blob: a56d32aca0aef5e2c69642c743887511ec61ec8c [file] [log] [blame]
// Copyright 2024 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package maps
import (
"internal/abi"
"internal/goarch"
"internal/runtime/sys"
"unsafe"
)
const (
// Maximum load factor prior to growing.
//
// 7/8 is the same load factor used by Abseil, but Abseil defaults to
// 16 slots per group, so they get two empty slots vs our one empty
// slot. We may want to reevaluate if this is best for us.
maxAvgGroupLoad = 7
ctrlEmpty ctrl = 0b10000000
ctrlDeleted ctrl = 0b11111110
bitsetLSB = 0x0101010101010101
bitsetMSB = 0x8080808080808080
bitsetEmpty = bitsetLSB * uint64(ctrlEmpty)
)
// bitset represents a set of slots within a group.
//
// The underlying representation depends on GOARCH.
//
// On AMD64, bitset uses one bit per slot, where the bit is set if the slot is
// part of the set. All of the ctrlGroup.match* methods are replaced with
// intrinsics that return this packed representation.
//
// On other architectures, bitset uses one byte per slot, where each byte is
// either 0x80 if the slot is part of the set or 0x00 otherwise. This makes it
// convenient to calculate for an entire group at once using standard
// arithmetic instructions.
type bitset uint64
// first returns the relative index of the first control byte in the group that
// is in the set.
//
// Preconditions: b is not 0 (empty).
func (b bitset) first() uintptr {
return bitsetFirst(b)
}
// Portable implementation of first.
//
// On AMD64, this is replaced with an intrisic that simply does
// TrailingZeros64. There is no need to shift as the bitset is packed.
func bitsetFirst(b bitset) uintptr {
return uintptr(sys.TrailingZeros64(uint64(b))) >> 3
}
// removeFirst clears the first set bit (that is, resets the least significant
// set bit to 0).
func (b bitset) removeFirst() bitset {
return b & (b - 1)
}
// removeBelow clears all set bits below slot i (non-inclusive).
func (b bitset) removeBelow(i uintptr) bitset {
return bitsetRemoveBelow(b, i)
}
// Portable implementation of removeBelow.
//
// On AMD64, this is replaced with an intrisic that clears the lower i bits.
func bitsetRemoveBelow(b bitset, i uintptr) bitset {
// Clear all bits below slot i's byte.
mask := (uint64(1) << (8 * uint64(i))) - 1
return b &^ bitset(mask)
}
// lowestSet returns true if the bit is set for the lowest index in the bitset.
//
// This is intended for use with shiftOutLowest to loop over all entries in the
// bitset regardless of whether they are set.
func (b bitset) lowestSet() bool {
return bitsetLowestSet(b)
}
// Portable implementation of lowestSet.
//
// On AMD64, this is replaced with an intrisic that checks the lowest bit.
func bitsetLowestSet(b bitset) bool {
return b&(1<<7) != 0
}
// shiftOutLowest shifts the lowest entry out of the bitset. Afterwards, the
// lowest entry in the bitset corresponds to the next slot.
func (b bitset) shiftOutLowest() bitset {
return bitsetShiftOutLowest(b)
}
// Portable implementation of shiftOutLowest.
//
// On AMD64, this is replaced with an intrisic that shifts a single bit.
func bitsetShiftOutLowest(b bitset) bitset {
return b >> 8
}
// count returns the number of bits set in b.
func (b bitset) count() int {
// Note: works for both bitset representations (AMD64 and generic)
return sys.OnesCount64(uint64(b))
}
// Each slot in the hash table has a control byte which can have one of three
// states: empty, deleted, and full. They have the following bit patterns:
//
// empty: 1 0 0 0 0 0 0 0
// deleted: 1 1 1 1 1 1 1 0
// full: 0 h h h h h h h // h represents the H2 hash bits
//
// TODO(prattmic): Consider inverting the top bit so that the zero value is empty.
type ctrl uint8
// ctrlGroup is a fixed size array of abi.MapGroupSlots control bytes
// stored in a uint64.
type ctrlGroup uint64
// get returns the i-th control byte.
func (g *ctrlGroup) get(i uintptr) ctrl {
if goarch.BigEndian {
return *(*ctrl)(unsafe.Add(unsafe.Pointer(g), 7-i))
}
return *(*ctrl)(unsafe.Add(unsafe.Pointer(g), i))
}
// set sets the i-th control byte.
func (g *ctrlGroup) set(i uintptr, c ctrl) {
if goarch.BigEndian {
*(*ctrl)(unsafe.Add(unsafe.Pointer(g), 7-i)) = c
return
}
*(*ctrl)(unsafe.Add(unsafe.Pointer(g), i)) = c
}
// setEmpty sets all the control bytes to empty.
func (g *ctrlGroup) setEmpty() {
*g = ctrlGroup(bitsetEmpty)
}
// matchH2 returns the set of slots which are full and for which the 7-bit hash
// matches the given value. May return false positives.
func (g ctrlGroup) matchH2(h uintptr) bitset {
return ctrlGroupMatchH2(g, h)
}
// Portable implementation of matchH2.
//
// Note: On AMD64, this is an intrinsic implemented with SIMD instructions. See
// note on bitset about the packed intrinsified return value.
func ctrlGroupMatchH2(g ctrlGroup, h uintptr) bitset {
// NB: This generic matching routine produces false positive matches when
// h is 2^N and the control bytes have a seq of 2^N followed by 2^N+1. For
// example: if ctrls==0x0302 and h=02, we'll compute v as 0x0100. When we
// subtract off 0x0101 the first 2 bytes we'll become 0xffff and both be
// considered matches of h. The false positive matches are not a problem,
// just a rare inefficiency. Note that they only occur if there is a real
// match and never occur on ctrlEmpty, or ctrlDeleted. The subsequent key
// comparisons ensure that there is no correctness issue.
v := uint64(g) ^ (bitsetLSB * uint64(h))
return bitset(((v - bitsetLSB) &^ v) & bitsetMSB)
}
// matchEmpty returns the set of slots in the group that are empty.
func (g ctrlGroup) matchEmpty() bitset {
return ctrlGroupMatchEmpty(g)
}
// Portable implementation of matchEmpty.
//
// Note: On AMD64, this is an intrinsic implemented with SIMD instructions. See
// note on bitset about the packed intrinsified return value.
func ctrlGroupMatchEmpty(g ctrlGroup) bitset {
// An empty slot is 1000 0000
// A deleted slot is 1111 1110
// A full slot is 0??? ????
//
// A slot is empty iff bit 7 is set and bit 1 is not. We could select any
// of the other bits here (e.g. v << 1 would also work).
v := uint64(g)
return bitset((v &^ (v << 6)) & bitsetMSB)
}
// matchEmptyOrDeleted returns the set of slots in the group that are empty or
// deleted.
func (g ctrlGroup) matchEmptyOrDeleted() bitset {
return ctrlGroupMatchEmptyOrDeleted(g)
}
// Portable implementation of matchEmptyOrDeleted.
//
// Note: On AMD64, this is an intrinsic implemented with SIMD instructions. See
// note on bitset about the packed intrinsified return value.
func ctrlGroupMatchEmptyOrDeleted(g ctrlGroup) bitset {
// An empty slot is 1000 0000
// A deleted slot is 1111 1110
// A full slot is 0??? ????
//
// A slot is empty or deleted iff bit 7 is set.
v := uint64(g)
return bitset(v & bitsetMSB)
}
// matchFull returns the set of slots in the group that are full.
func (g ctrlGroup) matchFull() bitset {
return ctrlGroupMatchFull(g)
}
// anyFull reports whether any slots in the group are full.
func (g ctrlGroup) anyFull() bool {
// A slot is full iff bit 7 is unset. Test whether any slot has bit 7 unset.
return (^g)&bitsetMSB != 0
}
// Portable implementation of matchFull.
//
// Note: On AMD64, this is an intrinsic implemented with SIMD instructions. See
// note on bitset about the packed intrinsified return value.
func ctrlGroupMatchFull(g ctrlGroup) bitset {
// An empty slot is 1000 0000
// A deleted slot is 1111 1110
// A full slot is 0??? ????
//
// A slot is full iff bit 7 is unset.
v := uint64(g)
return bitset(^v & bitsetMSB)
}
// groupReference is a wrapper type representing a single slot group stored at
// data.
//
// A group holds abi.MapGroupSlots slots (key/elem pairs) plus their
// control word.
type groupReference struct {
// data points to the group, which is described by typ.Group and has
// layout:
//
// type group struct {
// ctrls ctrlGroup
// slots [abi.MapGroupSlots]slot
// }
//
// type slot struct {
// key typ.Key
// elem typ.Elem
// }
data unsafe.Pointer // data *typ.Group
}
const (
ctrlGroupsSize = unsafe.Sizeof(ctrlGroup(0))
groupSlotsOffset = ctrlGroupsSize
)
// alignUp rounds n up to a multiple of a. a must be a power of 2.
func alignUp(n, a uintptr) uintptr {
return (n + a - 1) &^ (a - 1)
}
// alignUpPow2 rounds n up to the next power of 2.
//
// Returns true if round up causes overflow.
func alignUpPow2(n uint64) (uint64, bool) {
if n == 0 {
return 0, false
}
v := (uint64(1) << sys.Len64(n-1))
if v == 0 {
return 0, true
}
return v, false
}
// ctrls returns the group control word.
func (g *groupReference) ctrls() *ctrlGroup {
return (*ctrlGroup)(g.data)
}
// key returns a pointer to the key at index i.
func (g *groupReference) key(typ *abi.MapType, i uintptr) unsafe.Pointer {
offset := groupSlotsOffset + i*typ.SlotSize
return unsafe.Pointer(uintptr(g.data) + offset)
}
// elem returns a pointer to the element at index i.
func (g *groupReference) elem(typ *abi.MapType, i uintptr) unsafe.Pointer {
offset := groupSlotsOffset + i*typ.SlotSize + typ.ElemOff
return unsafe.Pointer(uintptr(g.data) + offset)
}
// groupsReference is a wrapper type describing an array of groups stored at
// data.
type groupsReference struct {
// data points to an array of groups. See groupReference above for the
// definition of group.
data unsafe.Pointer // data *[length]typ.Group
// lengthMask is the number of groups in data minus one (note that
// length must be a power of two). This allows computing i%length
// quickly using bitwise AND.
lengthMask uint64
}
// newGroups allocates a new array of length groups.
//
// Length must be a power of two.
func newGroups(typ *abi.MapType, length uint64) groupsReference {
return groupsReference{
// TODO: make the length type the same throughout.
data: newarray(typ.Group, int(length)),
lengthMask: length - 1,
}
}
// group returns the group at index i.
func (g *groupsReference) group(typ *abi.MapType, i uint64) groupReference {
// TODO(prattmic): Do something here about truncation on cast to
// uintptr on 32-bit systems?
offset := uintptr(i) * typ.GroupSize
return groupReference{
data: unsafe.Pointer(uintptr(g.data) + offset),
}
}
func cloneGroup(typ *abi.MapType, newGroup, oldGroup groupReference) {
typedmemmove(typ.Group, newGroup.data, oldGroup.data)
if typ.IndirectKey() {
// Deep copy keys if indirect.
for i := uintptr(0); i < abi.MapGroupSlots; i++ {
oldKey := *(*unsafe.Pointer)(oldGroup.key(typ, i))
if oldKey == nil {
continue
}
newKey := newobject(typ.Key)
typedmemmove(typ.Key, newKey, oldKey)
*(*unsafe.Pointer)(newGroup.key(typ, i)) = newKey
}
}
if typ.IndirectElem() {
// Deep copy elems if indirect.
for i := uintptr(0); i < abi.MapGroupSlots; i++ {
oldElem := *(*unsafe.Pointer)(oldGroup.elem(typ, i))
if oldElem == nil {
continue
}
newElem := newobject(typ.Elem)
typedmemmove(typ.Elem, newElem, oldElem)
*(*unsafe.Pointer)(newGroup.elem(typ, i)) = newElem
}
}
}