blob: a26b35b44dc173edae4e45e9d038776709e9da56 [file] [log] [blame]
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime_test
import (
"encoding/binary"
"flag"
"fmt"
"math/rand"
"runtime"
"slices"
"strconv"
"strings"
"testing"
"unsafe"
)
var mapbench = flag.Bool("mapbench", false, "enable the full set of map benchmark variants")
const size = 10
func BenchmarkHashStringSpeed(b *testing.B) {
strings := make([]string, size)
for i := 0; i < size; i++ {
strings[i] = fmt.Sprintf("string#%d", i)
}
sum := 0
m := make(map[string]int, size)
for i := 0; i < size; i++ {
m[strings[i]] = 0
}
idx := 0
b.ResetTimer()
for i := 0; i < b.N; i++ {
sum += m[strings[idx]]
idx++
if idx == size {
idx = 0
}
}
}
type chunk [17]byte
func BenchmarkHashBytesSpeed(b *testing.B) {
// a bunch of chunks, each with a different alignment mod 16
var chunks [size]chunk
// initialize each to a different value
for i := 0; i < size; i++ {
chunks[i][0] = byte(i)
}
// put into a map
m := make(map[chunk]int, size)
for i, c := range chunks {
m[c] = i
}
idx := 0
b.ResetTimer()
for i := 0; i < b.N; i++ {
if m[chunks[idx]] != idx {
b.Error("bad map entry for chunk")
}
idx++
if idx == size {
idx = 0
}
}
}
func BenchmarkHashInt32Speed(b *testing.B) {
ints := make([]int32, size)
for i := 0; i < size; i++ {
ints[i] = int32(i)
}
sum := 0
m := make(map[int32]int, size)
for i := 0; i < size; i++ {
m[ints[i]] = 0
}
idx := 0
b.ResetTimer()
for i := 0; i < b.N; i++ {
sum += m[ints[idx]]
idx++
if idx == size {
idx = 0
}
}
}
func BenchmarkHashInt64Speed(b *testing.B) {
ints := make([]int64, size)
for i := 0; i < size; i++ {
ints[i] = int64(i)
}
sum := 0
m := make(map[int64]int, size)
for i := 0; i < size; i++ {
m[ints[i]] = 0
}
idx := 0
b.ResetTimer()
for i := 0; i < b.N; i++ {
sum += m[ints[idx]]
idx++
if idx == size {
idx = 0
}
}
}
func BenchmarkHashStringArraySpeed(b *testing.B) {
stringpairs := make([][2]string, size)
for i := 0; i < size; i++ {
for j := 0; j < 2; j++ {
stringpairs[i][j] = fmt.Sprintf("string#%d/%d", i, j)
}
}
sum := 0
m := make(map[[2]string]int, size)
for i := 0; i < size; i++ {
m[stringpairs[i]] = 0
}
idx := 0
b.ResetTimer()
for i := 0; i < b.N; i++ {
sum += m[stringpairs[idx]]
idx++
if idx == size {
idx = 0
}
}
}
func BenchmarkMegMap(b *testing.B) {
m := make(map[string]bool)
for suffix := 'A'; suffix <= 'G'; suffix++ {
m[strings.Repeat("X", 1<<20-1)+fmt.Sprint(suffix)] = true
}
key := strings.Repeat("X", 1<<20-1) + "k"
b.ResetTimer()
for i := 0; i < b.N; i++ {
_, _ = m[key]
}
}
func BenchmarkMegOneMap(b *testing.B) {
m := make(map[string]bool)
m[strings.Repeat("X", 1<<20)] = true
key := strings.Repeat("Y", 1<<20)
b.ResetTimer()
for i := 0; i < b.N; i++ {
_, _ = m[key]
}
}
func BenchmarkMegEqMap(b *testing.B) {
m := make(map[string]bool)
key1 := strings.Repeat("X", 1<<20)
key2 := strings.Repeat("X", 1<<20) // equal but different instance
m[key1] = true
b.ResetTimer()
for i := 0; i < b.N; i++ {
_, _ = m[key2]
}
}
func BenchmarkMegEmptyMap(b *testing.B) {
m := make(map[string]bool)
key := strings.Repeat("X", 1<<20)
b.ResetTimer()
for i := 0; i < b.N; i++ {
_, _ = m[key]
}
}
func BenchmarkMegEmptyMapWithInterfaceKey(b *testing.B) {
m := make(map[any]bool)
key := strings.Repeat("X", 1<<20)
b.ResetTimer()
for i := 0; i < b.N; i++ {
_, _ = m[key]
}
}
func BenchmarkSmallStrMap(b *testing.B) {
m := make(map[string]bool)
for suffix := 'A'; suffix <= 'G'; suffix++ {
m[fmt.Sprint(suffix)] = true
}
key := "k"
b.ResetTimer()
for i := 0; i < b.N; i++ {
_, _ = m[key]
}
}
func BenchmarkMapStringKeysEight_16(b *testing.B) { benchmarkMapStringKeysEight(b, 16) }
func BenchmarkMapStringKeysEight_32(b *testing.B) { benchmarkMapStringKeysEight(b, 32) }
func BenchmarkMapStringKeysEight_64(b *testing.B) { benchmarkMapStringKeysEight(b, 64) }
func BenchmarkMapStringKeysEight_128(b *testing.B) { benchmarkMapStringKeysEight(b, 128) }
func BenchmarkMapStringKeysEight_256(b *testing.B) { benchmarkMapStringKeysEight(b, 256) }
func BenchmarkMapStringKeysEight_1M(b *testing.B) { benchmarkMapStringKeysEight(b, 1<<20) }
func benchmarkMapStringKeysEight(b *testing.B, keySize int) {
m := make(map[string]bool)
for i := 0; i < 8; i++ {
m[strings.Repeat("K", i+1)] = true
}
key := strings.Repeat("K", keySize)
b.ResetTimer()
for i := 0; i < b.N; i++ {
_ = m[key]
}
}
func BenchmarkMapFirst(b *testing.B) {
for n := 1; n <= 16; n++ {
b.Run(fmt.Sprintf("%d", n), func(b *testing.B) {
m := make(map[int]bool)
for i := 0; i < n; i++ {
m[i] = true
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
_ = m[0]
}
})
}
}
func BenchmarkMapMid(b *testing.B) {
for n := 1; n <= 16; n++ {
b.Run(fmt.Sprintf("%d", n), func(b *testing.B) {
m := make(map[int]bool)
for i := 0; i < n; i++ {
m[i] = true
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
_ = m[n>>1]
}
})
}
}
func BenchmarkMapLast(b *testing.B) {
for n := 1; n <= 16; n++ {
b.Run(fmt.Sprintf("%d", n), func(b *testing.B) {
m := make(map[int]bool)
for i := 0; i < n; i++ {
m[i] = true
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
_ = m[n-1]
}
})
}
}
func cyclicPermutation(n int) []int {
// From https://crypto.stackexchange.com/questions/51787/creating-single-cycle-permutations
p := rand.New(rand.NewSource(1)).Perm(n)
inc := make([]int, n)
pInv := make([]int, n)
for i := 0; i < n; i++ {
inc[i] = (i + 1) % n
pInv[p[i]] = i
}
res := make([]int, n)
for i := 0; i < n; i++ {
res[i] = pInv[inc[p[i]]]
}
// Test result.
j := 0
for i := 0; i < n-1; i++ {
j = res[j]
if j == 0 {
panic("got back to 0 too early")
}
}
j = res[j]
if j != 0 {
panic("didn't get back to 0")
}
return res
}
func BenchmarkMapCycle(b *testing.B) {
// Arrange map entries to be a permutation, so that
// we hit all entries, and one lookup is data dependent
// on the previous lookup.
const N = 3127
p := cyclicPermutation(N)
m := map[int]int{}
for i := 0; i < N; i++ {
m[i] = p[i]
}
b.ResetTimer()
j := 0
for i := 0; i < b.N; i++ {
j = m[j]
}
sink = uint64(j)
}
// Accessing the same keys in a row.
func benchmarkRepeatedLookup(b *testing.B, lookupKeySize int) {
m := make(map[string]bool)
// At least bigger than a single bucket:
for i := 0; i < 64; i++ {
m[fmt.Sprintf("some key %d", i)] = true
}
base := strings.Repeat("x", lookupKeySize-1)
key1 := base + "1"
key2 := base + "2"
b.ResetTimer()
for i := 0; i < b.N/4; i++ {
_ = m[key1]
_ = m[key1]
_ = m[key2]
_ = m[key2]
}
}
func BenchmarkRepeatedLookupStrMapKey32(b *testing.B) { benchmarkRepeatedLookup(b, 32) }
func BenchmarkRepeatedLookupStrMapKey1M(b *testing.B) { benchmarkRepeatedLookup(b, 1<<20) }
func BenchmarkMakeMap(b *testing.B) {
b.Run("[Byte]Byte", func(b *testing.B) {
var m map[byte]byte
for i := 0; i < b.N; i++ {
m = make(map[byte]byte, 10)
}
hugeSink = m
})
b.Run("[Int]Int", func(b *testing.B) {
var m map[int]int
for i := 0; i < b.N; i++ {
m = make(map[int]int, 10)
}
hugeSink = m
})
}
func BenchmarkNewEmptyMap(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
_ = make(map[int]int)
}
}
func BenchmarkNewSmallMap(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
m := make(map[int]int)
m[0] = 0
m[1] = 1
}
}
func BenchmarkSameLengthMap(b *testing.B) {
// long strings, same length, differ in first few
// and last few bytes.
m := make(map[string]bool)
s1 := "foo" + strings.Repeat("-", 100) + "bar"
s2 := "goo" + strings.Repeat("-", 100) + "ber"
m[s1] = true
m[s2] = true
b.ResetTimer()
for i := 0; i < b.N; i++ {
_ = m[s1]
}
}
func BenchmarkSmallKeyMap(b *testing.B) {
m := make(map[int16]bool)
m[5] = true
for i := 0; i < b.N; i++ {
_ = m[5]
}
}
func BenchmarkMapPopulate(b *testing.B) {
for size := 1; size < 1000000; size *= 10 {
b.Run(strconv.Itoa(size), func(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
m := make(map[int]bool)
for j := 0; j < size; j++ {
m[j] = true
}
}
})
}
}
type ComplexAlgKey struct {
a, b, c int64
_ int
d int32
_ int
e string
_ int
f, g, h int64
}
func BenchmarkComplexAlgMap(b *testing.B) {
m := make(map[ComplexAlgKey]bool)
var k ComplexAlgKey
m[k] = true
for i := 0; i < b.N; i++ {
_ = m[k]
}
}
func BenchmarkGoMapClear(b *testing.B) {
b.Run("Reflexive", func(b *testing.B) {
for size := 1; size < 100000; size *= 10 {
b.Run(strconv.Itoa(size), func(b *testing.B) {
m := make(map[int]int, size)
for i := 0; i < b.N; i++ {
m[0] = size // Add one element so len(m) != 0 avoiding fast paths.
clear(m)
}
})
}
})
b.Run("NonReflexive", func(b *testing.B) {
for size := 1; size < 100000; size *= 10 {
b.Run(strconv.Itoa(size), func(b *testing.B) {
m := make(map[float64]int, size)
for i := 0; i < b.N; i++ {
m[1.0] = size // Add one element so len(m) != 0 avoiding fast paths.
clear(m)
}
})
}
})
}
func BenchmarkMapStringConversion(b *testing.B) {
for _, length := range []int{32, 64} {
b.Run(strconv.Itoa(length), func(b *testing.B) {
bytes := make([]byte, length)
b.Run("simple", func(b *testing.B) {
b.ReportAllocs()
m := make(map[string]int)
m[string(bytes)] = 0
for i := 0; i < b.N; i++ {
_ = m[string(bytes)]
}
})
b.Run("struct", func(b *testing.B) {
b.ReportAllocs()
type stringstruct struct{ s string }
m := make(map[stringstruct]int)
m[stringstruct{string(bytes)}] = 0
for i := 0; i < b.N; i++ {
_ = m[stringstruct{string(bytes)}]
}
})
b.Run("array", func(b *testing.B) {
b.ReportAllocs()
type stringarray [1]string
m := make(map[stringarray]int)
m[stringarray{string(bytes)}] = 0
for i := 0; i < b.N; i++ {
_ = m[stringarray{string(bytes)}]
}
})
})
}
}
var BoolSink bool
func BenchmarkMapInterfaceString(b *testing.B) {
m := map[any]bool{}
for i := 0; i < 100; i++ {
m[fmt.Sprintf("%d", i)] = true
}
key := (any)("A")
b.ResetTimer()
for i := 0; i < b.N; i++ {
BoolSink = m[key]
}
}
func BenchmarkMapInterfacePtr(b *testing.B) {
m := map[any]bool{}
for i := 0; i < 100; i++ {
i := i
m[&i] = true
}
key := new(int)
b.ResetTimer()
for i := 0; i < b.N; i++ {
BoolSink = m[key]
}
}
var (
hintLessThan8 = 7
hintGreaterThan8 = 32
)
func BenchmarkNewEmptyMapHintLessThan8(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
_ = make(map[int]int, hintLessThan8)
}
}
func BenchmarkNewEmptyMapHintGreaterThan8(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
_ = make(map[int]int, hintGreaterThan8)
}
}
func benchSizes(f func(b *testing.B, n int)) func(*testing.B) {
var cases = []int{
0,
6,
12,
18,
24,
30,
64,
128,
256,
512,
1024,
2048,
4096,
8192,
1 << 16,
1 << 18,
1 << 20,
1 << 22,
}
// Cases enabled by default. Set -mapbench for the remainder.
//
// With the other type combinations, there are literally thousands of
// variations. It take too long to run all of these as part of
// builders.
byDefault := map[int]bool{
6: true,
64: true,
1 << 16: true,
}
return func(b *testing.B) {
for _, n := range cases {
b.Run("len="+strconv.Itoa(n), func(b *testing.B) {
if !*mapbench && !byDefault[n] {
b.Skip("Skipped because -mapbench=false")
}
f(b, n)
})
}
}
}
func smallBenchSizes(f func(b *testing.B, n int)) func(*testing.B) {
return func(b *testing.B) {
for n := 1; n <= 8; n++ {
b.Run("len="+strconv.Itoa(n), func(b *testing.B) {
f(b, n)
})
}
}
}
// A 16 byte type.
type smallType [16]byte
// A 512 byte type.
type mediumType [1 << 9]byte
// A 4KiB type.
type bigType [1 << 12]byte
type mapBenchmarkKeyType interface {
int32 | int64 | string | smallType | mediumType | bigType | *int32
}
type mapBenchmarkElemType interface {
mapBenchmarkKeyType | []int32
}
func genIntValues[T int | int32 | int64](start, end int) []T {
vals := make([]T, 0, end-start)
for i := start; i < end; i++ {
vals = append(vals, T(i))
}
return vals
}
func genStringValues(start, end int) []string {
vals := make([]string, 0, end-start)
for i := start; i < end; i++ {
vals = append(vals, strconv.Itoa(i))
}
return vals
}
func genSmallValues(start, end int) []smallType {
vals := make([]smallType, 0, end-start)
for i := start; i < end; i++ {
var v smallType
binary.NativeEndian.PutUint64(v[:], uint64(i))
vals = append(vals, v)
}
return vals
}
func genMediumValues(start, end int) []mediumType {
vals := make([]mediumType, 0, end-start)
for i := start; i < end; i++ {
var v mediumType
binary.NativeEndian.PutUint64(v[:], uint64(i))
vals = append(vals, v)
}
return vals
}
func genBigValues(start, end int) []bigType {
vals := make([]bigType, 0, end-start)
for i := start; i < end; i++ {
var v bigType
binary.NativeEndian.PutUint64(v[:], uint64(i))
vals = append(vals, v)
}
return vals
}
func genPtrValues[T any](start, end int) []*T {
// Start and end don't mean much. Each pointer by definition has a
// unique identity.
vals := make([]*T, 0, end-start)
for i := start; i < end; i++ {
v := new(T)
vals = append(vals, v)
}
return vals
}
func genIntSliceValues[T int | int32 | int64](start, end int) [][]T {
vals := make([][]T, 0, end-start)
for i := start; i < end; i++ {
vals = append(vals, []T{T(i)})
}
return vals
}
func genValues[T mapBenchmarkElemType](start, end int) []T {
var t T
switch any(t).(type) {
case int32:
return any(genIntValues[int32](start, end)).([]T)
case int64:
return any(genIntValues[int64](start, end)).([]T)
case string:
return any(genStringValues(start, end)).([]T)
case smallType:
return any(genSmallValues(start, end)).([]T)
case mediumType:
return any(genMediumValues(start, end)).([]T)
case bigType:
return any(genBigValues(start, end)).([]T)
case *int32:
return any(genPtrValues[int32](start, end)).([]T)
case []int32:
return any(genIntSliceValues[int32](start, end)).([]T)
default:
panic("unreachable")
}
}
// Avoid inlining to force a heap allocation.
//
//go:noinline
func newSink[T mapBenchmarkElemType]() *T {
return new(T)
}
// Return a new maps filled with keys and elems. Both slices must be the same length.
func fillMap[K mapBenchmarkKeyType, E mapBenchmarkElemType](keys []K, elems []E) map[K]E {
m := make(map[K]E, len(keys))
for i := range keys {
m[keys[i]] = elems[i]
}
return m
}
func iterCount(b *testing.B, n int) int {
// Divide b.N by n so that the ns/op reports time per element,
// not time per full map iteration. This makes benchmarks of
// different map sizes more comparable.
//
// If size is zero we still need to do iterations.
if n == 0 {
return b.N
}
return b.N / n
}
func checkAllocSize[K, E any](b *testing.B, n int) {
var k K
size := uint64(n) * uint64(unsafe.Sizeof(k))
var e E
size += uint64(n) * uint64(unsafe.Sizeof(e))
if size >= 1<<30 {
b.Skipf("Total key+elem size %d exceeds 1GiB", size)
}
}
func benchmarkMapIter[K mapBenchmarkKeyType, E mapBenchmarkElemType](b *testing.B, n int) {
checkAllocSize[K, E](b, n)
k := genValues[K](0, n)
e := genValues[E](0, n)
m := fillMap(k, e)
iterations := iterCount(b, n)
sinkK := newSink[K]()
sinkE := newSink[E]()
b.ResetTimer()
for i := 0; i < iterations; i++ {
for k, e := range m {
*sinkK = k
*sinkE = e
}
}
}
func BenchmarkMapIter(b *testing.B) {
b.Run("Key=int32/Elem=int32", benchSizes(benchmarkMapIter[int32, int32]))
b.Run("Key=int64/Elem=int64", benchSizes(benchmarkMapIter[int64, int64]))
b.Run("Key=string/Elem=string", benchSizes(benchmarkMapIter[string, string]))
b.Run("Key=smallType/Elem=int32", benchSizes(benchmarkMapIter[smallType, int32]))
b.Run("Key=mediumType/Elem=int32", benchSizes(benchmarkMapIter[mediumType, int32]))
b.Run("Key=bigType/Elem=int32", benchSizes(benchmarkMapIter[bigType, int32]))
b.Run("Key=bigType/Elem=bigType", benchSizes(benchmarkMapIter[bigType, bigType]))
b.Run("Key=int32/Elem=bigType", benchSizes(benchmarkMapIter[int32, bigType]))
b.Run("Key=*int32/Elem=int32", benchSizes(benchmarkMapIter[*int32, int32]))
b.Run("Key=int32/Elem=*int32", benchSizes(benchmarkMapIter[int32, *int32]))
}
func benchmarkMapIterLowLoad[K mapBenchmarkKeyType, E mapBenchmarkElemType](b *testing.B, n int) {
// Only insert one entry regardless of map size.
k := genValues[K](0, 1)
e := genValues[E](0, 1)
m := make(map[K]E, n)
for i := range k {
m[k[i]] = e[i]
}
iterations := iterCount(b, n)
sinkK := newSink[K]()
sinkE := newSink[E]()
b.ResetTimer()
for i := 0; i < iterations; i++ {
for k, e := range m {
*sinkK = k
*sinkE = e
}
}
}
func BenchmarkMapIterLowLoad(b *testing.B) {
b.Run("Key=int32/Elem=int32", benchSizes(benchmarkMapIterLowLoad[int32, int32]))
b.Run("Key=int64/Elem=int64", benchSizes(benchmarkMapIterLowLoad[int64, int64]))
b.Run("Key=string/Elem=string", benchSizes(benchmarkMapIterLowLoad[string, string]))
b.Run("Key=smallType/Elem=int32", benchSizes(benchmarkMapIterLowLoad[smallType, int32]))
b.Run("Key=mediumType/Elem=int32", benchSizes(benchmarkMapIterLowLoad[mediumType, int32]))
b.Run("Key=bigType/Elem=int32", benchSizes(benchmarkMapIterLowLoad[bigType, int32]))
b.Run("Key=bigType/Elem=bigType", benchSizes(benchmarkMapIterLowLoad[bigType, bigType]))
b.Run("Key=int32/Elem=bigType", benchSizes(benchmarkMapIterLowLoad[int32, bigType]))
b.Run("Key=*int32/Elem=int32", benchSizes(benchmarkMapIterLowLoad[*int32, int32]))
b.Run("Key=int32/Elem=*int32", benchSizes(benchmarkMapIterLowLoad[int32, *int32]))
}
func benchmarkMapAccessHit[K mapBenchmarkKeyType, E mapBenchmarkElemType](b *testing.B, n int) {
if n == 0 {
b.Skip("can't access empty map")
}
checkAllocSize[K, E](b, n)
k := genValues[K](0, n)
e := genValues[E](0, n)
m := fillMap(k, e)
sink := newSink[E]()
b.ResetTimer()
for i := 0; i < b.N; i++ {
*sink = m[k[i%n]]
}
}
func BenchmarkMapAccessHit(b *testing.B) {
b.Run("Key=int32/Elem=int32", benchSizes(benchmarkMapAccessHit[int32, int32]))
b.Run("Key=int64/Elem=int64", benchSizes(benchmarkMapAccessHit[int64, int64]))
b.Run("Key=string/Elem=string", benchSizes(benchmarkMapAccessHit[string, string]))
b.Run("Key=smallType/Elem=int32", benchSizes(benchmarkMapAccessHit[smallType, int32]))
b.Run("Key=mediumType/Elem=int32", benchSizes(benchmarkMapAccessHit[mediumType, int32]))
b.Run("Key=bigType/Elem=int32", benchSizes(benchmarkMapAccessHit[bigType, int32]))
b.Run("Key=bigType/Elem=bigType", benchSizes(benchmarkMapAccessHit[bigType, bigType]))
b.Run("Key=int32/Elem=bigType", benchSizes(benchmarkMapAccessHit[int32, bigType]))
b.Run("Key=*int32/Elem=int32", benchSizes(benchmarkMapAccessHit[*int32, int32]))
b.Run("Key=int32/Elem=*int32", benchSizes(benchmarkMapAccessHit[int32, *int32]))
}
var sinkOK bool
func benchmarkMapAccessMiss[K mapBenchmarkKeyType, E mapBenchmarkElemType](b *testing.B, n int) {
checkAllocSize[K, E](b, n)
k := genValues[K](0, n)
e := genValues[E](0, n)
m := fillMap(k, e)
if n == 0 { // Create a lookup values for empty maps.
n = 1
}
w := genValues[K](n, 2*n)
b.ResetTimer()
var ok bool
for i := 0; i < b.N; i++ {
_, ok = m[w[i%n]]
}
sinkOK = ok
}
func BenchmarkMapAccessMiss(b *testing.B) {
b.Run("Key=int32/Elem=int32", benchSizes(benchmarkMapAccessMiss[int32, int32]))
b.Run("Key=int64/Elem=int64", benchSizes(benchmarkMapAccessMiss[int64, int64]))
b.Run("Key=string/Elem=string", benchSizes(benchmarkMapAccessMiss[string, string]))
b.Run("Key=smallType/Elem=int32", benchSizes(benchmarkMapAccessMiss[smallType, int32]))
b.Run("Key=mediumType/Elem=int32", benchSizes(benchmarkMapAccessMiss[mediumType, int32]))
b.Run("Key=bigType/Elem=int32", benchSizes(benchmarkMapAccessMiss[bigType, int32]))
b.Run("Key=bigType/Elem=bigType", benchSizes(benchmarkMapAccessMiss[bigType, bigType]))
b.Run("Key=int32/Elem=bigType", benchSizes(benchmarkMapAccessMiss[int32, bigType]))
b.Run("Key=*int32/Elem=int32", benchSizes(benchmarkMapAccessMiss[*int32, int32]))
b.Run("Key=int32/Elem=*int32", benchSizes(benchmarkMapAccessMiss[int32, *int32]))
}
// Assign to a key that already exists.
func benchmarkMapAssignExists[K mapBenchmarkKeyType, E mapBenchmarkElemType](b *testing.B, n int) {
if n == 0 {
b.Skip("can't assign to existing keys in empty map")
}
checkAllocSize[K, E](b, n)
k := genValues[K](0, n)
e := genValues[E](0, n)
m := fillMap(k, e)
b.ResetTimer()
for i := 0; i < b.N; i++ {
m[k[i%n]] = e[i%n]
}
}
func BenchmarkMapAssignExists(b *testing.B) {
b.Run("Key=int32/Elem=int32", benchSizes(benchmarkMapAssignExists[int32, int32]))
b.Run("Key=int64/Elem=int64", benchSizes(benchmarkMapAssignExists[int64, int64]))
b.Run("Key=string/Elem=string", benchSizes(benchmarkMapAssignExists[string, string]))
b.Run("Key=smallType/Elem=int32", benchSizes(benchmarkMapAssignExists[smallType, int32]))
b.Run("Key=mediumType/Elem=int32", benchSizes(benchmarkMapAssignExists[mediumType, int32]))
b.Run("Key=bigType/Elem=int32", benchSizes(benchmarkMapAssignExists[bigType, int32]))
b.Run("Key=bigType/Elem=bigType", benchSizes(benchmarkMapAssignExists[bigType, bigType]))
b.Run("Key=int32/Elem=bigType", benchSizes(benchmarkMapAssignExists[int32, bigType]))
b.Run("Key=*int32/Elem=int32", benchSizes(benchmarkMapAssignExists[*int32, int32]))
b.Run("Key=int32/Elem=*int32", benchSizes(benchmarkMapAssignExists[int32, *int32]))
}
// Fill a map of size n with no hint. Time is per-key. A new map is created
// every n assignments.
//
// TODO(prattmic): Results don't make much sense if b.N < n.
// TODO(prattmic): Measure distribution of assign time to reveal the grow
// latency.
func benchmarkMapAssignFillNoHint[K mapBenchmarkKeyType, E mapBenchmarkElemType](b *testing.B, n int) {
if n == 0 {
b.Skip("can't create empty map via assignment")
}
checkAllocSize[K, E](b, n)
k := genValues[K](0, n)
e := genValues[E](0, n)
b.ResetTimer()
var m map[K]E
for i := 0; i < b.N; i++ {
if i%n == 0 {
m = make(map[K]E)
}
m[k[i%n]] = e[i%n]
}
}
func BenchmarkMapAssignFillNoHint(b *testing.B) {
b.Run("Key=int32/Elem=int32", benchSizes(benchmarkMapAssignFillNoHint[int32, int32]))
b.Run("Key=int64/Elem=int64", benchSizes(benchmarkMapAssignFillNoHint[int64, int64]))
b.Run("Key=string/Elem=string", benchSizes(benchmarkMapAssignFillNoHint[string, string]))
b.Run("Key=smallType/Elem=int32", benchSizes(benchmarkMapAssignFillNoHint[smallType, int32]))
b.Run("Key=mediumType/Elem=int32", benchSizes(benchmarkMapAssignFillNoHint[mediumType, int32]))
b.Run("Key=bigType/Elem=int32", benchSizes(benchmarkMapAssignFillNoHint[bigType, int32]))
b.Run("Key=bigType/Elem=bigType", benchSizes(benchmarkMapAssignFillNoHint[bigType, bigType]))
b.Run("Key=int32/Elem=bigType", benchSizes(benchmarkMapAssignFillNoHint[int32, bigType]))
b.Run("Key=*int32/Elem=int32", benchSizes(benchmarkMapAssignFillNoHint[*int32, int32]))
b.Run("Key=int32/Elem=*int32", benchSizes(benchmarkMapAssignFillNoHint[int32, *int32]))
}
// Identical to benchmarkMapAssignFillNoHint, but additionally measures the
// latency of each mapassign to report tail latency due to map grow.
func benchmarkMapAssignGrowLatency[K mapBenchmarkKeyType, E mapBenchmarkElemType](b *testing.B, n int) {
if n == 0 {
b.Skip("can't create empty map via assignment")
}
checkAllocSize[K, E](b, n)
k := genValues[K](0, n)
e := genValues[E](0, n)
// Store the run time of each mapassign. Keeping the full data rather
// than a histogram provides higher precision. b.N tends to be <10M, so
// the memory requirement isn't too bad.
sample := make([]int64, b.N)
b.ResetTimer()
var m map[K]E
for i := 0; i < b.N; i++ {
if i%n == 0 {
m = make(map[K]E)
}
start := runtime.Nanotime()
m[k[i%n]] = e[i%n]
end := runtime.Nanotime()
sample[i] = end - start
}
b.StopTimer()
slices.Sort(sample)
// TODO(prattmic): Grow is so rare that even p99.99 often doesn't
// display a grow case. Switch to a more direct measure of grow cases
// only?
b.ReportMetric(float64(sample[int(float64(len(sample))*0.5)]), "p50-ns/op")
b.ReportMetric(float64(sample[int(float64(len(sample))*0.99)]), "p99-ns/op")
b.ReportMetric(float64(sample[int(float64(len(sample))*0.999)]), "p99.9-ns/op")
b.ReportMetric(float64(sample[int(float64(len(sample))*0.9999)]), "p99.99-ns/op")
b.ReportMetric(float64(sample[len(sample)-1]), "p100-ns/op")
}
func BenchmarkMapAssignGrowLatency(b *testing.B) {
b.Run("Key=int32/Elem=int32", benchSizes(benchmarkMapAssignGrowLatency[int32, int32]))
b.Run("Key=int64/Elem=int64", benchSizes(benchmarkMapAssignGrowLatency[int64, int64]))
b.Run("Key=string/Elem=string", benchSizes(benchmarkMapAssignGrowLatency[string, string]))
b.Run("Key=smallType/Elem=int32", benchSizes(benchmarkMapAssignGrowLatency[smallType, int32]))
b.Run("Key=mediumType/Elem=int32", benchSizes(benchmarkMapAssignGrowLatency[mediumType, int32]))
b.Run("Key=bigType/Elem=int32", benchSizes(benchmarkMapAssignGrowLatency[bigType, int32]))
b.Run("Key=bigType/Elem=bigType", benchSizes(benchmarkMapAssignGrowLatency[bigType, bigType]))
b.Run("Key=int32/Elem=bigType", benchSizes(benchmarkMapAssignGrowLatency[int32, bigType]))
b.Run("Key=*int32/Elem=int32", benchSizes(benchmarkMapAssignGrowLatency[*int32, int32]))
b.Run("Key=int32/Elem=*int32", benchSizes(benchmarkMapAssignGrowLatency[int32, *int32]))
}
// Fill a map of size n with size hint. Time is per-key. A new map is created
// every n assignments.
//
// TODO(prattmic): Results don't make much sense if b.N < n.
func benchmarkMapAssignFillHint[K mapBenchmarkKeyType, E mapBenchmarkElemType](b *testing.B, n int) {
if n == 0 {
b.Skip("can't create empty map via assignment")
}
checkAllocSize[K, E](b, n)
k := genValues[K](0, n)
e := genValues[E](0, n)
b.ResetTimer()
var m map[K]E
for i := 0; i < b.N; i++ {
if i%n == 0 {
m = make(map[K]E, n)
}
m[k[i%n]] = e[i%n]
}
}
func BenchmarkMapAssignFillHint(b *testing.B) {
b.Run("Key=int32/Elem=int32", benchSizes(benchmarkMapAssignFillHint[int32, int32]))
b.Run("Key=int64/Elem=int64", benchSizes(benchmarkMapAssignFillHint[int64, int64]))
b.Run("Key=string/Elem=string", benchSizes(benchmarkMapAssignFillHint[string, string]))
b.Run("Key=smallType/Elem=int32", benchSizes(benchmarkMapAssignFillHint[smallType, int32]))
b.Run("Key=mediumType/Elem=int32", benchSizes(benchmarkMapAssignFillHint[mediumType, int32]))
b.Run("Key=bigType/Elem=int32", benchSizes(benchmarkMapAssignFillHint[bigType, int32]))
b.Run("Key=bigType/Elem=bigType", benchSizes(benchmarkMapAssignFillHint[bigType, bigType]))
b.Run("Key=int32/Elem=bigType", benchSizes(benchmarkMapAssignFillHint[int32, bigType]))
b.Run("Key=*int32/Elem=int32", benchSizes(benchmarkMapAssignFillHint[*int32, int32]))
b.Run("Key=int32/Elem=*int32", benchSizes(benchmarkMapAssignFillHint[int32, *int32]))
}
// Fill a map of size n, reusing the same map. Time is per-key. The map is
// cleared every n assignments.
//
// TODO(prattmic): Results don't make much sense if b.N < n.
func benchmarkMapAssignFillClear[K mapBenchmarkKeyType, E mapBenchmarkElemType](b *testing.B, n int) {
if n == 0 {
b.Skip("can't create empty map via assignment")
}
checkAllocSize[K, E](b, n)
k := genValues[K](0, n)
e := genValues[E](0, n)
m := fillMap(k, e)
b.ResetTimer()
for i := 0; i < b.N; i++ {
if i%n == 0 {
clear(m)
}
m[k[i%n]] = e[i%n]
}
}
func BenchmarkMapAssignFillClear(b *testing.B) {
b.Run("Key=int32/Elem=int32", benchSizes(benchmarkMapAssignFillClear[int32, int32]))
b.Run("Key=int64/Elem=int64", benchSizes(benchmarkMapAssignFillClear[int64, int64]))
b.Run("Key=string/Elem=string", benchSizes(benchmarkMapAssignFillClear[string, string]))
b.Run("Key=smallType/Elem=int32", benchSizes(benchmarkMapAssignFillClear[smallType, int32]))
b.Run("Key=mediumType/Elem=int32", benchSizes(benchmarkMapAssignFillClear[mediumType, int32]))
b.Run("Key=bigType/Elem=int32", benchSizes(benchmarkMapAssignFillClear[bigType, int32]))
b.Run("Key=bigType/Elem=bigType", benchSizes(benchmarkMapAssignFillClear[bigType, bigType]))
b.Run("Key=int32/Elem=bigType", benchSizes(benchmarkMapAssignFillClear[int32, bigType]))
b.Run("Key=*int32/Elem=int32", benchSizes(benchmarkMapAssignFillClear[*int32, int32]))
b.Run("Key=int32/Elem=*int32", benchSizes(benchmarkMapAssignFillClear[int32, *int32]))
}
// Modify values using +=.
func benchmarkMapAssignAddition[K mapBenchmarkKeyType, E int32 | int64 | string](b *testing.B, n int) {
if n == 0 {
b.Skip("can't modify empty map via assignment")
}
checkAllocSize[K, E](b, n)
k := genValues[K](0, n)
e := genValues[E](0, n)
m := fillMap(k, e)
b.ResetTimer()
for i := 0; i < b.N; i++ {
m[k[i%n]] += e[i%n]
}
}
func BenchmarkMapAssignAddition(b *testing.B) {
b.Run("Key=int32/Elem=int32", benchSizes(benchmarkMapAssignAddition[int32, int32]))
b.Run("Key=int64/Elem=int64", benchSizes(benchmarkMapAssignAddition[int64, int64]))
b.Run("Key=string/Elem=string", benchSizes(benchmarkMapAssignAddition[string, string]))
b.Run("Key=smallType/Elem=int32", benchSizes(benchmarkMapAssignAddition[smallType, int32]))
b.Run("Key=mediumType/Elem=int32", benchSizes(benchmarkMapAssignAddition[mediumType, int32]))
b.Run("Key=bigType/Elem=int32", benchSizes(benchmarkMapAssignAddition[bigType, int32]))
}
// Modify values append.
func benchmarkMapAssignAppend[K mapBenchmarkKeyType](b *testing.B, n int) {
if n == 0 {
b.Skip("can't modify empty map via append")
}
checkAllocSize[K, []int32](b, n)
k := genValues[K](0, n)
e := genValues[[]int32](0, n)
m := fillMap(k, e)
b.ResetTimer()
for i := 0; i < b.N; i++ {
m[k[i%n]] = append(m[k[i%n]], e[i%n][0])
}
}
func BenchmarkMapAssignAppend(b *testing.B) {
b.Run("Key=int32/Elem=[]int32", benchSizes(benchmarkMapAssignAppend[int32]))
b.Run("Key=int64/Elem=[]int32", benchSizes(benchmarkMapAssignAppend[int64]))
b.Run("Key=string/Elem=[]int32", benchSizes(benchmarkMapAssignAppend[string]))
}
func benchmarkMapDelete[K mapBenchmarkKeyType, E mapBenchmarkElemType](b *testing.B, n int) {
if n == 0 {
b.Skip("can't delete from empty map")
}
checkAllocSize[K, E](b, n)
k := genValues[K](0, n)
e := genValues[E](0, n)
m := fillMap(k, e)
b.ResetTimer()
for i := 0; i < b.N; i++ {
if len(m) == 0 {
// We'd like to StopTimer while refilling the map, but
// it is way too expensive and thus makes the benchmark
// take a long time. See https://go.dev/issue/20875.
for j := range k {
m[k[j]] = e[j]
}
}
delete(m, k[i%n])
}
}
func BenchmarkMapDelete(b *testing.B) {
b.Run("Key=int32/Elem=int32", benchSizes(benchmarkMapDelete[int32, int32]))
b.Run("Key=int64/Elem=int64", benchSizes(benchmarkMapDelete[int64, int64]))
b.Run("Key=string/Elem=string", benchSizes(benchmarkMapDelete[string, string]))
b.Run("Key=smallType/Elem=int32", benchSizes(benchmarkMapDelete[smallType, int32]))
b.Run("Key=mediumType/Elem=int32", benchSizes(benchmarkMapDelete[mediumType, int32]))
b.Run("Key=bigType/Elem=int32", benchSizes(benchmarkMapDelete[bigType, int32]))
b.Run("Key=bigType/Elem=bigType", benchSizes(benchmarkMapDelete[bigType, bigType]))
b.Run("Key=int32/Elem=bigType", benchSizes(benchmarkMapDelete[int32, bigType]))
b.Run("Key=*int32/Elem=int32", benchSizes(benchmarkMapDelete[*int32, int32]))
b.Run("Key=int32/Elem=*int32", benchSizes(benchmarkMapDelete[int32, *int32]))
}
// Use iterator to pop an element. We want this to be fast, see
// https://go.dev/issue/8412.
func benchmarkMapPop[K mapBenchmarkKeyType, E mapBenchmarkElemType](b *testing.B, n int) {
if n == 0 {
b.Skip("can't delete from empty map")
}
checkAllocSize[K, E](b, n)
k := genValues[K](0, n)
e := genValues[E](0, n)
m := fillMap(k, e)
b.ResetTimer()
for i := 0; i < b.N; i++ {
if len(m) == 0 {
// We'd like to StopTimer while refilling the map, but
// it is way too expensive and thus makes the benchmark
// take a long time. See https://go.dev/issue/20875.
for j := range k {
m[k[j]] = e[j]
}
}
for key := range m {
delete(m, key)
break
}
}
}
func BenchmarkMapPop(b *testing.B) {
b.Run("Key=int32/Elem=int32", benchSizes(benchmarkMapPop[int32, int32]))
b.Run("Key=int64/Elem=int64", benchSizes(benchmarkMapPop[int64, int64]))
b.Run("Key=string/Elem=string", benchSizes(benchmarkMapPop[string, string]))
b.Run("Key=smallType/Elem=int32", benchSizes(benchmarkMapPop[smallType, int32]))
b.Run("Key=mediumType/Elem=int32", benchSizes(benchmarkMapPop[mediumType, int32]))
b.Run("Key=bigType/Elem=int32", benchSizes(benchmarkMapPop[bigType, int32]))
b.Run("Key=bigType/Elem=bigType", benchSizes(benchmarkMapPop[bigType, bigType]))
b.Run("Key=int32/Elem=bigType", benchSizes(benchmarkMapPop[int32, bigType]))
b.Run("Key=*int32/Elem=int32", benchSizes(benchmarkMapPop[*int32, int32]))
b.Run("Key=int32/Elem=*int32", benchSizes(benchmarkMapPop[int32, *int32]))
}
func BenchmarkMapDeleteLargeKey(b *testing.B) {
m := map[string]int{}
for i := range 9 {
m[fmt.Sprintf("%d", i)] = i
}
key := strings.Repeat("*", 10000)
for range b.N {
delete(m, key)
}
}
func BenchmarkMapSmallAccessHit(b *testing.B) {
b.Run("Key=int32/Elem=int32", smallBenchSizes(benchmarkMapAccessHit[int32, int32]))
b.Run("Key=int64/Elem=int64", smallBenchSizes(benchmarkMapAccessHit[int64, int64]))
b.Run("Key=string/Elem=string", smallBenchSizes(benchmarkMapAccessHit[string, string]))
b.Run("Key=smallType/Elem=int32", smallBenchSizes(benchmarkMapAccessHit[smallType, int32]))
}
func BenchmarkMapSmallAccessMiss(b *testing.B) {
b.Run("Key=int32/Elem=int32", smallBenchSizes(benchmarkMapAccessMiss[int32, int32]))
b.Run("Key=int64/Elem=int64", smallBenchSizes(benchmarkMapAccessMiss[int64, int64]))
b.Run("Key=string/Elem=string", smallBenchSizes(benchmarkMapAccessMiss[string, string]))
b.Run("Key=smallType/Elem=int32", smallBenchSizes(benchmarkMapAccessMiss[smallType, int32]))
}
func mapAccessZeroBenchmark[K comparable](b *testing.B) {
var m map[K]uint64
var key K
for i := 0; i < b.N; i++ {
sink = m[key]
}
}
func BenchmarkMapAccessZero(b *testing.B) {
b.Run("Key=int64", mapAccessZeroBenchmark[int64])
b.Run("Key=int32", mapAccessZeroBenchmark[int32])
b.Run("Key=string", mapAccessZeroBenchmark[string])
b.Run("Key=mediumType", mapAccessZeroBenchmark[mediumType])
b.Run("Key=bigType", mapAccessZeroBenchmark[bigType])
}
func mapAccessEmptyBenchmark[K mapBenchmarkKeyType](b *testing.B) {
m := make(map[K]uint64)
for i, v := range genValues[K](0, 1000) {
m[v] = uint64(i)
}
clear(m)
var key K
for i := 0; i < b.N; i++ {
sink = m[key]
}
}
func BenchmarkMapAccessEmpty(b *testing.B) {
b.Run("Key=int64", mapAccessEmptyBenchmark[int64])
b.Run("Key=int32", mapAccessEmptyBenchmark[int32])
b.Run("Key=string", mapAccessEmptyBenchmark[string])
b.Run("Key=mediumType", mapAccessEmptyBenchmark[mediumType])
b.Run("Key=bigType", mapAccessEmptyBenchmark[bigType])
}