blob: 43e36d309389f525bd34759d68528a5b219a2f32 [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements unsigned multi-precision integers (natural
// numbers). They are the building blocks for the implementation
// of signed integers, rationals, and floating-point numbers.
//
// Caution: This implementation relies on the function "alias"
// which assumes that (nat) slice capacities are never
// changed (no 3-operand slice expressions). If that
// changes, alias needs to be updated for correctness.
package big
import (
"internal/byteorder"
"math/bits"
"math/rand"
"slices"
"sync"
)
// An unsigned integer x of the form
//
// x = x[n-1]*_B^(n-1) + x[n-2]*_B^(n-2) + ... + x[1]*_B + x[0]
//
// with 0 <= x[i] < _B and 0 <= i < n is stored in a slice of length n,
// with the digits x[i] as the slice elements.
//
// A number is normalized if the slice contains no leading 0 digits.
// During arithmetic operations, denormalized values may occur but are
// always normalized before returning the final result. The normalized
// representation of 0 is the empty or nil slice (length = 0).
type nat []Word
var (
natOne = nat{1}
natTwo = nat{2}
natFive = nat{5}
natTen = nat{10}
)
func (z nat) String() string {
return "0x" + string(z.itoa(false, 16))
}
func (z nat) norm() nat {
i := len(z)
for i > 0 && z[i-1] == 0 {
i--
}
return z[0:i]
}
func (z nat) make(n int) nat {
if n <= cap(z) {
return z[:n] // reuse z
}
if n == 1 {
// Most nats start small and stay that way; don't over-allocate.
return make(nat, 1)
}
// Choosing a good value for e has significant performance impact
// because it increases the chance that a value can be reused.
const e = 4 // extra capacity
return make(nat, n, n+e)
}
func (z nat) setWord(x Word) nat {
if x == 0 {
return z[:0]
}
z = z.make(1)
z[0] = x
return z
}
func (z nat) setUint64(x uint64) nat {
// single-word value
if w := Word(x); uint64(w) == x {
return z.setWord(w)
}
// 2-word value
z = z.make(2)
z[1] = Word(x >> 32)
z[0] = Word(x)
return z
}
func (z nat) set(x nat) nat {
z = z.make(len(x))
copy(z, x)
return z
}
func (z nat) add(x, y nat) nat {
m := len(x)
n := len(y)
switch {
case m < n:
return z.add(y, x)
case m == 0:
// n == 0 because m >= n; result is 0
return z[:0]
case n == 0:
// result is x
return z.set(x)
}
// m > 0
z = z.make(m + 1)
c := addVV(z[:n], x[:n], y[:n])
if m > n {
c = addVW(z[n:m], x[n:], c)
}
z[m] = c
return z.norm()
}
func (z nat) sub(x, y nat) nat {
m := len(x)
n := len(y)
switch {
case m < n:
panic("underflow")
case m == 0:
// n == 0 because m >= n; result is 0
return z[:0]
case n == 0:
// result is x
return z.set(x)
}
// m > 0
z = z.make(m)
c := subVV(z[:n], x[:n], y[:n])
if m > n {
c = subVW(z[n:], x[n:], c)
}
if c != 0 {
panic("underflow")
}
return z.norm()
}
func (x nat) cmp(y nat) (r int) {
m := len(x)
n := len(y)
if m != n || m == 0 {
switch {
case m < n:
r = -1
case m > n:
r = 1
}
return
}
i := m - 1
for i > 0 && x[i] == y[i] {
i--
}
switch {
case x[i] < y[i]:
r = -1
case x[i] > y[i]:
r = 1
}
return
}
// montgomery computes z mod m = x*y*2**(-n*_W) mod m,
// assuming k = -1/m mod 2**_W.
// z is used for storing the result which is returned;
// z must not alias x, y or m.
// See Gueron, "Efficient Software Implementations of Modular Exponentiation".
// https://eprint.iacr.org/2011/239.pdf
// In the terminology of that paper, this is an "Almost Montgomery Multiplication":
// x and y are required to satisfy 0 <= z < 2**(n*_W) and then the result
// z is guaranteed to satisfy 0 <= z < 2**(n*_W), but it may not be < m.
func (z nat) montgomery(x, y, m nat, k Word, n int) nat {
// This code assumes x, y, m are all the same length, n.
// (required by addMulVVW and the for loop).
// It also assumes that x, y are already reduced mod m,
// or else the result will not be properly reduced.
if len(x) != n || len(y) != n || len(m) != n {
panic("math/big: mismatched montgomery number lengths")
}
z = z.make(n * 2)
clear(z)
var c Word
for i := 0; i < n; i++ {
d := y[i]
c2 := addMulVVWW(z[i:n+i], z[i:n+i], x, d, 0)
t := z[i] * k
c3 := addMulVVWW(z[i:n+i], z[i:n+i], m, t, 0)
cx := c + c2
cy := cx + c3
z[n+i] = cy
if cx < c2 || cy < c3 {
c = 1
} else {
c = 0
}
}
if c != 0 {
subVV(z[:n], z[n:], m)
} else {
copy(z[:n], z[n:])
}
return z[:n]
}
// alias reports whether x and y share the same base array.
//
// Note: alias assumes that the capacity of underlying arrays
// is never changed for nat values; i.e. that there are
// no 3-operand slice expressions in this code (or worse,
// reflect-based operations to the same effect).
func alias(x, y nat) bool {
return cap(x) > 0 && cap(y) > 0 && &x[0:cap(x)][cap(x)-1] == &y[0:cap(y)][cap(y)-1]
}
// addTo implements z += x; z must be long enough.
// (we don't use nat.add because we need z to stay the same
// slice, and we don't need to normalize z after each addition)
func addTo(z, x nat) {
if n := len(x); n > 0 {
if c := addVV(z[:n], z[:n], x[:n]); c != 0 {
if n < len(z) {
addVW(z[n:], z[n:], c)
}
}
}
}
// mulRange computes the product of all the unsigned integers in the
// range [a, b] inclusively. If a > b (empty range), the result is 1.
// The caller may pass stk == nil to request that mulRange obtain and release one itself.
func (z nat) mulRange(stk *stack, a, b uint64) nat {
switch {
case a == 0:
// cut long ranges short (optimization)
return z.setUint64(0)
case a > b:
return z.setUint64(1)
case a == b:
return z.setUint64(a)
case a+1 == b:
return z.mul(stk, nat(nil).setUint64(a), nat(nil).setUint64(b))
}
if stk == nil {
stk = getStack()
defer stk.free()
}
m := a + (b-a)/2 // avoid overflow
return z.mul(stk, nat(nil).mulRange(stk, a, m), nat(nil).mulRange(stk, m+1, b))
}
// A stack provides temporary storage for complex calculations
// such as multiplication and division.
// The stack is a simple slice of words, extended as needed
// to hold all the temporary storage for a calculation.
// In general, if a function takes a *stack, it expects a non-nil *stack.
// However, certain functions may allow passing a nil *stack instead,
// so that they can handle trivial stack-free cases without forcing the
// caller to obtain and free a stack that will be unused. These functions
// document that they accept a nil *stack in their doc comments.
type stack struct {
w []Word
}
var stackPool sync.Pool
// getStack returns a temporary stack.
// The caller must call [stack.free] to give up use of the stack when finished.
func getStack() *stack {
s, _ := stackPool.Get().(*stack)
if s == nil {
s = new(stack)
}
return s
}
// free returns the stack for use by another calculation.
func (s *stack) free() {
s.w = s.w[:0]
stackPool.Put(s)
}
// save returns the current stack pointer.
// A future call to restore with the same value
// frees any temporaries allocated on the stack after the call to save.
func (s *stack) save() int {
return len(s.w)
}
// restore restores the stack pointer to n.
// It is almost always invoked as
//
// defer stk.restore(stk.save())
//
// which makes sure to pop any temporaries allocated in the current function
// from the stack before returning.
func (s *stack) restore(n int) {
s.w = s.w[:n]
}
// nat returns a nat of n words, allocated on the stack.
func (s *stack) nat(n int) nat {
nr := (n + 3) &^ 3 // round up to multiple of 4
off := len(s.w)
s.w = slices.Grow(s.w, nr)
s.w = s.w[:off+nr]
x := s.w[off : off+n : off+n]
if n > 0 {
x[0] = 0xfedcb
}
return x
}
// bitLen returns the length of x in bits.
// Unlike most methods, it works even if x is not normalized.
func (x nat) bitLen() int {
// This function is used in cryptographic operations. It must not leak
// anything but the Int's sign and bit size through side-channels. Any
// changes must be reviewed by a security expert.
if i := len(x) - 1; i >= 0 {
// bits.Len uses a lookup table for the low-order bits on some
// architectures. Neutralize any input-dependent behavior by setting all
// bits after the first one bit.
top := uint(x[i])
top |= top >> 1
top |= top >> 2
top |= top >> 4
top |= top >> 8
top |= top >> 16
top |= top >> 16 >> 16 // ">> 32" doesn't compile on 32-bit architectures
return i*_W + bits.Len(top)
}
return 0
}
// trailingZeroBits returns the number of consecutive least significant zero
// bits of x.
func (x nat) trailingZeroBits() uint {
if len(x) == 0 {
return 0
}
var i uint
for x[i] == 0 {
i++
}
// x[i] != 0
return i*_W + uint(bits.TrailingZeros(uint(x[i])))
}
// isPow2 returns i, true when x == 2**i and 0, false otherwise.
func (x nat) isPow2() (uint, bool) {
var i uint
for x[i] == 0 {
i++
}
if i == uint(len(x))-1 && x[i]&(x[i]-1) == 0 {
return i*_W + uint(bits.TrailingZeros(uint(x[i]))), true
}
return 0, false
}
func same(x, y nat) bool {
return len(x) == len(y) && len(x) > 0 && &x[0] == &y[0]
}
// z = x << s
func (z nat) lsh(x nat, s uint) nat {
if s == 0 {
if same(z, x) {
return z
}
if !alias(z, x) {
return z.set(x)
}
}
m := len(x)
if m == 0 {
return z[:0]
}
// m > 0
n := m + int(s/_W)
z = z.make(n + 1)
if s %= _W; s == 0 {
copy(z[n-m:n], x)
z[n] = 0
} else {
z[n] = lshVU(z[n-m:n], x, s)
}
clear(z[0 : n-m])
return z.norm()
}
// z = x >> s
func (z nat) rsh(x nat, s uint) nat {
if s == 0 {
if same(z, x) {
return z
}
if !alias(z, x) {
return z.set(x)
}
}
m := len(x)
n := m - int(s/_W)
if n <= 0 {
return z[:0]
}
// n > 0
z = z.make(n)
if s %= _W; s == 0 {
copy(z, x[m-n:])
} else {
rshVU(z, x[m-n:], s)
}
return z.norm()
}
func (z nat) setBit(x nat, i uint, b uint) nat {
j := int(i / _W)
m := Word(1) << (i % _W)
n := len(x)
switch b {
case 0:
z = z.make(n)
copy(z, x)
if j >= n {
// no need to grow
return z
}
z[j] &^= m
return z.norm()
case 1:
if j >= n {
z = z.make(j + 1)
clear(z[n:])
} else {
z = z.make(n)
}
copy(z, x)
z[j] |= m
// no need to normalize
return z
}
panic("set bit is not 0 or 1")
}
// bit returns the value of the i'th bit, with lsb == bit 0.
func (x nat) bit(i uint) uint {
j := i / _W
if j >= uint(len(x)) {
return 0
}
// 0 <= j < len(x)
return uint(x[j] >> (i % _W) & 1)
}
// sticky returns 1 if there's a 1 bit within the
// i least significant bits, otherwise it returns 0.
func (x nat) sticky(i uint) uint {
j := i / _W
if j >= uint(len(x)) {
if len(x) == 0 {
return 0
}
return 1
}
// 0 <= j < len(x)
for _, x := range x[:j] {
if x != 0 {
return 1
}
}
if x[j]<<(_W-i%_W) != 0 {
return 1
}
return 0
}
func (z nat) and(x, y nat) nat {
m := len(x)
n := len(y)
if m > n {
m = n
}
// m <= n
z = z.make(m)
for i := 0; i < m; i++ {
z[i] = x[i] & y[i]
}
return z.norm()
}
// trunc returns z = x mod 2ⁿ.
func (z nat) trunc(x nat, n uint) nat {
w := (n + _W - 1) / _W
if uint(len(x)) < w {
return z.set(x)
}
z = z.make(int(w))
copy(z, x)
if n%_W != 0 {
z[len(z)-1] &= 1<<(n%_W) - 1
}
return z.norm()
}
func (z nat) andNot(x, y nat) nat {
m := len(x)
n := len(y)
if n > m {
n = m
}
// m >= n
z = z.make(m)
for i := 0; i < n; i++ {
z[i] = x[i] &^ y[i]
}
copy(z[n:m], x[n:m])
return z.norm()
}
func (z nat) or(x, y nat) nat {
m := len(x)
n := len(y)
s := x
if m < n {
n, m = m, n
s = y
}
// m >= n
z = z.make(m)
for i := 0; i < n; i++ {
z[i] = x[i] | y[i]
}
copy(z[n:m], s[n:m])
return z.norm()
}
func (z nat) xor(x, y nat) nat {
m := len(x)
n := len(y)
s := x
if m < n {
n, m = m, n
s = y
}
// m >= n
z = z.make(m)
for i := 0; i < n; i++ {
z[i] = x[i] ^ y[i]
}
copy(z[n:m], s[n:m])
return z.norm()
}
// random creates a random integer in [0..limit), using the space in z if
// possible. n is the bit length of limit.
func (z nat) random(rand *rand.Rand, limit nat, n int) nat {
if alias(z, limit) {
z = nil // z is an alias for limit - cannot reuse
}
z = z.make(len(limit))
bitLengthOfMSW := uint(n % _W)
if bitLengthOfMSW == 0 {
bitLengthOfMSW = _W
}
mask := Word((1 << bitLengthOfMSW) - 1)
for {
switch _W {
case 32:
for i := range z {
z[i] = Word(rand.Uint32())
}
case 64:
for i := range z {
z[i] = Word(rand.Uint32()) | Word(rand.Uint32())<<32
}
default:
panic("unknown word size")
}
z[len(limit)-1] &= mask
if z.cmp(limit) < 0 {
break
}
}
return z.norm()
}
// If m != 0 (i.e., len(m) != 0), expNN sets z to x**y mod m;
// otherwise it sets z to x**y. The result is the value of z.
// The caller may pass stk == nil to request that expNN obtain and release one itself.
func (z nat) expNN(stk *stack, x, y, m nat, slow bool) nat {
if alias(z, x) || alias(z, y) {
// We cannot allow in-place modification of x or y.
z = nil
}
// x**y mod 1 == 0
if len(m) == 1 && m[0] == 1 {
return z.setWord(0)
}
// m == 0 || m > 1
// x**0 == 1
if len(y) == 0 {
return z.setWord(1)
}
// y > 0
// 0**y = 0
if len(x) == 0 {
return z.setWord(0)
}
// x > 0
// 1**y = 1
if len(x) == 1 && x[0] == 1 {
return z.setWord(1)
}
// x > 1
// x**1 == x
if len(y) == 1 && y[0] == 1 && len(m) == 0 {
return z.set(x)
}
if stk == nil {
stk = getStack()
defer stk.free()
}
if len(y) == 1 && y[0] == 1 { // len(m) > 0
return z.rem(stk, x, m)
}
// y > 1
if len(m) != 0 {
// We likely end up being as long as the modulus.
z = z.make(len(m))
// If the exponent is large, we use the Montgomery method for odd values,
// and a 4-bit, windowed exponentiation for powers of two,
// and a CRT-decomposed Montgomery method for the remaining values
// (even values times non-trivial odd values, which decompose into one
// instance of each of the first two cases).
if len(y) > 1 && !slow {
if m[0]&1 == 1 {
return z.expNNMontgomery(stk, x, y, m)
}
if logM, ok := m.isPow2(); ok {
return z.expNNWindowed(stk, x, y, logM)
}
return z.expNNMontgomeryEven(stk, x, y, m)
}
}
z = z.set(x)
v := y[len(y)-1] // v > 0 because y is normalized and y > 0
shift := nlz(v) + 1
v <<= shift
var q nat
const mask = 1 << (_W - 1)
// We walk through the bits of the exponent one by one. Each time we
// see a bit, we square, thus doubling the power. If the bit is a one,
// we also multiply by x, thus adding one to the power.
w := _W - int(shift)
// zz and r are used to avoid allocating in mul and div as
// otherwise the arguments would alias.
var zz, r nat
for j := 0; j < w; j++ {
zz = zz.sqr(stk, z)
zz, z = z, zz
if v&mask != 0 {
zz = zz.mul(stk, z, x)
zz, z = z, zz
}
if len(m) != 0 {
zz, r = zz.div(stk, r, z, m)
zz, r, q, z = q, z, zz, r
}
v <<= 1
}
for i := len(y) - 2; i >= 0; i-- {
v = y[i]
for j := 0; j < _W; j++ {
zz = zz.sqr(stk, z)
zz, z = z, zz
if v&mask != 0 {
zz = zz.mul(stk, z, x)
zz, z = z, zz
}
if len(m) != 0 {
zz, r = zz.div(stk, r, z, m)
zz, r, q, z = q, z, zz, r
}
v <<= 1
}
}
return z.norm()
}
// expNNMontgomeryEven calculates x**y mod m where m = m1 × m2 for m1 = 2ⁿ and m2 odd.
// It uses two recursive calls to expNN for x**y mod m1 and x**y mod m2
// and then uses the Chinese Remainder Theorem to combine the results.
// The recursive call using m1 will use expNNWindowed,
// while the recursive call using m2 will use expNNMontgomery.
// For more details, see Ç. K. Koç, “Montgomery Reduction with Even Modulus”,
// IEE Proceedings: Computers and Digital Techniques, 141(5) 314-316, September 1994.
// http://www.people.vcu.edu/~jwang3/CMSC691/j34monex.pdf
func (z nat) expNNMontgomeryEven(stk *stack, x, y, m nat) nat {
// Split m = m₁ × m₂ where m₁ = 2ⁿ
n := m.trailingZeroBits()
m1 := nat(nil).lsh(natOne, n)
m2 := nat(nil).rsh(m, n)
// We want z = x**y mod m.
// z₁ = x**y mod m1 = (x**y mod m) mod m1 = z mod m1
// z₂ = x**y mod m2 = (x**y mod m) mod m2 = z mod m2
// (We are using the math/big convention for names here,
// where the computation is z = x**y mod m, so its parts are z1 and z2.
// The paper is computing x = a**e mod n; it refers to these as x2 and z1.)
z1 := nat(nil).expNN(stk, x, y, m1, false)
z2 := nat(nil).expNN(stk, x, y, m2, false)
// Reconstruct z from z₁, z₂ using CRT, using algorithm from paper,
// which uses only a single modInverse (and an easy one at that).
// p = (z₁ - z₂) × m₂⁻¹ (mod m₁)
// z = z₂ + p × m₂
// The final addition is in range because:
// z = z₂ + p × m₂
// ≤ z₂ + (m₁-1) × m₂
// < m₂ + (m₁-1) × m₂
// = m₁ × m₂
// = m.
z = z.set(z2)
// Compute (z₁ - z₂) mod m1 [m1 == 2**n] into z1.
z1 = z1.subMod2N(z1, z2, n)
// Reuse z2 for p = (z₁ - z₂) [in z1] * m2⁻¹ (mod m₁ [= 2ⁿ]).
m2inv := nat(nil).modInverse(m2, m1)
z2 = z2.mul(stk, z1, m2inv)
z2 = z2.trunc(z2, n)
// Reuse z1 for p * m2.
z = z.add(z, z1.mul(stk, z2, m2))
return z
}
// expNNWindowed calculates x**y mod m using a fixed, 4-bit window,
// where m = 2**logM.
func (z nat) expNNWindowed(stk *stack, x, y nat, logM uint) nat {
if len(y) <= 1 {
panic("big: misuse of expNNWindowed")
}
if x[0]&1 == 0 {
// len(y) > 1, so y > logM.
// x is even, so x**y is a multiple of 2**y which is a multiple of 2**logM.
return z.setWord(0)
}
if logM == 1 {
return z.setWord(1)
}
// zz is used to avoid allocating in mul as otherwise
// the arguments would alias.
defer stk.restore(stk.save())
w := int((logM + _W - 1) / _W)
zz := stk.nat(w)
const n = 4
// powers[i] contains x^i.
var powers [1 << n]nat
for i := range powers {
powers[i] = stk.nat(w)
}
powers[0] = powers[0].set(natOne)
powers[1] = powers[1].trunc(x, logM)
for i := 2; i < 1<<n; i += 2 {
p2, p, p1 := &powers[i/2], &powers[i], &powers[i+1]
*p = p.sqr(stk, *p2)
*p = p.trunc(*p, logM)
*p1 = p1.mul(stk, *p, x)
*p1 = p1.trunc(*p1, logM)
}
// Because phi(2**logM) = 2**(logM-1), x**(2**(logM-1)) = 1,
// so we can compute x**(y mod 2**(logM-1)) instead of x**y.
// That is, we can throw away all but the bottom logM-1 bits of y.
// Instead of allocating a new y, we start reading y at the right word
// and truncate it appropriately at the start of the loop.
i := len(y) - 1
mtop := int((logM - 2) / _W) // -2 because the top word of N bits is the (N-1)/W'th word.
mmask := ^Word(0)
if mbits := (logM - 1) & (_W - 1); mbits != 0 {
mmask = (1 << mbits) - 1
}
if i > mtop {
i = mtop
}
advance := false
z = z.setWord(1)
for ; i >= 0; i-- {
yi := y[i]
if i == mtop {
yi &= mmask
}
for j := 0; j < _W; j += n {
if advance {
// Account for use of 4 bits in previous iteration.
// Unrolled loop for significant performance
// gain. Use go test -bench=".*" in crypto/rsa
// to check performance before making changes.
zz = zz.sqr(stk, z)
zz, z = z, zz
z = z.trunc(z, logM)
zz = zz.sqr(stk, z)
zz, z = z, zz
z = z.trunc(z, logM)
zz = zz.sqr(stk, z)
zz, z = z, zz
z = z.trunc(z, logM)
zz = zz.sqr(stk, z)
zz, z = z, zz
z = z.trunc(z, logM)
}
zz = zz.mul(stk, z, powers[yi>>(_W-n)])
zz, z = z, zz
z = z.trunc(z, logM)
yi <<= n
advance = true
}
}
return z.norm()
}
// expNNMontgomery calculates x**y mod m using a fixed, 4-bit window.
// Uses Montgomery representation.
func (z nat) expNNMontgomery(stk *stack, x, y, m nat) nat {
numWords := len(m)
// We want the lengths of x and m to be equal.
// It is OK if x >= m as long as len(x) == len(m).
if len(x) > numWords {
_, x = nat(nil).div(stk, nil, x, m)
// Note: now len(x) <= numWords, not guaranteed ==.
}
if len(x) < numWords {
rr := make(nat, numWords)
copy(rr, x)
x = rr
}
// Ideally the precomputations would be performed outside, and reused
// k0 = -m**-1 mod 2**_W. Algorithm from: Dumas, J.G. "On Newton–Raphson
// Iteration for Multiplicative Inverses Modulo Prime Powers".
k0 := 2 - m[0]
t := m[0] - 1
for i := 1; i < _W; i <<= 1 {
t *= t
k0 *= (t + 1)
}
k0 = -k0
// RR = 2**(2*_W*len(m)) mod m
RR := nat(nil).setWord(1)
zz := nat(nil).lsh(RR, uint(2*numWords*_W))
_, RR = nat(nil).div(stk, RR, zz, m)
if len(RR) < numWords {
zz = zz.make(numWords)
copy(zz, RR)
RR = zz
}
// one = 1, with equal length to that of m
one := make(nat, numWords)
one[0] = 1
const n = 4
// powers[i] contains x^i
var powers [1 << n]nat
powers[0] = powers[0].montgomery(one, RR, m, k0, numWords)
powers[1] = powers[1].montgomery(x, RR, m, k0, numWords)
for i := 2; i < 1<<n; i++ {
powers[i] = powers[i].montgomery(powers[i-1], powers[1], m, k0, numWords)
}
// initialize z = 1 (Montgomery 1)
z = z.make(numWords)
copy(z, powers[0])
zz = zz.make(numWords)
// same windowed exponent, but with Montgomery multiplications
for i := len(y) - 1; i >= 0; i-- {
yi := y[i]
for j := 0; j < _W; j += n {
if i != len(y)-1 || j != 0 {
zz = zz.montgomery(z, z, m, k0, numWords)
z = z.montgomery(zz, zz, m, k0, numWords)
zz = zz.montgomery(z, z, m, k0, numWords)
z = z.montgomery(zz, zz, m, k0, numWords)
}
zz = zz.montgomery(z, powers[yi>>(_W-n)], m, k0, numWords)
z, zz = zz, z
yi <<= n
}
}
// convert to regular number
zz = zz.montgomery(z, one, m, k0, numWords)
// One last reduction, just in case.
// See golang.org/issue/13907.
if zz.cmp(m) >= 0 {
// Common case is m has high bit set; in that case,
// since zz is the same length as m, there can be just
// one multiple of m to remove. Just subtract.
// We think that the subtract should be sufficient in general,
// so do that unconditionally, but double-check,
// in case our beliefs are wrong.
// The div is not expected to be reached.
zz = zz.sub(zz, m)
if zz.cmp(m) >= 0 {
_, zz = nat(nil).div(stk, nil, zz, m)
}
}
return zz.norm()
}
// bytes writes the value of z into buf using big-endian encoding.
// The value of z is encoded in the slice buf[i:]. If the value of z
// cannot be represented in buf, bytes panics. The number i of unused
// bytes at the beginning of buf is returned as result.
func (z nat) bytes(buf []byte) (i int) {
// This function is used in cryptographic operations. It must not leak
// anything but the Int's sign and bit size through side-channels. Any
// changes must be reviewed by a security expert.
i = len(buf)
for _, d := range z {
for j := 0; j < _S; j++ {
i--
if i >= 0 {
buf[i] = byte(d)
} else if byte(d) != 0 {
panic("math/big: buffer too small to fit value")
}
d >>= 8
}
}
if i < 0 {
i = 0
}
for i < len(buf) && buf[i] == 0 {
i++
}
return
}
// bigEndianWord returns the contents of buf interpreted as a big-endian encoded Word value.
func bigEndianWord(buf []byte) Word {
if _W == 64 {
return Word(byteorder.BEUint64(buf))
}
return Word(byteorder.BEUint32(buf))
}
// setBytes interprets buf as the bytes of a big-endian unsigned
// integer, sets z to that value, and returns z.
func (z nat) setBytes(buf []byte) nat {
z = z.make((len(buf) + _S - 1) / _S)
i := len(buf)
for k := 0; i >= _S; k++ {
z[k] = bigEndianWord(buf[i-_S : i])
i -= _S
}
if i > 0 {
var d Word
for s := uint(0); i > 0; s += 8 {
d |= Word(buf[i-1]) << s
i--
}
z[len(z)-1] = d
}
return z.norm()
}
// sqrt sets z = ⌊√x⌋
// The caller may pass stk == nil to request that sqrt obtain and release one itself.
func (z nat) sqrt(stk *stack, x nat) nat {
if x.cmp(natOne) <= 0 {
return z.set(x)
}
if alias(z, x) {
z = nil
}
if stk == nil {
stk = getStack()
defer stk.free()
}
// Start with value known to be too large and repeat "z = ⌊(z + ⌊x/z⌋)/2⌋" until it stops getting smaller.
// See Brent and Zimmermann, Modern Computer Arithmetic, Algorithm 1.13 (SqrtInt).
// https://members.loria.fr/PZimmermann/mca/pub226.html
// If x is one less than a perfect square, the sequence oscillates between the correct z and z+1;
// otherwise it converges to the correct z and stays there.
var z1, z2 nat
z1 = z
z1 = z1.setUint64(1)
z1 = z1.lsh(z1, uint(x.bitLen()+1)/2) // must be ≥ √x
for n := 0; ; n++ {
z2, _ = z2.div(stk, nil, x, z1)
z2 = z2.add(z2, z1)
z2 = z2.rsh(z2, 1)
if z2.cmp(z1) >= 0 {
// z1 is answer.
// Figure out whether z1 or z2 is currently aliased to z by looking at loop count.
if n&1 == 0 {
return z1
}
return z.set(z1)
}
z1, z2 = z2, z1
}
}
// subMod2N returns z = (x - y) mod 2ⁿ.
func (z nat) subMod2N(x, y nat, n uint) nat {
if uint(x.bitLen()) > n {
if alias(z, x) {
// ok to overwrite x in place
x = x.trunc(x, n)
} else {
x = nat(nil).trunc(x, n)
}
}
if uint(y.bitLen()) > n {
if alias(z, y) {
// ok to overwrite y in place
y = y.trunc(y, n)
} else {
y = nat(nil).trunc(y, n)
}
}
if x.cmp(y) >= 0 {
return z.sub(x, y)
}
// x - y < 0; x - y mod 2ⁿ = x - y + 2ⁿ = 2ⁿ - (y - x) = 1 + 2ⁿ-1 - (y - x) = 1 + ^(y - x).
z = z.sub(y, x)
for uint(len(z))*_W < n {
z = append(z, 0)
}
for i := range z {
z[i] = ^z[i]
}
z = z.trunc(z, n)
return z.add(z, natOne)
}