blob: 97cf0eed54c77ceac805b00ee942f13389e69a1f [file] [log] [blame]
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime_test
import (
"flag"
"fmt"
"internal/asan"
"internal/race"
"internal/testenv"
"os"
"os/exec"
"reflect"
"runtime"
. "runtime"
"strings"
"sync"
"sync/atomic"
"testing"
"time"
"unsafe"
)
var testMemStatsCount int
func TestMemStats(t *testing.T) {
testMemStatsCount++
// Make sure there's at least one forced GC.
GC()
// Test that MemStats has sane values.
st := new(MemStats)
ReadMemStats(st)
nz := func(x any) error {
if x != reflect.Zero(reflect.TypeOf(x)).Interface() {
return nil
}
return fmt.Errorf("zero value")
}
le := func(thresh float64) func(any) error {
return func(x any) error {
// These sanity tests aren't necessarily valid
// with high -test.count values, so only run
// them once.
if testMemStatsCount > 1 {
return nil
}
if reflect.ValueOf(x).Convert(reflect.TypeOf(thresh)).Float() < thresh {
return nil
}
return fmt.Errorf("insanely high value (overflow?); want <= %v", thresh)
}
}
eq := func(x any) func(any) error {
return func(y any) error {
if x == y {
return nil
}
return fmt.Errorf("want %v", x)
}
}
// Of the uint fields, HeapReleased, HeapIdle can be 0.
// PauseTotalNs can be 0 if timer resolution is poor.
fields := map[string][]func(any) error{
"Alloc": {nz, le(1e10)}, "TotalAlloc": {nz, le(1e11)}, "Sys": {nz, le(1e10)},
"Lookups": {eq(uint64(0))}, "Mallocs": {nz, le(1e10)}, "Frees": {nz, le(1e10)},
"HeapAlloc": {nz, le(1e10)}, "HeapSys": {nz, le(1e10)}, "HeapIdle": {le(1e10)},
"HeapInuse": {nz, le(1e10)}, "HeapReleased": {le(1e10)}, "HeapObjects": {nz, le(1e10)},
"StackInuse": {nz, le(1e10)}, "StackSys": {nz, le(1e10)},
"MSpanInuse": {nz, le(1e10)}, "MSpanSys": {nz, le(1e10)},
"MCacheInuse": {nz, le(1e10)}, "MCacheSys": {nz, le(1e10)},
"BuckHashSys": {nz, le(1e10)}, "GCSys": {nz, le(1e10)}, "OtherSys": {nz, le(1e10)},
"NextGC": {nz, le(1e10)}, "LastGC": {nz},
"PauseTotalNs": {le(1e11)}, "PauseNs": nil, "PauseEnd": nil,
"NumGC": {nz, le(1e9)}, "NumForcedGC": {nz, le(1e9)},
"GCCPUFraction": {le(0.99)}, "EnableGC": {eq(true)}, "DebugGC": {eq(false)},
"BySize": nil,
}
rst := reflect.ValueOf(st).Elem()
for i := 0; i < rst.Type().NumField(); i++ {
name, val := rst.Type().Field(i).Name, rst.Field(i).Interface()
checks, ok := fields[name]
if !ok {
t.Errorf("unknown MemStats field %s", name)
continue
}
for _, check := range checks {
if err := check(val); err != nil {
t.Errorf("%s = %v: %s", name, val, err)
}
}
}
if st.Sys != st.HeapSys+st.StackSys+st.MSpanSys+st.MCacheSys+
st.BuckHashSys+st.GCSys+st.OtherSys {
t.Fatalf("Bad sys value: %+v", *st)
}
if st.HeapIdle+st.HeapInuse != st.HeapSys {
t.Fatalf("HeapIdle(%d) + HeapInuse(%d) should be equal to HeapSys(%d), but isn't.", st.HeapIdle, st.HeapInuse, st.HeapSys)
}
if lpe := st.PauseEnd[int(st.NumGC+255)%len(st.PauseEnd)]; st.LastGC != lpe {
t.Fatalf("LastGC(%d) != last PauseEnd(%d)", st.LastGC, lpe)
}
var pauseTotal uint64
for _, pause := range st.PauseNs {
pauseTotal += pause
}
if int(st.NumGC) < len(st.PauseNs) {
// We have all pauses, so this should be exact.
if st.PauseTotalNs != pauseTotal {
t.Fatalf("PauseTotalNs(%d) != sum PauseNs(%d)", st.PauseTotalNs, pauseTotal)
}
for i := int(st.NumGC); i < len(st.PauseNs); i++ {
if st.PauseNs[i] != 0 {
t.Fatalf("Non-zero PauseNs[%d]: %+v", i, st)
}
if st.PauseEnd[i] != 0 {
t.Fatalf("Non-zero PauseEnd[%d]: %+v", i, st)
}
}
} else {
if st.PauseTotalNs < pauseTotal {
t.Fatalf("PauseTotalNs(%d) < sum PauseNs(%d)", st.PauseTotalNs, pauseTotal)
}
}
if st.NumForcedGC > st.NumGC {
t.Fatalf("NumForcedGC(%d) > NumGC(%d)", st.NumForcedGC, st.NumGC)
}
}
func TestStringConcatenationAllocs(t *testing.T) {
n := testing.AllocsPerRun(1e3, func() {
b := make([]byte, 10)
for i := 0; i < 10; i++ {
b[i] = byte(i) + '0'
}
s := "foo" + string(b)
if want := "foo0123456789"; s != want {
t.Fatalf("want %v, got %v", want, s)
}
})
// Only string concatenation allocates.
if n != 1 {
t.Fatalf("want 1 allocation, got %v", n)
}
}
func TestTinyAlloc(t *testing.T) {
if runtime.Raceenabled {
t.Skip("tinyalloc suppressed when running in race mode")
}
if asan.Enabled {
t.Skip("tinyalloc suppressed when running in asan mode due to redzone")
}
const N = 16
var v [N]unsafe.Pointer
for i := range v {
v[i] = unsafe.Pointer(new(byte))
}
chunks := make(map[uintptr]bool, N)
for _, p := range v {
chunks[uintptr(p)&^7] = true
}
if len(chunks) == N {
t.Fatal("no bytes allocated within the same 8-byte chunk")
}
}
type obj12 struct {
a uint64
b uint32
}
func TestTinyAllocIssue37262(t *testing.T) {
if runtime.Raceenabled {
t.Skip("tinyalloc suppressed when running in race mode")
}
if asan.Enabled {
t.Skip("tinyalloc suppressed when running in asan mode due to redzone")
}
// Try to cause an alignment access fault
// by atomically accessing the first 64-bit
// value of a tiny-allocated object.
// See issue 37262 for details.
// GC twice, once to reach a stable heap state
// and again to make sure we finish the sweep phase.
runtime.GC()
runtime.GC()
// Disable preemption so we stay on one P's tiny allocator and
// nothing else allocates from it.
runtime.Acquirem()
// Make 1-byte allocations until we get a fresh tiny slot.
aligned := false
for i := 0; i < 16; i++ {
x := runtime.Escape(new(byte))
if uintptr(unsafe.Pointer(x))&0xf == 0xf {
aligned = true
break
}
}
if !aligned {
runtime.Releasem()
t.Fatal("unable to get a fresh tiny slot")
}
// Create a 4-byte object so that the current
// tiny slot is partially filled.
runtime.Escape(new(uint32))
// Create a 12-byte object, which fits into the
// tiny slot. If it actually gets place there,
// then the field "a" will be improperly aligned
// for atomic access on 32-bit architectures.
// This won't be true if issue 36606 gets resolved.
tinyObj12 := runtime.Escape(new(obj12))
// Try to atomically access "x.a".
atomic.StoreUint64(&tinyObj12.a, 10)
runtime.Releasem()
}
// TestFreegc does basic testing of explicit frees.
func TestFreegc(t *testing.T) {
tests := []struct {
size string
f func(noscan bool) func(*testing.T)
noscan bool
}{
// Types without pointers.
{"size=16", testFreegc[[16]byte], true}, // smallest we support currently
{"size=17", testFreegc[[17]byte], true},
{"size=64", testFreegc[[64]byte], true},
{"size=500", testFreegc[[500]byte], true},
{"size=512", testFreegc[[512]byte], true},
{"size=4096", testFreegc[[4096]byte], true},
{"size=20000", testFreegc[[20000]byte], true}, // not power of 2 or spc boundary
{"size=32KiB-8", testFreegc[[1<<15 - 8]byte], true}, // max noscan small object for 64-bit
}
// Run the tests twice if not in -short mode or not otherwise saving test time.
// First while manually calling runtime.GC to slightly increase isolation (perhaps making
// problems more reproducible).
for _, tt := range tests {
runtime.GC()
t.Run(fmt.Sprintf("gc=yes/ptrs=%v/%s", !tt.noscan, tt.size), tt.f(tt.noscan))
}
runtime.GC()
if testing.Short() || !RuntimeFreegcEnabled || runtime.Raceenabled {
return
}
// Again, but without manually calling runtime.GC in the loop (perhaps less isolation might
// trigger problems).
for _, tt := range tests {
t.Run(fmt.Sprintf("gc=no/ptrs=%v/%s", !tt.noscan, tt.size), tt.f(tt.noscan))
}
runtime.GC()
}
func testFreegc[T comparable](noscan bool) func(*testing.T) {
// We use stressMultiple to influence the duration of the tests.
// When testing freegc changes, stressMultiple can be increased locally
// to test longer or in some cases with more goroutines.
// It can also be helpful to test with GODEBUG=clobberfree=1 and
// with and without doubleCheckMalloc and doubleCheckReusable enabled.
stressMultiple := 10
if testing.Short() || !RuntimeFreegcEnabled || runtime.Raceenabled {
stressMultiple = 1
}
return func(t *testing.T) {
alloc := func() *T {
// Force heap alloc, plus some light validation of zeroed memory.
t.Helper()
p := Escape(new(T))
var zero T
if *p != zero {
t.Fatalf("allocator returned non-zero memory: %v", *p)
}
return p
}
free := func(p *T) {
t.Helper()
var zero T
if *p != zero {
t.Fatalf("found non-zero memory before freegc (tests do not modify memory): %v", *p)
}
runtime.Freegc(unsafe.Pointer(p), unsafe.Sizeof(*p), noscan)
}
t.Run("basic-free", func(t *testing.T) {
// Test that freeing a live heap object doesn't crash.
for range 100 {
p := alloc()
free(p)
}
})
t.Run("stack-free", func(t *testing.T) {
// Test that freeing a stack object doesn't crash.
for range 100 {
var x [32]byte
var y [32]*int
runtime.Freegc(unsafe.Pointer(&x), unsafe.Sizeof(x), true) // noscan
runtime.Freegc(unsafe.Pointer(&y), unsafe.Sizeof(y), false) // !noscan
}
})
// Check our allocations. These tests rely on the
// current implementation treating a re-used object
// as not adding to the allocation counts seen
// by testing.AllocsPerRun. (This is not the desired
// long-term behavior, but it is the current behavior and
// makes these tests convenient).
t.Run("allocs-baseline", func(t *testing.T) {
// Baseline result without any explicit free.
allocs := testing.AllocsPerRun(100, func() {
for range 100 {
p := alloc()
_ = p
}
})
if allocs < 100 {
// TODO(thepudds): we get exactly 100 for almost all the tests, but investigate why
// ~101 allocs for TestFreegc/ptrs=true/size=32KiB-8.
t.Fatalf("expected >=100 allocations, got %v", allocs)
}
})
t.Run("allocs-with-free", func(t *testing.T) {
// Same allocations, but now using explicit free so that
// no allocs get reported. (Again, not the desired long-term behavior).
if SizeSpecializedMallocEnabled && !noscan {
// TODO(thepudds): skip at this point in the stack for size-specialized malloc
// with !noscan. Additional integration with sizespecializedmalloc is in a later CL.
t.Skip("temporarily skipping alloc tests for GOEXPERIMENT=sizespecializedmalloc for pointer types")
}
if !RuntimeFreegcEnabled {
t.Skip("skipping alloc tests with runtime.freegc disabled")
}
allocs := testing.AllocsPerRun(100, func() {
for range 100 {
p := alloc()
free(p)
}
})
if allocs != 0 {
t.Fatalf("expected 0 allocations, got %v", allocs)
}
})
t.Run("free-multiple", func(t *testing.T) {
// Multiple allocations outstanding before explicitly freeing,
// but still within the limit of our smallest free list size
// so that no allocs are reported. (Again, not long-term behavior).
if SizeSpecializedMallocEnabled && !noscan {
// TODO(thepudds): skip at this point in the stack for size-specialized malloc
// with !noscan. Additional integration with sizespecializedmalloc is in a later CL.
t.Skip("temporarily skipping alloc tests for GOEXPERIMENT=sizespecializedmalloc for pointer types")
}
if !RuntimeFreegcEnabled {
t.Skip("skipping alloc tests with runtime.freegc disabled")
}
const maxOutstanding = 20
s := make([]*T, 0, maxOutstanding)
allocs := testing.AllocsPerRun(100*stressMultiple, func() {
s = s[:0]
for range maxOutstanding {
p := alloc()
s = append(s, p)
}
for _, p := range s {
free(p)
}
})
if allocs != 0 {
t.Fatalf("expected 0 allocations, got %v", allocs)
}
})
if runtime.GOARCH == "wasm" {
// TODO(thepudds): for wasm, double-check if just slow, vs. some test logic problem,
// vs. something else. It might have been wasm was slowest with tests that spawn
// many goroutines, which might be expected for wasm. This skip might no longer be
// needed now that we have tuned test execution time more, or perhaps wasm should just
// always run in short mode, which might also let us remove this skip.
t.Skip("skipping remaining freegc tests, was timing out on wasm")
}
t.Run("free-many", func(t *testing.T) {
// Confirm we are graceful if we have more freed elements at once
// than the max free list size.
s := make([]*T, 0, 1000)
iterations := stressMultiple * stressMultiple // currently 1 (-short) or 100
for range iterations {
s = s[:0]
for range 1000 {
p := alloc()
s = append(s, p)
}
for _, p := range s {
free(p)
}
}
})
t.Run("duplicate-check", func(t *testing.T) {
// A simple duplicate allocation test. We track what should be the set
// of live pointers in a map across a series of allocs and frees,
// and fail if a live pointer value is returned by an allocation.
// TODO: maybe add randomness? allow more live pointers? do across goroutines?
live := make(map[uintptr]bool)
for i := range 100 * stressMultiple {
var s []*T
// Alloc 10 times, tracking the live pointer values.
for j := range 10 {
p := alloc()
uptr := uintptr(unsafe.Pointer(p))
if live[uptr] {
t.Fatalf("found duplicate pointer (0x%x). i: %d j: %d", uptr, i, j)
}
live[uptr] = true
s = append(s, p)
}
// Explicitly free those pointers, removing them from the live map.
for k := range s {
p := s[k]
s[k] = nil
uptr := uintptr(unsafe.Pointer(p))
free(p)
delete(live, uptr)
}
}
})
t.Run("free-other-goroutine", func(t *testing.T) {
// Use explicit free, but the free happens on a different goroutine than the alloc.
// This also lightly simulates how the free code sees P migration or flushing
// the mcache, assuming we have > 1 P. (Not using testing.AllocsPerRun here).
iterations := 10 * stressMultiple * stressMultiple // currently 10 (-short) or 1000
for _, capacity := range []int{2} {
for range iterations {
ch := make(chan *T, capacity)
var wg sync.WaitGroup
for range 2 {
wg.Add(1)
go func() {
defer wg.Done()
for p := range ch {
free(p)
}
}()
}
for range 100 {
p := alloc()
ch <- p
}
close(ch)
wg.Wait()
}
}
})
t.Run("many-goroutines", func(t *testing.T) {
// Allocate across multiple goroutines, freeing on the same goroutine.
// TODO: probably remove the duplicate checking here; not that useful.
counts := []int{1, 2, 4, 8, 10 * stressMultiple}
for _, goroutines := range counts {
var wg sync.WaitGroup
for range goroutines {
wg.Add(1)
go func() {
defer wg.Done()
live := make(map[uintptr]bool)
for range 100 * stressMultiple {
p := alloc()
uptr := uintptr(unsafe.Pointer(p))
if live[uptr] {
panic("TestFreeLive: found duplicate pointer")
}
live[uptr] = true
free(p)
delete(live, uptr)
}
}()
}
wg.Wait()
}
})
t.Run("assist-credit", func(t *testing.T) {
// Allocate and free using the same span class repeatedly while
// verifying it results in a net zero change in assist credit.
// This helps double-check our manipulation of the assist credit
// during mallocgc/freegc, including in cases when there is
// internal fragmentation when the requested mallocgc size is
// smaller than the size class.
//
// See https://go.dev/cl/717520 for some additional discussion,
// including how we can deliberately cause the test to fail currently
// if we purposefully introduce some assist credit bugs.
if SizeSpecializedMallocEnabled && !noscan {
// TODO(thepudds): skip this test at this point in the stack; later CL has
// integration with sizespecializedmalloc.
t.Skip("temporarily skip assist credit tests for GOEXPERIMENT=sizespecializedmalloc for pointer types")
}
if !RuntimeFreegcEnabled {
t.Skip("skipping assist credit test with runtime.freegc disabled")
}
// Use a background goroutine to continuously run the GC.
done := make(chan struct{})
defer close(done)
go func() {
for {
select {
case <-done:
return
default:
runtime.GC()
}
}
}()
// If making changes related to this test, consider testing locally with
// larger counts, like 100K or 1M.
counts := []int{1, 2, 10, 100 * stressMultiple}
// Dropping down to GOMAXPROCS=1 might help reduce noise.
defer GOMAXPROCS(GOMAXPROCS(1))
size := int64(unsafe.Sizeof(*new(T)))
for _, count := range counts {
// Start by forcing a GC to reset this g's assist credit
// and perhaps help us get a cleaner measurement of GC cycle count.
runtime.GC()
for i := range count {
// We disable preemption to reduce other code's ability to adjust this g's
// assist credit or otherwise change things while we are measuring.
Acquirem()
// We do two allocations per loop, with the second allocation being
// the one we measure. The first allocation tries to ensure at least one
// reusable object on the mspan's free list when we do our measured allocation.
p := alloc()
free(p)
// Now do our primary allocation of interest, bracketed by measurements.
// We measure more than we strictly need (to log details in case of a failure).
creditStart := AssistCredit()
blackenStart := GcBlackenEnable()
p = alloc()
blackenAfterAlloc := GcBlackenEnable()
creditAfterAlloc := AssistCredit()
free(p)
blackenEnd := GcBlackenEnable()
creditEnd := AssistCredit()
Releasem()
GoschedIfBusy()
delta := creditEnd - creditStart
if delta != 0 {
t.Logf("assist credit non-zero delta: %d", delta)
t.Logf("\t| size: %d i: %d count: %d", size, i, count)
t.Logf("\t| credit before: %d credit after: %d", creditStart, creditEnd)
t.Logf("\t| alloc delta: %d free delta: %d",
creditAfterAlloc-creditStart, creditEnd-creditAfterAlloc)
t.Logf("\t| gcBlackenEnable (start / after alloc / end): %v/%v/%v",
blackenStart, blackenAfterAlloc, blackenEnd)
t.FailNow()
}
}
}
})
}
}
func TestPageCacheLeak(t *testing.T) {
defer GOMAXPROCS(GOMAXPROCS(1))
leaked := PageCachePagesLeaked()
if leaked != 0 {
t.Fatalf("found %d leaked pages in page caches", leaked)
}
}
func TestPhysicalMemoryUtilization(t *testing.T) {
got := runTestProg(t, "testprog", "GCPhys")
want := "OK\n"
if got != want {
t.Fatalf("expected %q, but got %q", want, got)
}
}
func TestScavengedBitsCleared(t *testing.T) {
var mismatches [128]BitsMismatch
if n, ok := CheckScavengedBitsCleared(mismatches[:]); !ok {
t.Errorf("uncleared scavenged bits")
for _, m := range mismatches[:n] {
t.Logf("\t@ address 0x%x", m.Base)
t.Logf("\t| got: %064b", m.Got)
t.Logf("\t| want: %064b", m.Want)
}
t.FailNow()
}
}
type acLink struct {
x [1 << 20]byte
}
var arenaCollisionSink []*acLink
func TestArenaCollision(t *testing.T) {
// Test that mheap.sysAlloc handles collisions with other
// memory mappings.
if os.Getenv("TEST_ARENA_COLLISION") != "1" {
cmd := testenv.CleanCmdEnv(exec.Command(testenv.Executable(t), "-test.run=^TestArenaCollision$", "-test.v"))
cmd.Env = append(cmd.Env, "TEST_ARENA_COLLISION=1")
out, err := cmd.CombinedOutput()
if race.Enabled {
// This test runs the runtime out of hint
// addresses, so it will start mapping the
// heap wherever it can. The race detector
// doesn't support this, so look for the
// expected failure.
if want := "too many address space collisions"; !strings.Contains(string(out), want) {
t.Fatalf("want %q, got:\n%s", want, string(out))
}
} else if !strings.Contains(string(out), "PASS\n") || err != nil {
t.Fatalf("%s\n(exit status %v)", string(out), err)
}
return
}
disallowed := [][2]uintptr{}
// Drop all but the next 3 hints. 64-bit has a lot of hints,
// so it would take a lot of memory to go through all of them.
KeepNArenaHints(3)
// Consume these 3 hints and force the runtime to find some
// fallback hints.
for i := 0; i < 5; i++ {
// Reserve memory at the next hint so it can't be used
// for the heap.
start, end, ok := MapNextArenaHint()
if !ok {
t.Skipf("failed to reserve memory at next arena hint [%#x, %#x)", start, end)
}
t.Logf("reserved [%#x, %#x)", start, end)
disallowed = append(disallowed, [2]uintptr{start, end})
// Allocate until the runtime tries to use the hint we
// just mapped over.
hint := GetNextArenaHint()
for GetNextArenaHint() == hint {
ac := new(acLink)
arenaCollisionSink = append(arenaCollisionSink, ac)
// The allocation must not have fallen into
// one of the reserved regions.
p := uintptr(unsafe.Pointer(ac))
for _, d := range disallowed {
if d[0] <= p && p < d[1] {
t.Fatalf("allocation %#x in reserved region [%#x, %#x)", p, d[0], d[1])
}
}
}
}
}
func BenchmarkMalloc8(b *testing.B) {
for i := 0; i < b.N; i++ {
p := new(int64)
Escape(p)
}
}
func BenchmarkMalloc16(b *testing.B) {
for i := 0; i < b.N; i++ {
p := new([2]int64)
Escape(p)
}
}
func BenchmarkMalloc32(b *testing.B) {
for i := 0; i < b.N; i++ {
p := new([4]int64)
Escape(p)
}
}
func BenchmarkMallocTypeInfo8(b *testing.B) {
for i := 0; i < b.N; i++ {
p := new(struct {
p [8 / unsafe.Sizeof(uintptr(0))]*int
})
Escape(p)
}
}
func BenchmarkMallocTypeInfo16(b *testing.B) {
for i := 0; i < b.N; i++ {
p := new(struct {
p [16 / unsafe.Sizeof(uintptr(0))]*int
})
Escape(p)
}
}
func BenchmarkMallocTypeInfo32(b *testing.B) {
for i := 0; i < b.N; i++ {
p := new(struct {
p [32 / unsafe.Sizeof(uintptr(0))]*int
})
Escape(p)
}
}
type LargeStruct struct {
x [16][]byte
}
func BenchmarkMallocLargeStruct(b *testing.B) {
for i := 0; i < b.N; i++ {
p := make([]LargeStruct, 2)
Escape(p)
}
}
var n = flag.Int("n", 1000, "number of goroutines")
func BenchmarkGoroutineSelect(b *testing.B) {
quit := make(chan struct{})
read := func(ch chan struct{}) {
for {
select {
case _, ok := <-ch:
if !ok {
return
}
case <-quit:
return
}
}
}
benchHelper(b, *n, read)
}
func BenchmarkGoroutineBlocking(b *testing.B) {
read := func(ch chan struct{}) {
for {
if _, ok := <-ch; !ok {
return
}
}
}
benchHelper(b, *n, read)
}
func BenchmarkGoroutineForRange(b *testing.B) {
read := func(ch chan struct{}) {
for range ch {
}
}
benchHelper(b, *n, read)
}
func benchHelper(b *testing.B, n int, read func(chan struct{})) {
m := make([]chan struct{}, n)
for i := range m {
m[i] = make(chan struct{}, 1)
go read(m[i])
}
b.StopTimer()
b.ResetTimer()
GC()
for i := 0; i < b.N; i++ {
for _, ch := range m {
if ch != nil {
ch <- struct{}{}
}
}
time.Sleep(10 * time.Millisecond)
b.StartTimer()
GC()
b.StopTimer()
}
for _, ch := range m {
close(ch)
}
time.Sleep(10 * time.Millisecond)
}
func BenchmarkGoroutineIdle(b *testing.B) {
quit := make(chan struct{})
fn := func() {
<-quit
}
for i := 0; i < *n; i++ {
go fn()
}
GC()
b.ResetTimer()
for i := 0; i < b.N; i++ {
GC()
}
b.StopTimer()
close(quit)
time.Sleep(10 * time.Millisecond)
}
func TestMkmalloc(t *testing.T) {
testenv.MustHaveGoRun(t)
testenv.MustHaveExternalNetwork(t) // To download the golang.org/x/tools dependency.
output, err := exec.Command("go", "-C", "_mkmalloc", "test").CombinedOutput()
t.Logf("test output:\n%s", output)
if err != nil {
t.Errorf("_mkmalloc tests failed: %v", err)
}
}