| // Code generated by go run gen.go; DO NOT EDIT. |
| |
| package imageutil |
| |
| import ( |
| "image" |
| ) |
| |
| // DrawYCbCr draws the YCbCr source image on the RGBA destination image with |
| // r.Min in dst aligned with sp in src. It reports whether the draw was |
| // successful. If it returns false, no dst pixels were changed. |
| // |
| // This function assumes that r is entirely within dst's bounds and the |
| // translation of r from dst coordinate space to src coordinate space is |
| // entirely within src's bounds. |
| func DrawYCbCr(dst *image.RGBA, r image.Rectangle, src *image.YCbCr, sp image.Point) (ok bool) { |
| // This function exists in the image/internal/imageutil package because it |
| // is needed by both the image/draw and image/jpeg packages, but it doesn't |
| // seem right for one of those two to depend on the other. |
| // |
| // Another option is to have this code be exported in the image package, |
| // but we'd need to make sure we're totally happy with the API (for the |
| // rest of Go 1 compatibility), and decide if we want to have a more |
| // general purpose DrawToRGBA method for other image types. One possibility |
| // is: |
| // |
| // func (src *YCbCr) CopyToRGBA(dst *RGBA, dr, sr Rectangle) (effectiveDr, effectiveSr Rectangle) |
| // |
| // in the spirit of the built-in copy function for 1-dimensional slices, |
| // that also allowed a CopyFromRGBA method if needed. |
| |
| x0 := (r.Min.X - dst.Rect.Min.X) * 4 |
| x1 := (r.Max.X - dst.Rect.Min.X) * 4 |
| y0 := r.Min.Y - dst.Rect.Min.Y |
| y1 := r.Max.Y - dst.Rect.Min.Y |
| switch src.SubsampleRatio { |
| |
| case image.YCbCrSubsampleRatio444: |
| for y, sy := y0, sp.Y; y != y1; y, sy = y+1, sy+1 { |
| dpix := dst.Pix[y*dst.Stride:] |
| yi := (sy-src.Rect.Min.Y)*src.YStride + (sp.X - src.Rect.Min.X) |
| |
| ci := (sy-src.Rect.Min.Y)*src.CStride + (sp.X - src.Rect.Min.X) |
| for x := x0; x != x1; x, yi, ci = x+4, yi+1, ci+1 { |
| |
| // This is an inline version of image/color/ycbcr.go's func YCbCrToRGB. |
| yy1 := int32(src.Y[yi]) * 0x10101 |
| cb1 := int32(src.Cb[ci]) - 128 |
| cr1 := int32(src.Cr[ci]) - 128 |
| |
| // The bit twiddling below is equivalent to |
| // |
| // r := (yy1 + 91881*cr1) >> 16 |
| // if r < 0 { |
| // r = 0 |
| // } else if r > 0xff { |
| // r = ^int32(0) |
| // } |
| // |
| // but uses fewer branches and is faster. |
| // Note that the uint8 type conversion in the return |
| // statement will convert ^int32(0) to 0xff. |
| // The code below to compute g and b uses a similar pattern. |
| r := yy1 + 91881*cr1 |
| if uint32(r)&0xff000000 == 0 { |
| r >>= 16 |
| } else { |
| r = ^(r >> 31) |
| } |
| |
| g := yy1 - 22554*cb1 - 46802*cr1 |
| if uint32(g)&0xff000000 == 0 { |
| g >>= 16 |
| } else { |
| g = ^(g >> 31) |
| } |
| |
| b := yy1 + 116130*cb1 |
| if uint32(b)&0xff000000 == 0 { |
| b >>= 16 |
| } else { |
| b = ^(b >> 31) |
| } |
| |
| // use a temp slice to hint to the compiler that a single bounds check suffices |
| rgba := dpix[x : x+4 : len(dpix)] |
| rgba[0] = uint8(r) |
| rgba[1] = uint8(g) |
| rgba[2] = uint8(b) |
| rgba[3] = 255 |
| } |
| } |
| |
| case image.YCbCrSubsampleRatio422: |
| for y, sy := y0, sp.Y; y != y1; y, sy = y+1, sy+1 { |
| dpix := dst.Pix[y*dst.Stride:] |
| yi := (sy-src.Rect.Min.Y)*src.YStride + (sp.X - src.Rect.Min.X) |
| |
| ciBase := (sy-src.Rect.Min.Y)*src.CStride - src.Rect.Min.X/2 |
| for x, sx := x0, sp.X; x != x1; x, sx, yi = x+4, sx+1, yi+1 { |
| ci := ciBase + sx/2 |
| |
| // This is an inline version of image/color/ycbcr.go's func YCbCrToRGB. |
| yy1 := int32(src.Y[yi]) * 0x10101 |
| cb1 := int32(src.Cb[ci]) - 128 |
| cr1 := int32(src.Cr[ci]) - 128 |
| |
| // The bit twiddling below is equivalent to |
| // |
| // r := (yy1 + 91881*cr1) >> 16 |
| // if r < 0 { |
| // r = 0 |
| // } else if r > 0xff { |
| // r = ^int32(0) |
| // } |
| // |
| // but uses fewer branches and is faster. |
| // Note that the uint8 type conversion in the return |
| // statement will convert ^int32(0) to 0xff. |
| // The code below to compute g and b uses a similar pattern. |
| r := yy1 + 91881*cr1 |
| if uint32(r)&0xff000000 == 0 { |
| r >>= 16 |
| } else { |
| r = ^(r >> 31) |
| } |
| |
| g := yy1 - 22554*cb1 - 46802*cr1 |
| if uint32(g)&0xff000000 == 0 { |
| g >>= 16 |
| } else { |
| g = ^(g >> 31) |
| } |
| |
| b := yy1 + 116130*cb1 |
| if uint32(b)&0xff000000 == 0 { |
| b >>= 16 |
| } else { |
| b = ^(b >> 31) |
| } |
| |
| // use a temp slice to hint to the compiler that a single bounds check suffices |
| rgba := dpix[x : x+4 : len(dpix)] |
| rgba[0] = uint8(r) |
| rgba[1] = uint8(g) |
| rgba[2] = uint8(b) |
| rgba[3] = 255 |
| } |
| } |
| |
| case image.YCbCrSubsampleRatio420: |
| for y, sy := y0, sp.Y; y != y1; y, sy = y+1, sy+1 { |
| dpix := dst.Pix[y*dst.Stride:] |
| yi := (sy-src.Rect.Min.Y)*src.YStride + (sp.X - src.Rect.Min.X) |
| |
| ciBase := (sy/2-src.Rect.Min.Y/2)*src.CStride - src.Rect.Min.X/2 |
| for x, sx := x0, sp.X; x != x1; x, sx, yi = x+4, sx+1, yi+1 { |
| ci := ciBase + sx/2 |
| |
| // This is an inline version of image/color/ycbcr.go's func YCbCrToRGB. |
| yy1 := int32(src.Y[yi]) * 0x10101 |
| cb1 := int32(src.Cb[ci]) - 128 |
| cr1 := int32(src.Cr[ci]) - 128 |
| |
| // The bit twiddling below is equivalent to |
| // |
| // r := (yy1 + 91881*cr1) >> 16 |
| // if r < 0 { |
| // r = 0 |
| // } else if r > 0xff { |
| // r = ^int32(0) |
| // } |
| // |
| // but uses fewer branches and is faster. |
| // Note that the uint8 type conversion in the return |
| // statement will convert ^int32(0) to 0xff. |
| // The code below to compute g and b uses a similar pattern. |
| r := yy1 + 91881*cr1 |
| if uint32(r)&0xff000000 == 0 { |
| r >>= 16 |
| } else { |
| r = ^(r >> 31) |
| } |
| |
| g := yy1 - 22554*cb1 - 46802*cr1 |
| if uint32(g)&0xff000000 == 0 { |
| g >>= 16 |
| } else { |
| g = ^(g >> 31) |
| } |
| |
| b := yy1 + 116130*cb1 |
| if uint32(b)&0xff000000 == 0 { |
| b >>= 16 |
| } else { |
| b = ^(b >> 31) |
| } |
| |
| // use a temp slice to hint to the compiler that a single bounds check suffices |
| rgba := dpix[x : x+4 : len(dpix)] |
| rgba[0] = uint8(r) |
| rgba[1] = uint8(g) |
| rgba[2] = uint8(b) |
| rgba[3] = 255 |
| } |
| } |
| |
| case image.YCbCrSubsampleRatio440: |
| for y, sy := y0, sp.Y; y != y1; y, sy = y+1, sy+1 { |
| dpix := dst.Pix[y*dst.Stride:] |
| yi := (sy-src.Rect.Min.Y)*src.YStride + (sp.X - src.Rect.Min.X) |
| |
| ci := (sy/2-src.Rect.Min.Y/2)*src.CStride + (sp.X - src.Rect.Min.X) |
| for x := x0; x != x1; x, yi, ci = x+4, yi+1, ci+1 { |
| |
| // This is an inline version of image/color/ycbcr.go's func YCbCrToRGB. |
| yy1 := int32(src.Y[yi]) * 0x10101 |
| cb1 := int32(src.Cb[ci]) - 128 |
| cr1 := int32(src.Cr[ci]) - 128 |
| |
| // The bit twiddling below is equivalent to |
| // |
| // r := (yy1 + 91881*cr1) >> 16 |
| // if r < 0 { |
| // r = 0 |
| // } else if r > 0xff { |
| // r = ^int32(0) |
| // } |
| // |
| // but uses fewer branches and is faster. |
| // Note that the uint8 type conversion in the return |
| // statement will convert ^int32(0) to 0xff. |
| // The code below to compute g and b uses a similar pattern. |
| r := yy1 + 91881*cr1 |
| if uint32(r)&0xff000000 == 0 { |
| r >>= 16 |
| } else { |
| r = ^(r >> 31) |
| } |
| |
| g := yy1 - 22554*cb1 - 46802*cr1 |
| if uint32(g)&0xff000000 == 0 { |
| g >>= 16 |
| } else { |
| g = ^(g >> 31) |
| } |
| |
| b := yy1 + 116130*cb1 |
| if uint32(b)&0xff000000 == 0 { |
| b >>= 16 |
| } else { |
| b = ^(b >> 31) |
| } |
| |
| // use a temp slice to hint to the compiler that a single bounds check suffices |
| rgba := dpix[x : x+4 : len(dpix)] |
| rgba[0] = uint8(r) |
| rgba[1] = uint8(g) |
| rgba[2] = uint8(b) |
| rgba[3] = 255 |
| } |
| } |
| |
| default: |
| return false |
| } |
| return true |
| } |