;
if(nextsize >= 1024)
for(; nextsize <= runtime·class_to_size[sizeclass]; nextsize += 128)
runtime·size_to_class128[(nextsize-1024)/128] = sizeclass;
}
// Double-check SizeToClass.
if(0) {
for(n=0; n < MaxSmallSize; n++) {
sizeclass = runtime·SizeToClass(n);
if(sizeclass < 1 || sizeclass >= NumSizeClasses || runtime·class_to_size[sizeclass] < n) {
runtime·printf("size=%d sizeclass=%d runtime·class_to_size=%d\n", n, sizeclass, runtime·class_to_size[sizeclass]);
runtime·printf("incorrect SizeToClass");
goto dump;
}
if(sizeclass > 1 && runtime·class_to_size[sizeclass-1] >= n) {
runtime·printf("size=%d sizeclass=%d runtime·class_to_size=%d\n", n, sizeclass, runtime·class_to_size[sizeclass]);
runtime·printf("SizeToClass too big");
goto dump;
}
}
}
runtime·testdefersizes();
// Copy out for statistics table.
for(i=0; i<nelem(runtime·class_to_size); i++)
mstats.by_size[i].size = runtime·class_to_size[i];
return;
dump:
if(1){
runtime·printf("NumSizeClasses=%d\n", NumSizeClasses);
runtime·printf("runtime·class_to_size:");
for(sizeclass=0; sizeclass<NumSizeClasses; sizeclass++)
runtime·printf(" %d", runtime·class_to_size[sizeclass]);
runtime·printf("\n\n");
runtime·printf("size_to_class8:");
for(i=0; i<nelem(runtime·size_to_class8); i++)
runtime·printf(" %d=>%d(%d)\n", i*8, runtime·size_to_class8[i],
runtime·class_to_size[runtime·size_to_class8[i]]);
runtime·printf("\n");
runtime·printf("size_to_class128:");
for(i=0; i<nelem(runtime·size_to_class128); i++)
runtime·printf(" %d=>%d(%d)\n", i*128, runtime·size_to_class128[i],
runtime·class_to_size[runtime·size_to_class128[i]]);
runtime·printf("\n");
}
runtime·throw("InitSizes failed");
}
// Returns size of the memory block that mallocgc will allocate if you ask for the size.
uintptr
runtime·roundupsize(uintptr size)
{
if(size < MaxSmallSize) {
if(size <= 1024-8)
return runtime·class_to_size[runtime·size_to_class8[(size+7)>>3]];
else
return runtime·class_to_size[runtime·size_to_class128[(size-1024+127) >> 7]];
}
if(size + PageSize < size)
return size;
return ROUND(size, PageSize);
}