|  | // Copyright 2015 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | // Garbage collector: write barriers. | 
|  | // | 
|  | // For the concurrent garbage collector, the Go compiler implements | 
|  | // updates to pointer-valued fields that may be in heap objects by | 
|  | // emitting calls to write barriers. The main write barrier for | 
|  | // individual pointer writes is gcWriteBarrier and is implemented in | 
|  | // assembly. This file contains write barrier entry points for bulk | 
|  | // operations. See also mwbbuf.go. | 
|  |  | 
|  | package runtime | 
|  |  | 
|  | import ( | 
|  | "runtime/internal/sys" | 
|  | "unsafe" | 
|  | ) | 
|  |  | 
|  | // Go uses a hybrid barrier that combines a Yuasa-style deletion | 
|  | // barrier—which shades the object whose reference is being | 
|  | // overwritten—with Dijkstra insertion barrier—which shades the object | 
|  | // whose reference is being written. The insertion part of the barrier | 
|  | // is necessary while the calling goroutine's stack is grey. In | 
|  | // pseudocode, the barrier is: | 
|  | // | 
|  | //     writePointer(slot, ptr): | 
|  | //         shade(*slot) | 
|  | //         if current stack is grey: | 
|  | //             shade(ptr) | 
|  | //         *slot = ptr | 
|  | // | 
|  | // slot is the destination in Go code. | 
|  | // ptr is the value that goes into the slot in Go code. | 
|  | // | 
|  | // Shade indicates that it has seen a white pointer by adding the referent | 
|  | // to wbuf as well as marking it. | 
|  | // | 
|  | // The two shades and the condition work together to prevent a mutator | 
|  | // from hiding an object from the garbage collector: | 
|  | // | 
|  | // 1. shade(*slot) prevents a mutator from hiding an object by moving | 
|  | // the sole pointer to it from the heap to its stack. If it attempts | 
|  | // to unlink an object from the heap, this will shade it. | 
|  | // | 
|  | // 2. shade(ptr) prevents a mutator from hiding an object by moving | 
|  | // the sole pointer to it from its stack into a black object in the | 
|  | // heap. If it attempts to install the pointer into a black object, | 
|  | // this will shade it. | 
|  | // | 
|  | // 3. Once a goroutine's stack is black, the shade(ptr) becomes | 
|  | // unnecessary. shade(ptr) prevents hiding an object by moving it from | 
|  | // the stack to the heap, but this requires first having a pointer | 
|  | // hidden on the stack. Immediately after a stack is scanned, it only | 
|  | // points to shaded objects, so it's not hiding anything, and the | 
|  | // shade(*slot) prevents it from hiding any other pointers on its | 
|  | // stack. | 
|  | // | 
|  | // For a detailed description of this barrier and proof of | 
|  | // correctness, see https://github.com/golang/proposal/blob/master/design/17503-eliminate-rescan.md | 
|  | // | 
|  | // | 
|  | // | 
|  | // Dealing with memory ordering: | 
|  | // | 
|  | // Both the Yuasa and Dijkstra barriers can be made conditional on the | 
|  | // color of the object containing the slot. We chose not to make these | 
|  | // conditional because the cost of ensuring that the object holding | 
|  | // the slot doesn't concurrently change color without the mutator | 
|  | // noticing seems prohibitive. | 
|  | // | 
|  | // Consider the following example where the mutator writes into | 
|  | // a slot and then loads the slot's mark bit while the GC thread | 
|  | // writes to the slot's mark bit and then as part of scanning reads | 
|  | // the slot. | 
|  | // | 
|  | // Initially both [slot] and [slotmark] are 0 (nil) | 
|  | // Mutator thread          GC thread | 
|  | // st [slot], ptr          st [slotmark], 1 | 
|  | // | 
|  | // ld r1, [slotmark]       ld r2, [slot] | 
|  | // | 
|  | // Without an expensive memory barrier between the st and the ld, the final | 
|  | // result on most HW (including 386/amd64) can be r1==r2==0. This is a classic | 
|  | // example of what can happen when loads are allowed to be reordered with older | 
|  | // stores (avoiding such reorderings lies at the heart of the classic | 
|  | // Peterson/Dekker algorithms for mutual exclusion). Rather than require memory | 
|  | // barriers, which will slow down both the mutator and the GC, we always grey | 
|  | // the ptr object regardless of the slot's color. | 
|  | // | 
|  | // Another place where we intentionally omit memory barriers is when | 
|  | // accessing mheap_.arena_used to check if a pointer points into the | 
|  | // heap. On relaxed memory machines, it's possible for a mutator to | 
|  | // extend the size of the heap by updating arena_used, allocate an | 
|  | // object from this new region, and publish a pointer to that object, | 
|  | // but for tracing running on another processor to observe the pointer | 
|  | // but use the old value of arena_used. In this case, tracing will not | 
|  | // mark the object, even though it's reachable. However, the mutator | 
|  | // is guaranteed to execute a write barrier when it publishes the | 
|  | // pointer, so it will take care of marking the object. A general | 
|  | // consequence of this is that the garbage collector may cache the | 
|  | // value of mheap_.arena_used. (See issue #9984.) | 
|  | // | 
|  | // | 
|  | // Stack writes: | 
|  | // | 
|  | // The compiler omits write barriers for writes to the current frame, | 
|  | // but if a stack pointer has been passed down the call stack, the | 
|  | // compiler will generate a write barrier for writes through that | 
|  | // pointer (because it doesn't know it's not a heap pointer). | 
|  | // | 
|  | // One might be tempted to ignore the write barrier if slot points | 
|  | // into to the stack. Don't do it! Mark termination only re-scans | 
|  | // frames that have potentially been active since the concurrent scan, | 
|  | // so it depends on write barriers to track changes to pointers in | 
|  | // stack frames that have not been active. | 
|  | // | 
|  | // | 
|  | // Global writes: | 
|  | // | 
|  | // The Go garbage collector requires write barriers when heap pointers | 
|  | // are stored in globals. Many garbage collectors ignore writes to | 
|  | // globals and instead pick up global -> heap pointers during | 
|  | // termination. This increases pause time, so we instead rely on write | 
|  | // barriers for writes to globals so that we don't have to rescan | 
|  | // global during mark termination. | 
|  | // | 
|  | // | 
|  | // Publication ordering: | 
|  | // | 
|  | // The write barrier is *pre-publication*, meaning that the write | 
|  | // barrier happens prior to the *slot = ptr write that may make ptr | 
|  | // reachable by some goroutine that currently cannot reach it. | 
|  | // | 
|  | // | 
|  | // Signal handler pointer writes: | 
|  | // | 
|  | // In general, the signal handler cannot safely invoke the write | 
|  | // barrier because it may run without a P or even during the write | 
|  | // barrier. | 
|  | // | 
|  | // There is exactly one exception: profbuf.go omits a barrier during | 
|  | // signal handler profile logging. That's safe only because of the | 
|  | // deletion barrier. See profbuf.go for a detailed argument. If we | 
|  | // remove the deletion barrier, we'll have to work out a new way to | 
|  | // handle the profile logging. | 
|  |  | 
|  | // typedmemmove copies a value of type t to dst from src. | 
|  | // Must be nosplit, see #16026. | 
|  | // | 
|  | // TODO: Perfect for go:nosplitrec since we can't have a safe point | 
|  | // anywhere in the bulk barrier or memmove. | 
|  | // | 
|  | //go:nosplit | 
|  | func typedmemmove(typ *_type, dst, src unsafe.Pointer) { | 
|  | if dst == src { | 
|  | return | 
|  | } | 
|  | if writeBarrier.needed && typ.ptrdata != 0 { | 
|  | bulkBarrierPreWrite(uintptr(dst), uintptr(src), typ.ptrdata) | 
|  | } | 
|  | // There's a race here: if some other goroutine can write to | 
|  | // src, it may change some pointer in src after we've | 
|  | // performed the write barrier but before we perform the | 
|  | // memory copy. This safe because the write performed by that | 
|  | // other goroutine must also be accompanied by a write | 
|  | // barrier, so at worst we've unnecessarily greyed the old | 
|  | // pointer that was in src. | 
|  | memmove(dst, src, typ.size) | 
|  | if writeBarrier.cgo { | 
|  | cgoCheckMemmove(typ, dst, src, 0, typ.size) | 
|  | } | 
|  | } | 
|  |  | 
|  | //go:linkname reflect_typedmemmove reflect.typedmemmove | 
|  | func reflect_typedmemmove(typ *_type, dst, src unsafe.Pointer) { | 
|  | if raceenabled { | 
|  | raceWriteObjectPC(typ, dst, getcallerpc(), funcPC(reflect_typedmemmove)) | 
|  | raceReadObjectPC(typ, src, getcallerpc(), funcPC(reflect_typedmemmove)) | 
|  | } | 
|  | if msanenabled { | 
|  | msanwrite(dst, typ.size) | 
|  | msanread(src, typ.size) | 
|  | } | 
|  | typedmemmove(typ, dst, src) | 
|  | } | 
|  |  | 
|  | //go:linkname reflectlite_typedmemmove internal/reflectlite.typedmemmove | 
|  | func reflectlite_typedmemmove(typ *_type, dst, src unsafe.Pointer) { | 
|  | reflect_typedmemmove(typ, dst, src) | 
|  | } | 
|  |  | 
|  | // typedmemmovepartial is like typedmemmove but assumes that | 
|  | // dst and src point off bytes into the value and only copies size bytes. | 
|  | // off must be a multiple of sys.PtrSize. | 
|  | //go:linkname reflect_typedmemmovepartial reflect.typedmemmovepartial | 
|  | func reflect_typedmemmovepartial(typ *_type, dst, src unsafe.Pointer, off, size uintptr) { | 
|  | if writeBarrier.needed && typ.ptrdata > off && size >= sys.PtrSize { | 
|  | if off&(sys.PtrSize-1) != 0 { | 
|  | panic("reflect: internal error: misaligned offset") | 
|  | } | 
|  | pwsize := alignDown(size, sys.PtrSize) | 
|  | if poff := typ.ptrdata - off; pwsize > poff { | 
|  | pwsize = poff | 
|  | } | 
|  | bulkBarrierPreWrite(uintptr(dst), uintptr(src), pwsize) | 
|  | } | 
|  |  | 
|  | memmove(dst, src, size) | 
|  | if writeBarrier.cgo { | 
|  | cgoCheckMemmove(typ, dst, src, off, size) | 
|  | } | 
|  | } | 
|  |  | 
|  | // reflectcallmove is invoked by reflectcall to copy the return values | 
|  | // out of the stack and into the heap, invoking the necessary write | 
|  | // barriers. dst, src, and size describe the return value area to | 
|  | // copy. typ describes the entire frame (not just the return values). | 
|  | // typ may be nil, which indicates write barriers are not needed. | 
|  | // | 
|  | // It must be nosplit and must only call nosplit functions because the | 
|  | // stack map of reflectcall is wrong. | 
|  | // | 
|  | //go:nosplit | 
|  | func reflectcallmove(typ *_type, dst, src unsafe.Pointer, size uintptr) { | 
|  | if writeBarrier.needed && typ != nil && typ.ptrdata != 0 && size >= sys.PtrSize { | 
|  | bulkBarrierPreWrite(uintptr(dst), uintptr(src), size) | 
|  | } | 
|  | memmove(dst, src, size) | 
|  | } | 
|  |  | 
|  | //go:nosplit | 
|  | func typedslicecopy(typ *_type, dstPtr unsafe.Pointer, dstLen int, srcPtr unsafe.Pointer, srcLen int) int { | 
|  | n := dstLen | 
|  | if n > srcLen { | 
|  | n = srcLen | 
|  | } | 
|  | if n == 0 { | 
|  | return 0 | 
|  | } | 
|  |  | 
|  | // The compiler emits calls to typedslicecopy before | 
|  | // instrumentation runs, so unlike the other copying and | 
|  | // assignment operations, it's not instrumented in the calling | 
|  | // code and needs its own instrumentation. | 
|  | if raceenabled { | 
|  | callerpc := getcallerpc() | 
|  | pc := funcPC(slicecopy) | 
|  | racewriterangepc(dstPtr, uintptr(n)*typ.size, callerpc, pc) | 
|  | racereadrangepc(srcPtr, uintptr(n)*typ.size, callerpc, pc) | 
|  | } | 
|  | if msanenabled { | 
|  | msanwrite(dstPtr, uintptr(n)*typ.size) | 
|  | msanread(srcPtr, uintptr(n)*typ.size) | 
|  | } | 
|  |  | 
|  | if writeBarrier.cgo { | 
|  | cgoCheckSliceCopy(typ, dstPtr, srcPtr, n) | 
|  | } | 
|  |  | 
|  | if dstPtr == srcPtr { | 
|  | return n | 
|  | } | 
|  |  | 
|  | // Note: No point in checking typ.ptrdata here: | 
|  | // compiler only emits calls to typedslicecopy for types with pointers, | 
|  | // and growslice and reflect_typedslicecopy check for pointers | 
|  | // before calling typedslicecopy. | 
|  | size := uintptr(n) * typ.size | 
|  | if writeBarrier.needed { | 
|  | pwsize := size - typ.size + typ.ptrdata | 
|  | bulkBarrierPreWrite(uintptr(dstPtr), uintptr(srcPtr), pwsize) | 
|  | } | 
|  | // See typedmemmove for a discussion of the race between the | 
|  | // barrier and memmove. | 
|  | memmove(dstPtr, srcPtr, size) | 
|  | return n | 
|  | } | 
|  |  | 
|  | //go:linkname reflect_typedslicecopy reflect.typedslicecopy | 
|  | func reflect_typedslicecopy(elemType *_type, dst, src slice) int { | 
|  | if elemType.ptrdata == 0 { | 
|  | n := dst.len | 
|  | if n > src.len { | 
|  | n = src.len | 
|  | } | 
|  | if n == 0 { | 
|  | return 0 | 
|  | } | 
|  |  | 
|  | size := uintptr(n) * elemType.size | 
|  | if raceenabled { | 
|  | callerpc := getcallerpc() | 
|  | pc := funcPC(reflect_typedslicecopy) | 
|  | racewriterangepc(dst.array, size, callerpc, pc) | 
|  | racereadrangepc(src.array, size, callerpc, pc) | 
|  | } | 
|  | if msanenabled { | 
|  | msanwrite(dst.array, size) | 
|  | msanread(src.array, size) | 
|  | } | 
|  |  | 
|  | memmove(dst.array, src.array, size) | 
|  | return n | 
|  | } | 
|  | return typedslicecopy(elemType, dst.array, dst.len, src.array, src.len) | 
|  | } | 
|  |  | 
|  | // typedmemclr clears the typed memory at ptr with type typ. The | 
|  | // memory at ptr must already be initialized (and hence in type-safe | 
|  | // state). If the memory is being initialized for the first time, see | 
|  | // memclrNoHeapPointers. | 
|  | // | 
|  | // If the caller knows that typ has pointers, it can alternatively | 
|  | // call memclrHasPointers. | 
|  | // | 
|  | //go:nosplit | 
|  | func typedmemclr(typ *_type, ptr unsafe.Pointer) { | 
|  | if writeBarrier.needed && typ.ptrdata != 0 { | 
|  | bulkBarrierPreWrite(uintptr(ptr), 0, typ.ptrdata) | 
|  | } | 
|  | memclrNoHeapPointers(ptr, typ.size) | 
|  | } | 
|  |  | 
|  | //go:linkname reflect_typedmemclr reflect.typedmemclr | 
|  | func reflect_typedmemclr(typ *_type, ptr unsafe.Pointer) { | 
|  | typedmemclr(typ, ptr) | 
|  | } | 
|  |  | 
|  | //go:linkname reflect_typedmemclrpartial reflect.typedmemclrpartial | 
|  | func reflect_typedmemclrpartial(typ *_type, ptr unsafe.Pointer, off, size uintptr) { | 
|  | if writeBarrier.needed && typ.ptrdata != 0 { | 
|  | bulkBarrierPreWrite(uintptr(ptr), 0, size) | 
|  | } | 
|  | memclrNoHeapPointers(ptr, size) | 
|  | } | 
|  |  | 
|  | // memclrHasPointers clears n bytes of typed memory starting at ptr. | 
|  | // The caller must ensure that the type of the object at ptr has | 
|  | // pointers, usually by checking typ.ptrdata. However, ptr | 
|  | // does not have to point to the start of the allocation. | 
|  | // | 
|  | //go:nosplit | 
|  | func memclrHasPointers(ptr unsafe.Pointer, n uintptr) { | 
|  | bulkBarrierPreWrite(uintptr(ptr), 0, n) | 
|  | memclrNoHeapPointers(ptr, n) | 
|  | } |