| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // This file implements unsigned multi-precision integers (natural |
| // numbers). They are the building blocks for the implementation |
| // of signed integers, rationals, and floating-point numbers. |
| // |
| // Caution: This implementation relies on the function "alias" |
| // which assumes that (nat) slice capacities are never |
| // changed (no 3-operand slice expressions). If that |
| // changes, alias needs to be updated for correctness. |
| |
| package big |
| |
| import ( |
| "internal/byteorder" |
| "math/bits" |
| "math/rand" |
| "slices" |
| "sync" |
| ) |
| |
| // An unsigned integer x of the form |
| // |
| // x = x[n-1]*_B^(n-1) + x[n-2]*_B^(n-2) + ... + x[1]*_B + x[0] |
| // |
| // with 0 <= x[i] < _B and 0 <= i < n is stored in a slice of length n, |
| // with the digits x[i] as the slice elements. |
| // |
| // A number is normalized if the slice contains no leading 0 digits. |
| // During arithmetic operations, denormalized values may occur but are |
| // always normalized before returning the final result. The normalized |
| // representation of 0 is the empty or nil slice (length = 0). |
| type nat []Word |
| |
| var ( |
| natOne = nat{1} |
| natTwo = nat{2} |
| natFive = nat{5} |
| natTen = nat{10} |
| ) |
| |
| func (z nat) String() string { |
| return "0x" + string(z.itoa(false, 16)) |
| } |
| |
| func (z nat) norm() nat { |
| i := len(z) |
| for i > 0 && z[i-1] == 0 { |
| i-- |
| } |
| return z[0:i] |
| } |
| |
| func (z nat) make(n int) nat { |
| if n <= cap(z) { |
| return z[:n] // reuse z |
| } |
| if n == 1 { |
| // Most nats start small and stay that way; don't over-allocate. |
| return make(nat, 1) |
| } |
| // Choosing a good value for e has significant performance impact |
| // because it increases the chance that a value can be reused. |
| const e = 4 // extra capacity |
| return make(nat, n, n+e) |
| } |
| |
| func (z nat) setWord(x Word) nat { |
| if x == 0 { |
| return z[:0] |
| } |
| z = z.make(1) |
| z[0] = x |
| return z |
| } |
| |
| func (z nat) setUint64(x uint64) nat { |
| // single-word value |
| if w := Word(x); uint64(w) == x { |
| return z.setWord(w) |
| } |
| // 2-word value |
| z = z.make(2) |
| z[1] = Word(x >> 32) |
| z[0] = Word(x) |
| return z |
| } |
| |
| func (z nat) set(x nat) nat { |
| z = z.make(len(x)) |
| copy(z, x) |
| return z |
| } |
| |
| func (z nat) add(x, y nat) nat { |
| m := len(x) |
| n := len(y) |
| |
| switch { |
| case m < n: |
| return z.add(y, x) |
| case m == 0: |
| // n == 0 because m >= n; result is 0 |
| return z[:0] |
| case n == 0: |
| // result is x |
| return z.set(x) |
| } |
| // m > 0 |
| |
| z = z.make(m + 1) |
| c := addVV(z[:n], x[:n], y[:n]) |
| if m > n { |
| c = addVW(z[n:m], x[n:], c) |
| } |
| z[m] = c |
| |
| return z.norm() |
| } |
| |
| func (z nat) sub(x, y nat) nat { |
| m := len(x) |
| n := len(y) |
| |
| switch { |
| case m < n: |
| panic("underflow") |
| case m == 0: |
| // n == 0 because m >= n; result is 0 |
| return z[:0] |
| case n == 0: |
| // result is x |
| return z.set(x) |
| } |
| // m > 0 |
| |
| z = z.make(m) |
| c := subVV(z[:n], x[:n], y[:n]) |
| if m > n { |
| c = subVW(z[n:], x[n:], c) |
| } |
| if c != 0 { |
| panic("underflow") |
| } |
| |
| return z.norm() |
| } |
| |
| func (x nat) cmp(y nat) (r int) { |
| m := len(x) |
| n := len(y) |
| if m != n || m == 0 { |
| switch { |
| case m < n: |
| r = -1 |
| case m > n: |
| r = 1 |
| } |
| return |
| } |
| |
| i := m - 1 |
| for i > 0 && x[i] == y[i] { |
| i-- |
| } |
| |
| switch { |
| case x[i] < y[i]: |
| r = -1 |
| case x[i] > y[i]: |
| r = 1 |
| } |
| return |
| } |
| |
| // montgomery computes z mod m = x*y*2**(-n*_W) mod m, |
| // assuming k = -1/m mod 2**_W. |
| // z is used for storing the result which is returned; |
| // z must not alias x, y or m. |
| // See Gueron, "Efficient Software Implementations of Modular Exponentiation". |
| // https://eprint.iacr.org/2011/239.pdf |
| // In the terminology of that paper, this is an "Almost Montgomery Multiplication": |
| // x and y are required to satisfy 0 <= z < 2**(n*_W) and then the result |
| // z is guaranteed to satisfy 0 <= z < 2**(n*_W), but it may not be < m. |
| func (z nat) montgomery(x, y, m nat, k Word, n int) nat { |
| // This code assumes x, y, m are all the same length, n. |
| // (required by addMulVVW and the for loop). |
| // It also assumes that x, y are already reduced mod m, |
| // or else the result will not be properly reduced. |
| if len(x) != n || len(y) != n || len(m) != n { |
| panic("math/big: mismatched montgomery number lengths") |
| } |
| z = z.make(n * 2) |
| clear(z) |
| var c Word |
| for i := 0; i < n; i++ { |
| d := y[i] |
| c2 := addMulVVWW(z[i:n+i], z[i:n+i], x, d, 0) |
| t := z[i] * k |
| c3 := addMulVVWW(z[i:n+i], z[i:n+i], m, t, 0) |
| cx := c + c2 |
| cy := cx + c3 |
| z[n+i] = cy |
| if cx < c2 || cy < c3 { |
| c = 1 |
| } else { |
| c = 0 |
| } |
| } |
| if c != 0 { |
| subVV(z[:n], z[n:], m) |
| } else { |
| copy(z[:n], z[n:]) |
| } |
| return z[:n] |
| } |
| |
| // alias reports whether x and y share the same base array. |
| // |
| // Note: alias assumes that the capacity of underlying arrays |
| // is never changed for nat values; i.e. that there are |
| // no 3-operand slice expressions in this code (or worse, |
| // reflect-based operations to the same effect). |
| func alias(x, y nat) bool { |
| return cap(x) > 0 && cap(y) > 0 && &x[0:cap(x)][cap(x)-1] == &y[0:cap(y)][cap(y)-1] |
| } |
| |
| // addTo implements z += x; z must be long enough. |
| // (we don't use nat.add because we need z to stay the same |
| // slice, and we don't need to normalize z after each addition) |
| func addTo(z, x nat) { |
| if n := len(x); n > 0 { |
| if c := addVV(z[:n], z[:n], x[:n]); c != 0 { |
| if n < len(z) { |
| addVW(z[n:], z[n:], c) |
| } |
| } |
| } |
| } |
| |
| // mulRange computes the product of all the unsigned integers in the |
| // range [a, b] inclusively. If a > b (empty range), the result is 1. |
| // The caller may pass stk == nil to request that mulRange obtain and release one itself. |
| func (z nat) mulRange(stk *stack, a, b uint64) nat { |
| switch { |
| case a == 0: |
| // cut long ranges short (optimization) |
| return z.setUint64(0) |
| case a > b: |
| return z.setUint64(1) |
| case a == b: |
| return z.setUint64(a) |
| case a+1 == b: |
| return z.mul(stk, nat(nil).setUint64(a), nat(nil).setUint64(b)) |
| } |
| |
| if stk == nil { |
| stk = getStack() |
| defer stk.free() |
| } |
| |
| m := a + (b-a)/2 // avoid overflow |
| return z.mul(stk, nat(nil).mulRange(stk, a, m), nat(nil).mulRange(stk, m+1, b)) |
| } |
| |
| // A stack provides temporary storage for complex calculations |
| // such as multiplication and division. |
| // The stack is a simple slice of words, extended as needed |
| // to hold all the temporary storage for a calculation. |
| // In general, if a function takes a *stack, it expects a non-nil *stack. |
| // However, certain functions may allow passing a nil *stack instead, |
| // so that they can handle trivial stack-free cases without forcing the |
| // caller to obtain and free a stack that will be unused. These functions |
| // document that they accept a nil *stack in their doc comments. |
| type stack struct { |
| w []Word |
| } |
| |
| var stackPool sync.Pool |
| |
| // getStack returns a temporary stack. |
| // The caller must call [stack.free] to give up use of the stack when finished. |
| func getStack() *stack { |
| s, _ := stackPool.Get().(*stack) |
| if s == nil { |
| s = new(stack) |
| } |
| return s |
| } |
| |
| // free returns the stack for use by another calculation. |
| func (s *stack) free() { |
| s.w = s.w[:0] |
| stackPool.Put(s) |
| } |
| |
| // save returns the current stack pointer. |
| // A future call to restore with the same value |
| // frees any temporaries allocated on the stack after the call to save. |
| func (s *stack) save() int { |
| return len(s.w) |
| } |
| |
| // restore restores the stack pointer to n. |
| // It is almost always invoked as |
| // |
| // defer stk.restore(stk.save()) |
| // |
| // which makes sure to pop any temporaries allocated in the current function |
| // from the stack before returning. |
| func (s *stack) restore(n int) { |
| s.w = s.w[:n] |
| } |
| |
| // nat returns a nat of n words, allocated on the stack. |
| func (s *stack) nat(n int) nat { |
| nr := (n + 3) &^ 3 // round up to multiple of 4 |
| off := len(s.w) |
| s.w = slices.Grow(s.w, nr) |
| s.w = s.w[:off+nr] |
| x := s.w[off : off+n : off+n] |
| if n > 0 { |
| x[0] = 0xfedcb |
| } |
| return x |
| } |
| |
| // bitLen returns the length of x in bits. |
| // Unlike most methods, it works even if x is not normalized. |
| func (x nat) bitLen() int { |
| // This function is used in cryptographic operations. It must not leak |
| // anything but the Int's sign and bit size through side-channels. Any |
| // changes must be reviewed by a security expert. |
| if i := len(x) - 1; i >= 0 { |
| // bits.Len uses a lookup table for the low-order bits on some |
| // architectures. Neutralize any input-dependent behavior by setting all |
| // bits after the first one bit. |
| top := uint(x[i]) |
| top |= top >> 1 |
| top |= top >> 2 |
| top |= top >> 4 |
| top |= top >> 8 |
| top |= top >> 16 |
| top |= top >> 16 >> 16 // ">> 32" doesn't compile on 32-bit architectures |
| return i*_W + bits.Len(top) |
| } |
| return 0 |
| } |
| |
| // trailingZeroBits returns the number of consecutive least significant zero |
| // bits of x. |
| func (x nat) trailingZeroBits() uint { |
| if len(x) == 0 { |
| return 0 |
| } |
| var i uint |
| for x[i] == 0 { |
| i++ |
| } |
| // x[i] != 0 |
| return i*_W + uint(bits.TrailingZeros(uint(x[i]))) |
| } |
| |
| // isPow2 returns i, true when x == 2**i and 0, false otherwise. |
| func (x nat) isPow2() (uint, bool) { |
| var i uint |
| for x[i] == 0 { |
| i++ |
| } |
| if i == uint(len(x))-1 && x[i]&(x[i]-1) == 0 { |
| return i*_W + uint(bits.TrailingZeros(uint(x[i]))), true |
| } |
| return 0, false |
| } |
| |
| func same(x, y nat) bool { |
| return len(x) == len(y) && len(x) > 0 && &x[0] == &y[0] |
| } |
| |
| // z = x << s |
| func (z nat) lsh(x nat, s uint) nat { |
| if s == 0 { |
| if same(z, x) { |
| return z |
| } |
| if !alias(z, x) { |
| return z.set(x) |
| } |
| } |
| |
| m := len(x) |
| if m == 0 { |
| return z[:0] |
| } |
| // m > 0 |
| |
| n := m + int(s/_W) |
| z = z.make(n + 1) |
| if s %= _W; s == 0 { |
| copy(z[n-m:n], x) |
| z[n] = 0 |
| } else { |
| z[n] = lshVU(z[n-m:n], x, s) |
| } |
| clear(z[0 : n-m]) |
| |
| return z.norm() |
| } |
| |
| // z = x >> s |
| func (z nat) rsh(x nat, s uint) nat { |
| if s == 0 { |
| if same(z, x) { |
| return z |
| } |
| if !alias(z, x) { |
| return z.set(x) |
| } |
| } |
| |
| m := len(x) |
| n := m - int(s/_W) |
| if n <= 0 { |
| return z[:0] |
| } |
| // n > 0 |
| |
| z = z.make(n) |
| if s %= _W; s == 0 { |
| copy(z, x[m-n:]) |
| } else { |
| rshVU(z, x[m-n:], s) |
| } |
| |
| return z.norm() |
| } |
| |
| func (z nat) setBit(x nat, i uint, b uint) nat { |
| j := int(i / _W) |
| m := Word(1) << (i % _W) |
| n := len(x) |
| switch b { |
| case 0: |
| z = z.make(n) |
| copy(z, x) |
| if j >= n { |
| // no need to grow |
| return z |
| } |
| z[j] &^= m |
| return z.norm() |
| case 1: |
| if j >= n { |
| z = z.make(j + 1) |
| clear(z[n:]) |
| } else { |
| z = z.make(n) |
| } |
| copy(z, x) |
| z[j] |= m |
| // no need to normalize |
| return z |
| } |
| panic("set bit is not 0 or 1") |
| } |
| |
| // bit returns the value of the i'th bit, with lsb == bit 0. |
| func (x nat) bit(i uint) uint { |
| j := i / _W |
| if j >= uint(len(x)) { |
| return 0 |
| } |
| // 0 <= j < len(x) |
| return uint(x[j] >> (i % _W) & 1) |
| } |
| |
| // sticky returns 1 if there's a 1 bit within the |
| // i least significant bits, otherwise it returns 0. |
| func (x nat) sticky(i uint) uint { |
| j := i / _W |
| if j >= uint(len(x)) { |
| if len(x) == 0 { |
| return 0 |
| } |
| return 1 |
| } |
| // 0 <= j < len(x) |
| for _, x := range x[:j] { |
| if x != 0 { |
| return 1 |
| } |
| } |
| if x[j]<<(_W-i%_W) != 0 { |
| return 1 |
| } |
| return 0 |
| } |
| |
| func (z nat) and(x, y nat) nat { |
| m := len(x) |
| n := len(y) |
| if m > n { |
| m = n |
| } |
| // m <= n |
| |
| z = z.make(m) |
| for i := 0; i < m; i++ { |
| z[i] = x[i] & y[i] |
| } |
| |
| return z.norm() |
| } |
| |
| // trunc returns z = x mod 2ⁿ. |
| func (z nat) trunc(x nat, n uint) nat { |
| w := (n + _W - 1) / _W |
| if uint(len(x)) < w { |
| return z.set(x) |
| } |
| z = z.make(int(w)) |
| copy(z, x) |
| if n%_W != 0 { |
| z[len(z)-1] &= 1<<(n%_W) - 1 |
| } |
| return z.norm() |
| } |
| |
| func (z nat) andNot(x, y nat) nat { |
| m := len(x) |
| n := len(y) |
| if n > m { |
| n = m |
| } |
| // m >= n |
| |
| z = z.make(m) |
| for i := 0; i < n; i++ { |
| z[i] = x[i] &^ y[i] |
| } |
| copy(z[n:m], x[n:m]) |
| |
| return z.norm() |
| } |
| |
| func (z nat) or(x, y nat) nat { |
| m := len(x) |
| n := len(y) |
| s := x |
| if m < n { |
| n, m = m, n |
| s = y |
| } |
| // m >= n |
| |
| z = z.make(m) |
| for i := 0; i < n; i++ { |
| z[i] = x[i] | y[i] |
| } |
| copy(z[n:m], s[n:m]) |
| |
| return z.norm() |
| } |
| |
| func (z nat) xor(x, y nat) nat { |
| m := len(x) |
| n := len(y) |
| s := x |
| if m < n { |
| n, m = m, n |
| s = y |
| } |
| // m >= n |
| |
| z = z.make(m) |
| for i := 0; i < n; i++ { |
| z[i] = x[i] ^ y[i] |
| } |
| copy(z[n:m], s[n:m]) |
| |
| return z.norm() |
| } |
| |
| // random creates a random integer in [0..limit), using the space in z if |
| // possible. n is the bit length of limit. |
| func (z nat) random(rand *rand.Rand, limit nat, n int) nat { |
| if alias(z, limit) { |
| z = nil // z is an alias for limit - cannot reuse |
| } |
| z = z.make(len(limit)) |
| |
| bitLengthOfMSW := uint(n % _W) |
| if bitLengthOfMSW == 0 { |
| bitLengthOfMSW = _W |
| } |
| mask := Word((1 << bitLengthOfMSW) - 1) |
| |
| for { |
| switch _W { |
| case 32: |
| for i := range z { |
| z[i] = Word(rand.Uint32()) |
| } |
| case 64: |
| for i := range z { |
| z[i] = Word(rand.Uint32()) | Word(rand.Uint32())<<32 |
| } |
| default: |
| panic("unknown word size") |
| } |
| z[len(limit)-1] &= mask |
| if z.cmp(limit) < 0 { |
| break |
| } |
| } |
| |
| return z.norm() |
| } |
| |
| // If m != 0 (i.e., len(m) != 0), expNN sets z to x**y mod m; |
| // otherwise it sets z to x**y. The result is the value of z. |
| // The caller may pass stk == nil to request that expNN obtain and release one itself. |
| func (z nat) expNN(stk *stack, x, y, m nat, slow bool) nat { |
| if alias(z, x) || alias(z, y) { |
| // We cannot allow in-place modification of x or y. |
| z = nil |
| } |
| |
| // x**y mod 1 == 0 |
| if len(m) == 1 && m[0] == 1 { |
| return z.setWord(0) |
| } |
| // m == 0 || m > 1 |
| |
| // x**0 == 1 |
| if len(y) == 0 { |
| return z.setWord(1) |
| } |
| // y > 0 |
| |
| // 0**y = 0 |
| if len(x) == 0 { |
| return z.setWord(0) |
| } |
| // x > 0 |
| |
| // 1**y = 1 |
| if len(x) == 1 && x[0] == 1 { |
| return z.setWord(1) |
| } |
| // x > 1 |
| |
| // x**1 == x |
| if len(y) == 1 && y[0] == 1 && len(m) == 0 { |
| return z.set(x) |
| } |
| if stk == nil { |
| stk = getStack() |
| defer stk.free() |
| } |
| if len(y) == 1 && y[0] == 1 { // len(m) > 0 |
| return z.rem(stk, x, m) |
| } |
| |
| // y > 1 |
| |
| if len(m) != 0 { |
| // We likely end up being as long as the modulus. |
| z = z.make(len(m)) |
| |
| // If the exponent is large, we use the Montgomery method for odd values, |
| // and a 4-bit, windowed exponentiation for powers of two, |
| // and a CRT-decomposed Montgomery method for the remaining values |
| // (even values times non-trivial odd values, which decompose into one |
| // instance of each of the first two cases). |
| if len(y) > 1 && !slow { |
| if m[0]&1 == 1 { |
| return z.expNNMontgomery(stk, x, y, m) |
| } |
| if logM, ok := m.isPow2(); ok { |
| return z.expNNWindowed(stk, x, y, logM) |
| } |
| return z.expNNMontgomeryEven(stk, x, y, m) |
| } |
| } |
| |
| z = z.set(x) |
| v := y[len(y)-1] // v > 0 because y is normalized and y > 0 |
| shift := nlz(v) + 1 |
| v <<= shift |
| var q nat |
| |
| const mask = 1 << (_W - 1) |
| |
| // We walk through the bits of the exponent one by one. Each time we |
| // see a bit, we square, thus doubling the power. If the bit is a one, |
| // we also multiply by x, thus adding one to the power. |
| |
| w := _W - int(shift) |
| // zz and r are used to avoid allocating in mul and div as |
| // otherwise the arguments would alias. |
| var zz, r nat |
| for j := 0; j < w; j++ { |
| zz = zz.sqr(stk, z) |
| zz, z = z, zz |
| |
| if v&mask != 0 { |
| zz = zz.mul(stk, z, x) |
| zz, z = z, zz |
| } |
| |
| if len(m) != 0 { |
| zz, r = zz.div(stk, r, z, m) |
| zz, r, q, z = q, z, zz, r |
| } |
| |
| v <<= 1 |
| } |
| |
| for i := len(y) - 2; i >= 0; i-- { |
| v = y[i] |
| |
| for j := 0; j < _W; j++ { |
| zz = zz.sqr(stk, z) |
| zz, z = z, zz |
| |
| if v&mask != 0 { |
| zz = zz.mul(stk, z, x) |
| zz, z = z, zz |
| } |
| |
| if len(m) != 0 { |
| zz, r = zz.div(stk, r, z, m) |
| zz, r, q, z = q, z, zz, r |
| } |
| |
| v <<= 1 |
| } |
| } |
| |
| return z.norm() |
| } |
| |
| // expNNMontgomeryEven calculates x**y mod m where m = m1 × m2 for m1 = 2ⁿ and m2 odd. |
| // It uses two recursive calls to expNN for x**y mod m1 and x**y mod m2 |
| // and then uses the Chinese Remainder Theorem to combine the results. |
| // The recursive call using m1 will use expNNWindowed, |
| // while the recursive call using m2 will use expNNMontgomery. |
| // For more details, see Ç. K. Koç, “Montgomery Reduction with Even Modulus”, |
| // IEE Proceedings: Computers and Digital Techniques, 141(5) 314-316, September 1994. |
| // http://www.people.vcu.edu/~jwang3/CMSC691/j34monex.pdf |
| func (z nat) expNNMontgomeryEven(stk *stack, x, y, m nat) nat { |
| // Split m = m₁ × m₂ where m₁ = 2ⁿ |
| n := m.trailingZeroBits() |
| m1 := nat(nil).lsh(natOne, n) |
| m2 := nat(nil).rsh(m, n) |
| |
| // We want z = x**y mod m. |
| // z₁ = x**y mod m1 = (x**y mod m) mod m1 = z mod m1 |
| // z₂ = x**y mod m2 = (x**y mod m) mod m2 = z mod m2 |
| // (We are using the math/big convention for names here, |
| // where the computation is z = x**y mod m, so its parts are z1 and z2. |
| // The paper is computing x = a**e mod n; it refers to these as x2 and z1.) |
| z1 := nat(nil).expNN(stk, x, y, m1, false) |
| z2 := nat(nil).expNN(stk, x, y, m2, false) |
| |
| // Reconstruct z from z₁, z₂ using CRT, using algorithm from paper, |
| // which uses only a single modInverse (and an easy one at that). |
| // p = (z₁ - z₂) × m₂⁻¹ (mod m₁) |
| // z = z₂ + p × m₂ |
| // The final addition is in range because: |
| // z = z₂ + p × m₂ |
| // ≤ z₂ + (m₁-1) × m₂ |
| // < m₂ + (m₁-1) × m₂ |
| // = m₁ × m₂ |
| // = m. |
| z = z.set(z2) |
| |
| // Compute (z₁ - z₂) mod m1 [m1 == 2**n] into z1. |
| z1 = z1.subMod2N(z1, z2, n) |
| |
| // Reuse z2 for p = (z₁ - z₂) [in z1] * m2⁻¹ (mod m₁ [= 2ⁿ]). |
| m2inv := nat(nil).modInverse(m2, m1) |
| z2 = z2.mul(stk, z1, m2inv) |
| z2 = z2.trunc(z2, n) |
| |
| // Reuse z1 for p * m2. |
| z = z.add(z, z1.mul(stk, z2, m2)) |
| |
| return z |
| } |
| |
| // expNNWindowed calculates x**y mod m using a fixed, 4-bit window, |
| // where m = 2**logM. |
| func (z nat) expNNWindowed(stk *stack, x, y nat, logM uint) nat { |
| if len(y) <= 1 { |
| panic("big: misuse of expNNWindowed") |
| } |
| if x[0]&1 == 0 { |
| // len(y) > 1, so y > logM. |
| // x is even, so x**y is a multiple of 2**y which is a multiple of 2**logM. |
| return z.setWord(0) |
| } |
| if logM == 1 { |
| return z.setWord(1) |
| } |
| |
| // zz is used to avoid allocating in mul as otherwise |
| // the arguments would alias. |
| defer stk.restore(stk.save()) |
| w := int((logM + _W - 1) / _W) |
| zz := stk.nat(w) |
| |
| const n = 4 |
| // powers[i] contains x^i. |
| var powers [1 << n]nat |
| for i := range powers { |
| powers[i] = stk.nat(w) |
| } |
| powers[0] = powers[0].set(natOne) |
| powers[1] = powers[1].trunc(x, logM) |
| for i := 2; i < 1<<n; i += 2 { |
| p2, p, p1 := &powers[i/2], &powers[i], &powers[i+1] |
| *p = p.sqr(stk, *p2) |
| *p = p.trunc(*p, logM) |
| *p1 = p1.mul(stk, *p, x) |
| *p1 = p1.trunc(*p1, logM) |
| } |
| |
| // Because phi(2**logM) = 2**(logM-1), x**(2**(logM-1)) = 1, |
| // so we can compute x**(y mod 2**(logM-1)) instead of x**y. |
| // That is, we can throw away all but the bottom logM-1 bits of y. |
| // Instead of allocating a new y, we start reading y at the right word |
| // and truncate it appropriately at the start of the loop. |
| i := len(y) - 1 |
| mtop := int((logM - 2) / _W) // -2 because the top word of N bits is the (N-1)/W'th word. |
| mmask := ^Word(0) |
| if mbits := (logM - 1) & (_W - 1); mbits != 0 { |
| mmask = (1 << mbits) - 1 |
| } |
| if i > mtop { |
| i = mtop |
| } |
| advance := false |
| z = z.setWord(1) |
| for ; i >= 0; i-- { |
| yi := y[i] |
| if i == mtop { |
| yi &= mmask |
| } |
| for j := 0; j < _W; j += n { |
| if advance { |
| // Account for use of 4 bits in previous iteration. |
| // Unrolled loop for significant performance |
| // gain. Use go test -bench=".*" in crypto/rsa |
| // to check performance before making changes. |
| zz = zz.sqr(stk, z) |
| zz, z = z, zz |
| z = z.trunc(z, logM) |
| |
| zz = zz.sqr(stk, z) |
| zz, z = z, zz |
| z = z.trunc(z, logM) |
| |
| zz = zz.sqr(stk, z) |
| zz, z = z, zz |
| z = z.trunc(z, logM) |
| |
| zz = zz.sqr(stk, z) |
| zz, z = z, zz |
| z = z.trunc(z, logM) |
| } |
| |
| zz = zz.mul(stk, z, powers[yi>>(_W-n)]) |
| zz, z = z, zz |
| z = z.trunc(z, logM) |
| |
| yi <<= n |
| advance = true |
| } |
| } |
| |
| return z.norm() |
| } |
| |
| // expNNMontgomery calculates x**y mod m using a fixed, 4-bit window. |
| // Uses Montgomery representation. |
| func (z nat) expNNMontgomery(stk *stack, x, y, m nat) nat { |
| numWords := len(m) |
| |
| // We want the lengths of x and m to be equal. |
| // It is OK if x >= m as long as len(x) == len(m). |
| if len(x) > numWords { |
| _, x = nat(nil).div(stk, nil, x, m) |
| // Note: now len(x) <= numWords, not guaranteed ==. |
| } |
| if len(x) < numWords { |
| rr := make(nat, numWords) |
| copy(rr, x) |
| x = rr |
| } |
| |
| // Ideally the precomputations would be performed outside, and reused |
| // k0 = -m**-1 mod 2**_W. Algorithm from: Dumas, J.G. "On Newton–Raphson |
| // Iteration for Multiplicative Inverses Modulo Prime Powers". |
| k0 := 2 - m[0] |
| t := m[0] - 1 |
| for i := 1; i < _W; i <<= 1 { |
| t *= t |
| k0 *= (t + 1) |
| } |
| k0 = -k0 |
| |
| // RR = 2**(2*_W*len(m)) mod m |
| RR := nat(nil).setWord(1) |
| zz := nat(nil).lsh(RR, uint(2*numWords*_W)) |
| _, RR = nat(nil).div(stk, RR, zz, m) |
| if len(RR) < numWords { |
| zz = zz.make(numWords) |
| copy(zz, RR) |
| RR = zz |
| } |
| // one = 1, with equal length to that of m |
| one := make(nat, numWords) |
| one[0] = 1 |
| |
| const n = 4 |
| // powers[i] contains x^i |
| var powers [1 << n]nat |
| powers[0] = powers[0].montgomery(one, RR, m, k0, numWords) |
| powers[1] = powers[1].montgomery(x, RR, m, k0, numWords) |
| for i := 2; i < 1<<n; i++ { |
| powers[i] = powers[i].montgomery(powers[i-1], powers[1], m, k0, numWords) |
| } |
| |
| // initialize z = 1 (Montgomery 1) |
| z = z.make(numWords) |
| copy(z, powers[0]) |
| |
| zz = zz.make(numWords) |
| |
| // same windowed exponent, but with Montgomery multiplications |
| for i := len(y) - 1; i >= 0; i-- { |
| yi := y[i] |
| for j := 0; j < _W; j += n { |
| if i != len(y)-1 || j != 0 { |
| zz = zz.montgomery(z, z, m, k0, numWords) |
| z = z.montgomery(zz, zz, m, k0, numWords) |
| zz = zz.montgomery(z, z, m, k0, numWords) |
| z = z.montgomery(zz, zz, m, k0, numWords) |
| } |
| zz = zz.montgomery(z, powers[yi>>(_W-n)], m, k0, numWords) |
| z, zz = zz, z |
| yi <<= n |
| } |
| } |
| // convert to regular number |
| zz = zz.montgomery(z, one, m, k0, numWords) |
| |
| // One last reduction, just in case. |
| // See golang.org/issue/13907. |
| if zz.cmp(m) >= 0 { |
| // Common case is m has high bit set; in that case, |
| // since zz is the same length as m, there can be just |
| // one multiple of m to remove. Just subtract. |
| // We think that the subtract should be sufficient in general, |
| // so do that unconditionally, but double-check, |
| // in case our beliefs are wrong. |
| // The div is not expected to be reached. |
| zz = zz.sub(zz, m) |
| if zz.cmp(m) >= 0 { |
| _, zz = nat(nil).div(stk, nil, zz, m) |
| } |
| } |
| |
| return zz.norm() |
| } |
| |
| // bytes writes the value of z into buf using big-endian encoding. |
| // The value of z is encoded in the slice buf[i:]. If the value of z |
| // cannot be represented in buf, bytes panics. The number i of unused |
| // bytes at the beginning of buf is returned as result. |
| func (z nat) bytes(buf []byte) (i int) { |
| // This function is used in cryptographic operations. It must not leak |
| // anything but the Int's sign and bit size through side-channels. Any |
| // changes must be reviewed by a security expert. |
| i = len(buf) |
| for _, d := range z { |
| for j := 0; j < _S; j++ { |
| i-- |
| if i >= 0 { |
| buf[i] = byte(d) |
| } else if byte(d) != 0 { |
| panic("math/big: buffer too small to fit value") |
| } |
| d >>= 8 |
| } |
| } |
| |
| if i < 0 { |
| i = 0 |
| } |
| for i < len(buf) && buf[i] == 0 { |
| i++ |
| } |
| |
| return |
| } |
| |
| // bigEndianWord returns the contents of buf interpreted as a big-endian encoded Word value. |
| func bigEndianWord(buf []byte) Word { |
| if _W == 64 { |
| return Word(byteorder.BEUint64(buf)) |
| } |
| return Word(byteorder.BEUint32(buf)) |
| } |
| |
| // setBytes interprets buf as the bytes of a big-endian unsigned |
| // integer, sets z to that value, and returns z. |
| func (z nat) setBytes(buf []byte) nat { |
| z = z.make((len(buf) + _S - 1) / _S) |
| |
| i := len(buf) |
| for k := 0; i >= _S; k++ { |
| z[k] = bigEndianWord(buf[i-_S : i]) |
| i -= _S |
| } |
| if i > 0 { |
| var d Word |
| for s := uint(0); i > 0; s += 8 { |
| d |= Word(buf[i-1]) << s |
| i-- |
| } |
| z[len(z)-1] = d |
| } |
| |
| return z.norm() |
| } |
| |
| // sqrt sets z = ⌊√x⌋ |
| // The caller may pass stk == nil to request that sqrt obtain and release one itself. |
| func (z nat) sqrt(stk *stack, x nat) nat { |
| if x.cmp(natOne) <= 0 { |
| return z.set(x) |
| } |
| if alias(z, x) { |
| z = nil |
| } |
| |
| if stk == nil { |
| stk = getStack() |
| defer stk.free() |
| } |
| |
| // Start with value known to be too large and repeat "z = ⌊(z + ⌊x/z⌋)/2⌋" until it stops getting smaller. |
| // See Brent and Zimmermann, Modern Computer Arithmetic, Algorithm 1.13 (SqrtInt). |
| // https://members.loria.fr/PZimmermann/mca/pub226.html |
| // If x is one less than a perfect square, the sequence oscillates between the correct z and z+1; |
| // otherwise it converges to the correct z and stays there. |
| var z1, z2 nat |
| z1 = z |
| z1 = z1.setUint64(1) |
| z1 = z1.lsh(z1, uint(x.bitLen()+1)/2) // must be ≥ √x |
| for n := 0; ; n++ { |
| z2, _ = z2.div(stk, nil, x, z1) |
| z2 = z2.add(z2, z1) |
| z2 = z2.rsh(z2, 1) |
| if z2.cmp(z1) >= 0 { |
| // z1 is answer. |
| // Figure out whether z1 or z2 is currently aliased to z by looking at loop count. |
| if n&1 == 0 { |
| return z1 |
| } |
| return z.set(z1) |
| } |
| z1, z2 = z2, z1 |
| } |
| } |
| |
| // subMod2N returns z = (x - y) mod 2ⁿ. |
| func (z nat) subMod2N(x, y nat, n uint) nat { |
| if uint(x.bitLen()) > n { |
| if alias(z, x) { |
| // ok to overwrite x in place |
| x = x.trunc(x, n) |
| } else { |
| x = nat(nil).trunc(x, n) |
| } |
| } |
| if uint(y.bitLen()) > n { |
| if alias(z, y) { |
| // ok to overwrite y in place |
| y = y.trunc(y, n) |
| } else { |
| y = nat(nil).trunc(y, n) |
| } |
| } |
| if x.cmp(y) >= 0 { |
| return z.sub(x, y) |
| } |
| // x - y < 0; x - y mod 2ⁿ = x - y + 2ⁿ = 2ⁿ - (y - x) = 1 + 2ⁿ-1 - (y - x) = 1 + ^(y - x). |
| z = z.sub(y, x) |
| for uint(len(z))*_W < n { |
| z = append(z, 0) |
| } |
| for i := range z { |
| z[i] = ^z[i] |
| } |
| z = z.trunc(z, n) |
| return z.add(z, natOne) |
| } |