| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Package image implements a basic 2-D image library. |
| // |
| // The fundamental interface is called Image. An Image contains colors, which |
| // are described in the image/color package. |
| // |
| // Values of the Image interface are created either by calling functions such |
| // as NewRGBA and NewPaletted, or by calling Decode on an io.Reader containing |
| // image data in a format such as GIF, JPEG or PNG. Decoding any particular |
| // image format requires the prior registration of a decoder function. |
| // Registration is typically automatic as a side effect of initializing that |
| // format's package so that, to decode a PNG image, it suffices to have |
| // import _ "image/png" |
| // in a program's main package. The _ means to import a package purely for its |
| // initialization side effects. |
| // |
| // See "The Go image package" for more details: |
| // https://golang.org/doc/articles/image_package.html |
| package image |
| |
| import ( |
| "image/color" |
| ) |
| |
| // Config holds an image's color model and dimensions. |
| type Config struct { |
| ColorModel color.Model |
| Width, Height int |
| } |
| |
| // Image is a finite rectangular grid of color.Color values taken from a color |
| // model. |
| type Image interface { |
| // ColorModel returns the Image's color model. |
| ColorModel() color.Model |
| // Bounds returns the domain for which At can return non-zero color. |
| // The bounds do not necessarily contain the point (0, 0). |
| Bounds() Rectangle |
| // At returns the color of the pixel at (x, y). |
| // At(Bounds().Min.X, Bounds().Min.Y) returns the upper-left pixel of the grid. |
| // At(Bounds().Max.X-1, Bounds().Max.Y-1) returns the lower-right one. |
| At(x, y int) color.Color |
| } |
| |
| // PalettedImage is an image whose colors may come from a limited palette. |
| // If m is a PalettedImage and m.ColorModel() returns a color.Palette p, |
| // then m.At(x, y) should be equivalent to p[m.ColorIndexAt(x, y)]. If m's |
| // color model is not a color.Palette, then ColorIndexAt's behavior is |
| // undefined. |
| type PalettedImage interface { |
| // ColorIndexAt returns the palette index of the pixel at (x, y). |
| ColorIndexAt(x, y int) uint8 |
| Image |
| } |
| |
| // pixelBufferLength returns the length of the []uint8 typed Pix slice field |
| // for the NewXxx functions. Conceptually, this is just (bpp * width * height), |
| // but this function panics if at least one of those is negative or if the |
| // computation would overflow the int type. |
| // |
| // This panics instead of returning an error because of backwards |
| // compatibility. The NewXxx functions do not return an error. |
| func pixelBufferLength(bytesPerPixel int, r Rectangle, imageTypeName string) int { |
| totalLength := mul3NonNeg(bytesPerPixel, r.Dx(), r.Dy()) |
| if totalLength < 0 { |
| panic("image: New" + imageTypeName + " Rectangle has huge or negative dimensions") |
| } |
| return totalLength |
| } |
| |
| // RGBA is an in-memory image whose At method returns color.RGBA values. |
| type RGBA struct { |
| // Pix holds the image's pixels, in R, G, B, A order. The pixel at |
| // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*4]. |
| Pix []uint8 |
| // Stride is the Pix stride (in bytes) between vertically adjacent pixels. |
| Stride int |
| // Rect is the image's bounds. |
| Rect Rectangle |
| } |
| |
| func (p *RGBA) ColorModel() color.Model { return color.RGBAModel } |
| |
| func (p *RGBA) Bounds() Rectangle { return p.Rect } |
| |
| func (p *RGBA) At(x, y int) color.Color { |
| return p.RGBAAt(x, y) |
| } |
| |
| func (p *RGBA) RGBAAt(x, y int) color.RGBA { |
| if !(Point{x, y}.In(p.Rect)) { |
| return color.RGBA{} |
| } |
| i := p.PixOffset(x, y) |
| s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 |
| return color.RGBA{s[0], s[1], s[2], s[3]} |
| } |
| |
| // PixOffset returns the index of the first element of Pix that corresponds to |
| // the pixel at (x, y). |
| func (p *RGBA) PixOffset(x, y int) int { |
| return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4 |
| } |
| |
| func (p *RGBA) Set(x, y int, c color.Color) { |
| if !(Point{x, y}.In(p.Rect)) { |
| return |
| } |
| i := p.PixOffset(x, y) |
| c1 := color.RGBAModel.Convert(c).(color.RGBA) |
| s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 |
| s[0] = c1.R |
| s[1] = c1.G |
| s[2] = c1.B |
| s[3] = c1.A |
| } |
| |
| func (p *RGBA) SetRGBA(x, y int, c color.RGBA) { |
| if !(Point{x, y}.In(p.Rect)) { |
| return |
| } |
| i := p.PixOffset(x, y) |
| s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 |
| s[0] = c.R |
| s[1] = c.G |
| s[2] = c.B |
| s[3] = c.A |
| } |
| |
| // SubImage returns an image representing the portion of the image p visible |
| // through r. The returned value shares pixels with the original image. |
| func (p *RGBA) SubImage(r Rectangle) Image { |
| r = r.Intersect(p.Rect) |
| // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside |
| // either r1 or r2 if the intersection is empty. Without explicitly checking for |
| // this, the Pix[i:] expression below can panic. |
| if r.Empty() { |
| return &RGBA{} |
| } |
| i := p.PixOffset(r.Min.X, r.Min.Y) |
| return &RGBA{ |
| Pix: p.Pix[i:], |
| Stride: p.Stride, |
| Rect: r, |
| } |
| } |
| |
| // Opaque scans the entire image and reports whether it is fully opaque. |
| func (p *RGBA) Opaque() bool { |
| if p.Rect.Empty() { |
| return true |
| } |
| i0, i1 := 3, p.Rect.Dx()*4 |
| for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { |
| for i := i0; i < i1; i += 4 { |
| if p.Pix[i] != 0xff { |
| return false |
| } |
| } |
| i0 += p.Stride |
| i1 += p.Stride |
| } |
| return true |
| } |
| |
| // NewRGBA returns a new RGBA image with the given bounds. |
| func NewRGBA(r Rectangle) *RGBA { |
| return &RGBA{ |
| Pix: make([]uint8, pixelBufferLength(4, r, "RGBA")), |
| Stride: 4 * r.Dx(), |
| Rect: r, |
| } |
| } |
| |
| // RGBA64 is an in-memory image whose At method returns color.RGBA64 values. |
| type RGBA64 struct { |
| // Pix holds the image's pixels, in R, G, B, A order and big-endian format. The pixel at |
| // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*8]. |
| Pix []uint8 |
| // Stride is the Pix stride (in bytes) between vertically adjacent pixels. |
| Stride int |
| // Rect is the image's bounds. |
| Rect Rectangle |
| } |
| |
| func (p *RGBA64) ColorModel() color.Model { return color.RGBA64Model } |
| |
| func (p *RGBA64) Bounds() Rectangle { return p.Rect } |
| |
| func (p *RGBA64) At(x, y int) color.Color { |
| return p.RGBA64At(x, y) |
| } |
| |
| func (p *RGBA64) RGBA64At(x, y int) color.RGBA64 { |
| if !(Point{x, y}.In(p.Rect)) { |
| return color.RGBA64{} |
| } |
| i := p.PixOffset(x, y) |
| s := p.Pix[i : i+8 : i+8] // Small cap improves performance, see https://golang.org/issue/27857 |
| return color.RGBA64{ |
| uint16(s[0])<<8 | uint16(s[1]), |
| uint16(s[2])<<8 | uint16(s[3]), |
| uint16(s[4])<<8 | uint16(s[5]), |
| uint16(s[6])<<8 | uint16(s[7]), |
| } |
| } |
| |
| // PixOffset returns the index of the first element of Pix that corresponds to |
| // the pixel at (x, y). |
| func (p *RGBA64) PixOffset(x, y int) int { |
| return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*8 |
| } |
| |
| func (p *RGBA64) Set(x, y int, c color.Color) { |
| if !(Point{x, y}.In(p.Rect)) { |
| return |
| } |
| i := p.PixOffset(x, y) |
| c1 := color.RGBA64Model.Convert(c).(color.RGBA64) |
| s := p.Pix[i : i+8 : i+8] // Small cap improves performance, see https://golang.org/issue/27857 |
| s[0] = uint8(c1.R >> 8) |
| s[1] = uint8(c1.R) |
| s[2] = uint8(c1.G >> 8) |
| s[3] = uint8(c1.G) |
| s[4] = uint8(c1.B >> 8) |
| s[5] = uint8(c1.B) |
| s[6] = uint8(c1.A >> 8) |
| s[7] = uint8(c1.A) |
| } |
| |
| func (p *RGBA64) SetRGBA64(x, y int, c color.RGBA64) { |
| if !(Point{x, y}.In(p.Rect)) { |
| return |
| } |
| i := p.PixOffset(x, y) |
| s := p.Pix[i : i+8 : i+8] // Small cap improves performance, see https://golang.org/issue/27857 |
| s[0] = uint8(c.R >> 8) |
| s[1] = uint8(c.R) |
| s[2] = uint8(c.G >> 8) |
| s[3] = uint8(c.G) |
| s[4] = uint8(c.B >> 8) |
| s[5] = uint8(c.B) |
| s[6] = uint8(c.A >> 8) |
| s[7] = uint8(c.A) |
| } |
| |
| // SubImage returns an image representing the portion of the image p visible |
| // through r. The returned value shares pixels with the original image. |
| func (p *RGBA64) SubImage(r Rectangle) Image { |
| r = r.Intersect(p.Rect) |
| // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside |
| // either r1 or r2 if the intersection is empty. Without explicitly checking for |
| // this, the Pix[i:] expression below can panic. |
| if r.Empty() { |
| return &RGBA64{} |
| } |
| i := p.PixOffset(r.Min.X, r.Min.Y) |
| return &RGBA64{ |
| Pix: p.Pix[i:], |
| Stride: p.Stride, |
| Rect: r, |
| } |
| } |
| |
| // Opaque scans the entire image and reports whether it is fully opaque. |
| func (p *RGBA64) Opaque() bool { |
| if p.Rect.Empty() { |
| return true |
| } |
| i0, i1 := 6, p.Rect.Dx()*8 |
| for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { |
| for i := i0; i < i1; i += 8 { |
| if p.Pix[i+0] != 0xff || p.Pix[i+1] != 0xff { |
| return false |
| } |
| } |
| i0 += p.Stride |
| i1 += p.Stride |
| } |
| return true |
| } |
| |
| // NewRGBA64 returns a new RGBA64 image with the given bounds. |
| func NewRGBA64(r Rectangle) *RGBA64 { |
| return &RGBA64{ |
| Pix: make([]uint8, pixelBufferLength(8, r, "RGBA64")), |
| Stride: 8 * r.Dx(), |
| Rect: r, |
| } |
| } |
| |
| // NRGBA is an in-memory image whose At method returns color.NRGBA values. |
| type NRGBA struct { |
| // Pix holds the image's pixels, in R, G, B, A order. The pixel at |
| // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*4]. |
| Pix []uint8 |
| // Stride is the Pix stride (in bytes) between vertically adjacent pixels. |
| Stride int |
| // Rect is the image's bounds. |
| Rect Rectangle |
| } |
| |
| func (p *NRGBA) ColorModel() color.Model { return color.NRGBAModel } |
| |
| func (p *NRGBA) Bounds() Rectangle { return p.Rect } |
| |
| func (p *NRGBA) At(x, y int) color.Color { |
| return p.NRGBAAt(x, y) |
| } |
| |
| func (p *NRGBA) NRGBAAt(x, y int) color.NRGBA { |
| if !(Point{x, y}.In(p.Rect)) { |
| return color.NRGBA{} |
| } |
| i := p.PixOffset(x, y) |
| s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 |
| return color.NRGBA{s[0], s[1], s[2], s[3]} |
| } |
| |
| // PixOffset returns the index of the first element of Pix that corresponds to |
| // the pixel at (x, y). |
| func (p *NRGBA) PixOffset(x, y int) int { |
| return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4 |
| } |
| |
| func (p *NRGBA) Set(x, y int, c color.Color) { |
| if !(Point{x, y}.In(p.Rect)) { |
| return |
| } |
| i := p.PixOffset(x, y) |
| c1 := color.NRGBAModel.Convert(c).(color.NRGBA) |
| s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 |
| s[0] = c1.R |
| s[1] = c1.G |
| s[2] = c1.B |
| s[3] = c1.A |
| } |
| |
| func (p *NRGBA) SetNRGBA(x, y int, c color.NRGBA) { |
| if !(Point{x, y}.In(p.Rect)) { |
| return |
| } |
| i := p.PixOffset(x, y) |
| s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 |
| s[0] = c.R |
| s[1] = c.G |
| s[2] = c.B |
| s[3] = c.A |
| } |
| |
| // SubImage returns an image representing the portion of the image p visible |
| // through r. The returned value shares pixels with the original image. |
| func (p *NRGBA) SubImage(r Rectangle) Image { |
| r = r.Intersect(p.Rect) |
| // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside |
| // either r1 or r2 if the intersection is empty. Without explicitly checking for |
| // this, the Pix[i:] expression below can panic. |
| if r.Empty() { |
| return &NRGBA{} |
| } |
| i := p.PixOffset(r.Min.X, r.Min.Y) |
| return &NRGBA{ |
| Pix: p.Pix[i:], |
| Stride: p.Stride, |
| Rect: r, |
| } |
| } |
| |
| // Opaque scans the entire image and reports whether it is fully opaque. |
| func (p *NRGBA) Opaque() bool { |
| if p.Rect.Empty() { |
| return true |
| } |
| i0, i1 := 3, p.Rect.Dx()*4 |
| for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { |
| for i := i0; i < i1; i += 4 { |
| if p.Pix[i] != 0xff { |
| return false |
| } |
| } |
| i0 += p.Stride |
| i1 += p.Stride |
| } |
| return true |
| } |
| |
| // NewNRGBA returns a new NRGBA image with the given bounds. |
| func NewNRGBA(r Rectangle) *NRGBA { |
| return &NRGBA{ |
| Pix: make([]uint8, pixelBufferLength(4, r, "NRGBA")), |
| Stride: 4 * r.Dx(), |
| Rect: r, |
| } |
| } |
| |
| // NRGBA64 is an in-memory image whose At method returns color.NRGBA64 values. |
| type NRGBA64 struct { |
| // Pix holds the image's pixels, in R, G, B, A order and big-endian format. The pixel at |
| // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*8]. |
| Pix []uint8 |
| // Stride is the Pix stride (in bytes) between vertically adjacent pixels. |
| Stride int |
| // Rect is the image's bounds. |
| Rect Rectangle |
| } |
| |
| func (p *NRGBA64) ColorModel() color.Model { return color.NRGBA64Model } |
| |
| func (p *NRGBA64) Bounds() Rectangle { return p.Rect } |
| |
| func (p *NRGBA64) At(x, y int) color.Color { |
| return p.NRGBA64At(x, y) |
| } |
| |
| func (p *NRGBA64) NRGBA64At(x, y int) color.NRGBA64 { |
| if !(Point{x, y}.In(p.Rect)) { |
| return color.NRGBA64{} |
| } |
| i := p.PixOffset(x, y) |
| s := p.Pix[i : i+8 : i+8] // Small cap improves performance, see https://golang.org/issue/27857 |
| return color.NRGBA64{ |
| uint16(s[0])<<8 | uint16(s[1]), |
| uint16(s[2])<<8 | uint16(s[3]), |
| uint16(s[4])<<8 | uint16(s[5]), |
| uint16(s[6])<<8 | uint16(s[7]), |
| } |
| } |
| |
| // PixOffset returns the index of the first element of Pix that corresponds to |
| // the pixel at (x, y). |
| func (p *NRGBA64) PixOffset(x, y int) int { |
| return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*8 |
| } |
| |
| func (p *NRGBA64) Set(x, y int, c color.Color) { |
| if !(Point{x, y}.In(p.Rect)) { |
| return |
| } |
| i := p.PixOffset(x, y) |
| c1 := color.NRGBA64Model.Convert(c).(color.NRGBA64) |
| s := p.Pix[i : i+8 : i+8] // Small cap improves performance, see https://golang.org/issue/27857 |
| s[0] = uint8(c1.R >> 8) |
| s[1] = uint8(c1.R) |
| s[2] = uint8(c1.G >> 8) |
| s[3] = uint8(c1.G) |
| s[4] = uint8(c1.B >> 8) |
| s[5] = uint8(c1.B) |
| s[6] = uint8(c1.A >> 8) |
| s[7] = uint8(c1.A) |
| } |
| |
| func (p *NRGBA64) SetNRGBA64(x, y int, c color.NRGBA64) { |
| if !(Point{x, y}.In(p.Rect)) { |
| return |
| } |
| i := p.PixOffset(x, y) |
| s := p.Pix[i : i+8 : i+8] // Small cap improves performance, see https://golang.org/issue/27857 |
| s[0] = uint8(c.R >> 8) |
| s[1] = uint8(c.R) |
| s[2] = uint8(c.G >> 8) |
| s[3] = uint8(c.G) |
| s[4] = uint8(c.B >> 8) |
| s[5] = uint8(c.B) |
| s[6] = uint8(c.A >> 8) |
| s[7] = uint8(c.A) |
| } |
| |
| // SubImage returns an image representing the portion of the image p visible |
| // through r. The returned value shares pixels with the original image. |
| func (p *NRGBA64) SubImage(r Rectangle) Image { |
| r = r.Intersect(p.Rect) |
| // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside |
| // either r1 or r2 if the intersection is empty. Without explicitly checking for |
| // this, the Pix[i:] expression below can panic. |
| if r.Empty() { |
| return &NRGBA64{} |
| } |
| i := p.PixOffset(r.Min.X, r.Min.Y) |
| return &NRGBA64{ |
| Pix: p.Pix[i:], |
| Stride: p.Stride, |
| Rect: r, |
| } |
| } |
| |
| // Opaque scans the entire image and reports whether it is fully opaque. |
| func (p *NRGBA64) Opaque() bool { |
| if p.Rect.Empty() { |
| return true |
| } |
| i0, i1 := 6, p.Rect.Dx()*8 |
| for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { |
| for i := i0; i < i1; i += 8 { |
| if p.Pix[i+0] != 0xff || p.Pix[i+1] != 0xff { |
| return false |
| } |
| } |
| i0 += p.Stride |
| i1 += p.Stride |
| } |
| return true |
| } |
| |
| // NewNRGBA64 returns a new NRGBA64 image with the given bounds. |
| func NewNRGBA64(r Rectangle) *NRGBA64 { |
| return &NRGBA64{ |
| Pix: make([]uint8, pixelBufferLength(8, r, "NRGBA64")), |
| Stride: 8 * r.Dx(), |
| Rect: r, |
| } |
| } |
| |
| // Alpha is an in-memory image whose At method returns color.Alpha values. |
| type Alpha struct { |
| // Pix holds the image's pixels, as alpha values. The pixel at |
| // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*1]. |
| Pix []uint8 |
| // Stride is the Pix stride (in bytes) between vertically adjacent pixels. |
| Stride int |
| // Rect is the image's bounds. |
| Rect Rectangle |
| } |
| |
| func (p *Alpha) ColorModel() color.Model { return color.AlphaModel } |
| |
| func (p *Alpha) Bounds() Rectangle { return p.Rect } |
| |
| func (p *Alpha) At(x, y int) color.Color { |
| return p.AlphaAt(x, y) |
| } |
| |
| func (p *Alpha) AlphaAt(x, y int) color.Alpha { |
| if !(Point{x, y}.In(p.Rect)) { |
| return color.Alpha{} |
| } |
| i := p.PixOffset(x, y) |
| return color.Alpha{p.Pix[i]} |
| } |
| |
| // PixOffset returns the index of the first element of Pix that corresponds to |
| // the pixel at (x, y). |
| func (p *Alpha) PixOffset(x, y int) int { |
| return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*1 |
| } |
| |
| func (p *Alpha) Set(x, y int, c color.Color) { |
| if !(Point{x, y}.In(p.Rect)) { |
| return |
| } |
| i := p.PixOffset(x, y) |
| p.Pix[i] = color.AlphaModel.Convert(c).(color.Alpha).A |
| } |
| |
| func (p *Alpha) SetAlpha(x, y int, c color.Alpha) { |
| if !(Point{x, y}.In(p.Rect)) { |
| return |
| } |
| i := p.PixOffset(x, y) |
| p.Pix[i] = c.A |
| } |
| |
| // SubImage returns an image representing the portion of the image p visible |
| // through r. The returned value shares pixels with the original image. |
| func (p *Alpha) SubImage(r Rectangle) Image { |
| r = r.Intersect(p.Rect) |
| // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside |
| // either r1 or r2 if the intersection is empty. Without explicitly checking for |
| // this, the Pix[i:] expression below can panic. |
| if r.Empty() { |
| return &Alpha{} |
| } |
| i := p.PixOffset(r.Min.X, r.Min.Y) |
| return &Alpha{ |
| Pix: p.Pix[i:], |
| Stride: p.Stride, |
| Rect: r, |
| } |
| } |
| |
| // Opaque scans the entire image and reports whether it is fully opaque. |
| func (p *Alpha) Opaque() bool { |
| if p.Rect.Empty() { |
| return true |
| } |
| i0, i1 := 0, p.Rect.Dx() |
| for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { |
| for i := i0; i < i1; i++ { |
| if p.Pix[i] != 0xff { |
| return false |
| } |
| } |
| i0 += p.Stride |
| i1 += p.Stride |
| } |
| return true |
| } |
| |
| // NewAlpha returns a new Alpha image with the given bounds. |
| func NewAlpha(r Rectangle) *Alpha { |
| return &Alpha{ |
| Pix: make([]uint8, pixelBufferLength(1, r, "Alpha")), |
| Stride: 1 * r.Dx(), |
| Rect: r, |
| } |
| } |
| |
| // Alpha16 is an in-memory image whose At method returns color.Alpha16 values. |
| type Alpha16 struct { |
| // Pix holds the image's pixels, as alpha values in big-endian format. The pixel at |
| // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*2]. |
| Pix []uint8 |
| // Stride is the Pix stride (in bytes) between vertically adjacent pixels. |
| Stride int |
| // Rect is the image's bounds. |
| Rect Rectangle |
| } |
| |
| func (p *Alpha16) ColorModel() color.Model { return color.Alpha16Model } |
| |
| func (p *Alpha16) Bounds() Rectangle { return p.Rect } |
| |
| func (p *Alpha16) At(x, y int) color.Color { |
| return p.Alpha16At(x, y) |
| } |
| |
| func (p *Alpha16) Alpha16At(x, y int) color.Alpha16 { |
| if !(Point{x, y}.In(p.Rect)) { |
| return color.Alpha16{} |
| } |
| i := p.PixOffset(x, y) |
| return color.Alpha16{uint16(p.Pix[i+0])<<8 | uint16(p.Pix[i+1])} |
| } |
| |
| // PixOffset returns the index of the first element of Pix that corresponds to |
| // the pixel at (x, y). |
| func (p *Alpha16) PixOffset(x, y int) int { |
| return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*2 |
| } |
| |
| func (p *Alpha16) Set(x, y int, c color.Color) { |
| if !(Point{x, y}.In(p.Rect)) { |
| return |
| } |
| i := p.PixOffset(x, y) |
| c1 := color.Alpha16Model.Convert(c).(color.Alpha16) |
| p.Pix[i+0] = uint8(c1.A >> 8) |
| p.Pix[i+1] = uint8(c1.A) |
| } |
| |
| func (p *Alpha16) SetAlpha16(x, y int, c color.Alpha16) { |
| if !(Point{x, y}.In(p.Rect)) { |
| return |
| } |
| i := p.PixOffset(x, y) |
| p.Pix[i+0] = uint8(c.A >> 8) |
| p.Pix[i+1] = uint8(c.A) |
| } |
| |
| // SubImage returns an image representing the portion of the image p visible |
| // through r. The returned value shares pixels with the original image. |
| func (p *Alpha16) SubImage(r Rectangle) Image { |
| r = r.Intersect(p.Rect) |
| // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside |
| // either r1 or r2 if the intersection is empty. Without explicitly checking for |
| // this, the Pix[i:] expression below can panic. |
| if r.Empty() { |
| return &Alpha16{} |
| } |
| i := p.PixOffset(r.Min.X, r.Min.Y) |
| return &Alpha16{ |
| Pix: p.Pix[i:], |
| Stride: p.Stride, |
| Rect: r, |
| } |
| } |
| |
| // Opaque scans the entire image and reports whether it is fully opaque. |
| func (p *Alpha16) Opaque() bool { |
| if p.Rect.Empty() { |
| return true |
| } |
| i0, i1 := 0, p.Rect.Dx()*2 |
| for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { |
| for i := i0; i < i1; i += 2 { |
| if p.Pix[i+0] != 0xff || p.Pix[i+1] != 0xff { |
| return false |
| } |
| } |
| i0 += p.Stride |
| i1 += p.Stride |
| } |
| return true |
| } |
| |
| // NewAlpha16 returns a new Alpha16 image with the given bounds. |
| func NewAlpha16(r Rectangle) *Alpha16 { |
| return &Alpha16{ |
| Pix: make([]uint8, pixelBufferLength(2, r, "Alpha16")), |
| Stride: 2 * r.Dx(), |
| Rect: r, |
| } |
| } |
| |
| // Gray is an in-memory image whose At method returns color.Gray values. |
| type Gray struct { |
| // Pix holds the image's pixels, as gray values. The pixel at |
| // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*1]. |
| Pix []uint8 |
| // Stride is the Pix stride (in bytes) between vertically adjacent pixels. |
| Stride int |
| // Rect is the image's bounds. |
| Rect Rectangle |
| } |
| |
| func (p *Gray) ColorModel() color.Model { return color.GrayModel } |
| |
| func (p *Gray) Bounds() Rectangle { return p.Rect } |
| |
| func (p *Gray) At(x, y int) color.Color { |
| return p.GrayAt(x, y) |
| } |
| |
| func (p *Gray) GrayAt(x, y int) color.Gray { |
| if !(Point{x, y}.In(p.Rect)) { |
| return color.Gray{} |
| } |
| i := p.PixOffset(x, y) |
| return color.Gray{p.Pix[i]} |
| } |
| |
| // PixOffset returns the index of the first element of Pix that corresponds to |
| // the pixel at (x, y). |
| func (p *Gray) PixOffset(x, y int) int { |
| return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*1 |
| } |
| |
| func (p *Gray) Set(x, y int, c color.Color) { |
| if !(Point{x, y}.In(p.Rect)) { |
| return |
| } |
| i := p.PixOffset(x, y) |
| p.Pix[i] = color.GrayModel.Convert(c).(color.Gray).Y |
| } |
| |
| func (p *Gray) SetGray(x, y int, c color.Gray) { |
| if !(Point{x, y}.In(p.Rect)) { |
| return |
| } |
| i := p.PixOffset(x, y) |
| p.Pix[i] = c.Y |
| } |
| |
| // SubImage returns an image representing the portion of the image p visible |
| // through r. The returned value shares pixels with the original image. |
| func (p *Gray) SubImage(r Rectangle) Image { |
| r = r.Intersect(p.Rect) |
| // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside |
| // either r1 or r2 if the intersection is empty. Without explicitly checking for |
| // this, the Pix[i:] expression below can panic. |
| if r.Empty() { |
| return &Gray{} |
| } |
| i := p.PixOffset(r.Min.X, r.Min.Y) |
| return &Gray{ |
| Pix: p.Pix[i:], |
| Stride: p.Stride, |
| Rect: r, |
| } |
| } |
| |
| // Opaque scans the entire image and reports whether it is fully opaque. |
| func (p *Gray) Opaque() bool { |
| return true |
| } |
| |
| // NewGray returns a new Gray image with the given bounds. |
| func NewGray(r Rectangle) *Gray { |
| return &Gray{ |
| Pix: make([]uint8, pixelBufferLength(1, r, "Gray")), |
| Stride: 1 * r.Dx(), |
| Rect: r, |
| } |
| } |
| |
| // Gray16 is an in-memory image whose At method returns color.Gray16 values. |
| type Gray16 struct { |
| // Pix holds the image's pixels, as gray values in big-endian format. The pixel at |
| // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*2]. |
| Pix []uint8 |
| // Stride is the Pix stride (in bytes) between vertically adjacent pixels. |
| Stride int |
| // Rect is the image's bounds. |
| Rect Rectangle |
| } |
| |
| func (p *Gray16) ColorModel() color.Model { return color.Gray16Model } |
| |
| func (p *Gray16) Bounds() Rectangle { return p.Rect } |
| |
| func (p *Gray16) At(x, y int) color.Color { |
| return p.Gray16At(x, y) |
| } |
| |
| func (p *Gray16) Gray16At(x, y int) color.Gray16 { |
| if !(Point{x, y}.In(p.Rect)) { |
| return color.Gray16{} |
| } |
| i := p.PixOffset(x, y) |
| return color.Gray16{uint16(p.Pix[i+0])<<8 | uint16(p.Pix[i+1])} |
| } |
| |
| // PixOffset returns the index of the first element of Pix that corresponds to |
| // the pixel at (x, y). |
| func (p *Gray16) PixOffset(x, y int) int { |
| return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*2 |
| } |
| |
| func (p *Gray16) Set(x, y int, c color.Color) { |
| if !(Point{x, y}.In(p.Rect)) { |
| return |
| } |
| i := p.PixOffset(x, y) |
| c1 := color.Gray16Model.Convert(c).(color.Gray16) |
| p.Pix[i+0] = uint8(c1.Y >> 8) |
| p.Pix[i+1] = uint8(c1.Y) |
| } |
| |
| func (p *Gray16) SetGray16(x, y int, c color.Gray16) { |
| if !(Point{x, y}.In(p.Rect)) { |
| return |
| } |
| i := p.PixOffset(x, y) |
| p.Pix[i+0] = uint8(c.Y >> 8) |
| p.Pix[i+1] = uint8(c.Y) |
| } |
| |
| // SubImage returns an image representing the portion of the image p visible |
| // through r. The returned value shares pixels with the original image. |
| func (p *Gray16) SubImage(r Rectangle) Image { |
| r = r.Intersect(p.Rect) |
| // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside |
| // either r1 or r2 if the intersection is empty. Without explicitly checking for |
| // this, the Pix[i:] expression below can panic. |
| if r.Empty() { |
| return &Gray16{} |
| } |
| i := p.PixOffset(r.Min.X, r.Min.Y) |
| return &Gray16{ |
| Pix: p.Pix[i:], |
| Stride: p.Stride, |
| Rect: r, |
| } |
| } |
| |
| // Opaque scans the entire image and reports whether it is fully opaque. |
| func (p *Gray16) Opaque() bool { |
| return true |
| } |
| |
| // NewGray16 returns a new Gray16 image with the given bounds. |
| func NewGray16(r Rectangle) *Gray16 { |
| return &Gray16{ |
| Pix: make([]uint8, pixelBufferLength(2, r, "Gray16")), |
| Stride: 2 * r.Dx(), |
| Rect: r, |
| } |
| } |
| |
| // CMYK is an in-memory image whose At method returns color.CMYK values. |
| type CMYK struct { |
| // Pix holds the image's pixels, in C, M, Y, K order. The pixel at |
| // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*4]. |
| Pix []uint8 |
| // Stride is the Pix stride (in bytes) between vertically adjacent pixels. |
| Stride int |
| // Rect is the image's bounds. |
| Rect Rectangle |
| } |
| |
| func (p *CMYK) ColorModel() color.Model { return color.CMYKModel } |
| |
| func (p *CMYK) Bounds() Rectangle { return p.Rect } |
| |
| func (p *CMYK) At(x, y int) color.Color { |
| return p.CMYKAt(x, y) |
| } |
| |
| func (p *CMYK) CMYKAt(x, y int) color.CMYK { |
| if !(Point{x, y}.In(p.Rect)) { |
| return color.CMYK{} |
| } |
| i := p.PixOffset(x, y) |
| s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 |
| return color.CMYK{s[0], s[1], s[2], s[3]} |
| } |
| |
| // PixOffset returns the index of the first element of Pix that corresponds to |
| // the pixel at (x, y). |
| func (p *CMYK) PixOffset(x, y int) int { |
| return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4 |
| } |
| |
| func (p *CMYK) Set(x, y int, c color.Color) { |
| if !(Point{x, y}.In(p.Rect)) { |
| return |
| } |
| i := p.PixOffset(x, y) |
| c1 := color.CMYKModel.Convert(c).(color.CMYK) |
| s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 |
| s[0] = c1.C |
| s[1] = c1.M |
| s[2] = c1.Y |
| s[3] = c1.K |
| } |
| |
| func (p *CMYK) SetCMYK(x, y int, c color.CMYK) { |
| if !(Point{x, y}.In(p.Rect)) { |
| return |
| } |
| i := p.PixOffset(x, y) |
| s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 |
| s[0] = c.C |
| s[1] = c.M |
| s[2] = c.Y |
| s[3] = c.K |
| } |
| |
| // SubImage returns an image representing the portion of the image p visible |
| // through r. The returned value shares pixels with the original image. |
| func (p *CMYK) SubImage(r Rectangle) Image { |
| r = r.Intersect(p.Rect) |
| // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside |
| // either r1 or r2 if the intersection is empty. Without explicitly checking for |
| // this, the Pix[i:] expression below can panic. |
| if r.Empty() { |
| return &CMYK{} |
| } |
| i := p.PixOffset(r.Min.X, r.Min.Y) |
| return &CMYK{ |
| Pix: p.Pix[i:], |
| Stride: p.Stride, |
| Rect: r, |
| } |
| } |
| |
| // Opaque scans the entire image and reports whether it is fully opaque. |
| func (p *CMYK) Opaque() bool { |
| return true |
| } |
| |
| // NewCMYK returns a new CMYK image with the given bounds. |
| func NewCMYK(r Rectangle) *CMYK { |
| return &CMYK{ |
| Pix: make([]uint8, pixelBufferLength(4, r, "CMYK")), |
| Stride: 4 * r.Dx(), |
| Rect: r, |
| } |
| } |
| |
| // Paletted is an in-memory image of uint8 indices into a given palette. |
| type Paletted struct { |
| // Pix holds the image's pixels, as palette indices. The pixel at |
| // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*1]. |
| Pix []uint8 |
| // Stride is the Pix stride (in bytes) between vertically adjacent pixels. |
| Stride int |
| // Rect is the image's bounds. |
| Rect Rectangle |
| // Palette is the image's palette. |
| Palette color.Palette |
| } |
| |
| func (p *Paletted) ColorModel() color.Model { return p.Palette } |
| |
| func (p *Paletted) Bounds() Rectangle { return p.Rect } |
| |
| func (p *Paletted) At(x, y int) color.Color { |
| if len(p.Palette) == 0 { |
| return nil |
| } |
| if !(Point{x, y}.In(p.Rect)) { |
| return p.Palette[0] |
| } |
| i := p.PixOffset(x, y) |
| return p.Palette[p.Pix[i]] |
| } |
| |
| // PixOffset returns the index of the first element of Pix that corresponds to |
| // the pixel at (x, y). |
| func (p *Paletted) PixOffset(x, y int) int { |
| return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*1 |
| } |
| |
| func (p *Paletted) Set(x, y int, c color.Color) { |
| if !(Point{x, y}.In(p.Rect)) { |
| return |
| } |
| i := p.PixOffset(x, y) |
| p.Pix[i] = uint8(p.Palette.Index(c)) |
| } |
| |
| func (p *Paletted) ColorIndexAt(x, y int) uint8 { |
| if !(Point{x, y}.In(p.Rect)) { |
| return 0 |
| } |
| i := p.PixOffset(x, y) |
| return p.Pix[i] |
| } |
| |
| func (p *Paletted) SetColorIndex(x, y int, index uint8) { |
| if !(Point{x, y}.In(p.Rect)) { |
| return |
| } |
| i := p.PixOffset(x, y) |
| p.Pix[i] = index |
| } |
| |
| // SubImage returns an image representing the portion of the image p visible |
| // through r. The returned value shares pixels with the original image. |
| func (p *Paletted) SubImage(r Rectangle) Image { |
| r = r.Intersect(p.Rect) |
| // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside |
| // either r1 or r2 if the intersection is empty. Without explicitly checking for |
| // this, the Pix[i:] expression below can panic. |
| if r.Empty() { |
| return &Paletted{ |
| Palette: p.Palette, |
| } |
| } |
| i := p.PixOffset(r.Min.X, r.Min.Y) |
| return &Paletted{ |
| Pix: p.Pix[i:], |
| Stride: p.Stride, |
| Rect: p.Rect.Intersect(r), |
| Palette: p.Palette, |
| } |
| } |
| |
| // Opaque scans the entire image and reports whether it is fully opaque. |
| func (p *Paletted) Opaque() bool { |
| var present [256]bool |
| i0, i1 := 0, p.Rect.Dx() |
| for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { |
| for _, c := range p.Pix[i0:i1] { |
| present[c] = true |
| } |
| i0 += p.Stride |
| i1 += p.Stride |
| } |
| for i, c := range p.Palette { |
| if !present[i] { |
| continue |
| } |
| _, _, _, a := c.RGBA() |
| if a != 0xffff { |
| return false |
| } |
| } |
| return true |
| } |
| |
| // NewPaletted returns a new Paletted image with the given width, height and |
| // palette. |
| func NewPaletted(r Rectangle, p color.Palette) *Paletted { |
| return &Paletted{ |
| Pix: make([]uint8, pixelBufferLength(1, r, "Paletted")), |
| Stride: 1 * r.Dx(), |
| Rect: r, |
| Palette: p, |
| } |
| } |