blob: 91815b4a1d0df88dcee191c10f29ab092182ba01 [file] [log] [blame]
// Copyright 2025 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package cgroup
import (
"internal/bytealg"
"internal/runtime/strconv"
"internal/runtime/syscall/linux"
)
var (
ErrNoCgroup error = stringError("not in a cgroup")
errMalformedFile error = stringError("malformed file")
)
const _PATH_MAX = 4096
const (
// Required amount of scratch space for CPULimit.
//
// TODO(prattmic): This is shockingly large (~70KiB) due to the (very
// unlikely) combination of extremely long paths consisting mostly
// escaped characters. The scratch buffer ends up in .bss in package
// runtime, so it doesn't contribute to binary size and generally won't
// be faulted in, but it would still be nice to shrink this. A more
// complex parser that did not need to keep entire lines in memory
// could get away with much less. Alternatively, we could do a one-off
// mmap allocation for this buffer, which is only mapped larger if we
// actually need the extra space.
ScratchSize = PathSize + ParseSize
// Required space to store a path of the cgroup in the filesystem.
PathSize = _PATH_MAX
// /proc/self/mountinfo path escape sequences are 4 characters long, so
// a path consisting entirely of escaped characters could be 4 times
// larger.
escapedPathMax = 4 * _PATH_MAX
// Required space to parse /proc/self/mountinfo and /proc/self/cgroup.
// See findCPUMount and findCPURelativePath.
ParseSize = 4 * escapedPathMax
)
// Include explicit NUL to be sure we include it in the slice.
const (
v2MaxFile = "/cpu.max\x00"
v1QuotaFile = "/cpu.cfs_quota_us\x00"
v1PeriodFile = "/cpu.cfs_period_us\x00"
)
// Version indicates the cgroup version.
type Version int
const (
VersionUnknown Version = iota
V1
V2
)
// CPU owns the FDs required to read the CPU limit from a cgroup.
type CPU struct {
version Version
// For cgroup v1, this is cpu.cfs_quota_us.
// For cgroup v2, this is cpu.max.
quotaFD int
// For cgroup v1, this is cpu.cfs_period_us.
// For cgroup v2, this is unused.
periodFD int
}
func (c CPU) Close() {
switch c.version {
case V1:
linux.Close(c.quotaFD)
linux.Close(c.periodFD)
case V2:
linux.Close(c.quotaFD)
default:
throw("impossible cgroup version")
}
}
func checkBufferSize(s []byte, size int) {
if len(s) != size {
println("runtime: cgroup buffer length", len(s), "want", size)
throw("runtime: cgroup invalid buffer length")
}
}
// OpenCPU returns a CPU for the CPU cgroup containing the current process, or
// ErrNoCgroup if the process is not in a CPU cgroup.
//
// scratch must have length ScratchSize.
func OpenCPU(scratch []byte) (CPU, error) {
checkBufferSize(scratch, ScratchSize)
base := scratch[:PathSize]
scratch2 := scratch[PathSize:]
n, version, err := FindCPU(base, scratch2)
if err != nil {
return CPU{}, err
}
switch version {
case 1:
n2 := copy(base[n:], v1QuotaFile)
path := base[:n+n2]
quotaFD, errno := linux.Open(&path[0], linux.O_RDONLY|linux.O_CLOEXEC, 0)
if errno != 0 {
// This may fail if this process was migrated out of
// the cgroup found by FindCPU and that cgroup has been
// deleted.
return CPU{}, errSyscallFailed
}
n2 = copy(base[n:], v1PeriodFile)
path = base[:n+n2]
periodFD, errno := linux.Open(&path[0], linux.O_RDONLY|linux.O_CLOEXEC, 0)
if errno != 0 {
// This may fail if this process was migrated out of
// the cgroup found by FindCPU and that cgroup has been
// deleted.
return CPU{}, errSyscallFailed
}
c := CPU{
version: 1,
quotaFD: quotaFD,
periodFD: periodFD,
}
return c, nil
case 2:
n2 := copy(base[n:], v2MaxFile)
path := base[:n+n2]
maxFD, errno := linux.Open(&path[0], linux.O_RDONLY|linux.O_CLOEXEC, 0)
if errno != 0 {
// This may fail if this process was migrated out of
// the cgroup found by FindCPU and that cgroup has been
// deleted.
return CPU{}, errSyscallFailed
}
c := CPU{
version: 2,
quotaFD: maxFD,
periodFD: -1,
}
return c, nil
default:
throw("impossible cgroup version")
panic("unreachable")
}
}
// Returns average CPU throughput limit from the cgroup, or ok false if there
// is no limit.
func ReadCPULimit(c CPU) (float64, bool, error) {
switch c.version {
case 1:
quota, err := readV1Number(c.quotaFD)
if err != nil {
return 0, false, errMalformedFile
}
if quota < 0 {
// No limit.
return 0, false, nil
}
period, err := readV1Number(c.periodFD)
if err != nil {
return 0, false, errMalformedFile
}
return float64(quota) / float64(period), true, nil
case 2:
// quotaFD is the cpu.max FD.
return readV2Limit(c.quotaFD)
default:
throw("impossible cgroup version")
panic("unreachable")
}
}
// Returns the value from the quota/period file.
func readV1Number(fd int) (int64, error) {
// The format of the file is "<value>\n" where the value is in
// int64 microseconds and, if quota, may be -1 to indicate no limit.
//
// MaxInt64 requires 19 bytes to display in base 10, thus the
// conservative max size of this file is 19 + 1 (newline) = 20 bytes.
// We'll provide a bit more for good measure.
//
// Always read from the beginning of the file to get a fresh value.
var b [64]byte
n, errno := linux.Pread(fd, b[:], 0)
if errno != 0 {
return 0, errSyscallFailed
}
if n == len(b) {
return 0, errMalformedFile
}
buf := b[:n]
return parseV1Number(buf)
}
func parseV1Number(buf []byte) (int64, error) {
// Ignore trailing newline.
i := bytealg.IndexByte(buf, '\n')
if i < 0 {
return 0, errMalformedFile
}
buf = buf[:i]
val, ok := strconv.Atoi64(string(buf))
if !ok {
return 0, errMalformedFile
}
return val, nil
}
// Returns CPU throughput limit, or ok false if there is no limit.
func readV2Limit(fd int) (float64, bool, error) {
// The format of the file is "<quota> <period>\n" where quota and
// period are microseconds and quota may be "max" to indicate no limit.
//
// Note that the kernel is inconsistent about whether the values are
// uint64 or int64: values are parsed as uint64 but printed as int64.
// See kernel/sched/core.c:cpu_max_{show,write}.
//
// In practice, the kernel limits the period to 1s (1000000us) (see
// max_cfs_quota_period), and the quota to (1<<44)us (see
// max_cfs_runtime), so these values can't get large enough for the
// distinction to matter.
//
// MaxInt64 requires 19 bytes to display in base 10, thus the
// conservative max size of this file is 19 + 19 + 1 (space) + 1
// (newline) = 40 bytes. We'll provide a bit more for good measure.
//
// Always read from the beginning of the file to get a fresh value.
var b [64]byte
n, errno := linux.Pread(fd, b[:], 0)
if errno != 0 {
return 0, false, errSyscallFailed
}
if n == len(b) {
return 0, false, errMalformedFile
}
buf := b[:n]
return parseV2Limit(buf)
}
func parseV2Limit(buf []byte) (float64, bool, error) {
i := bytealg.IndexByte(buf, ' ')
if i < 0 {
return 0, false, errMalformedFile
}
quotaStr := buf[:i]
if bytealg.Compare(quotaStr, []byte("max")) == 0 {
// No limit.
return 0, false, nil
}
periodStr := buf[i+1:]
// Ignore trailing newline, if any.
i = bytealg.IndexByte(periodStr, '\n')
if i < 0 {
return 0, false, errMalformedFile
}
periodStr = periodStr[:i]
quota, ok := strconv.Atoi64(string(quotaStr))
if !ok {
return 0, false, errMalformedFile
}
period, ok := strconv.Atoi64(string(periodStr))
if !ok {
return 0, false, errMalformedFile
}
return float64(quota) / float64(period), true, nil
}
// FindCPU finds the path to the CPU cgroup that this process is a member of
// and places it in out. scratch is a scratch buffer for internal use.
//
// out must have length PathSize. scratch must have length ParseSize.
//
// Returns the number of bytes written to out and the cgroup version (1 or 2).
//
// Returns ErrNoCgroup if the process is not in a CPU cgroup.
func FindCPU(out []byte, scratch []byte) (int, Version, error) {
checkBufferSize(out, PathSize)
checkBufferSize(scratch, ParseSize)
// The cgroup path is <cgroup mount point> + <relative path>.
//
// This is racy if our cgroup is changed while this runs. For example,
// initially there is only a cgroup v2 mount and we are not in a
// cgroup. After, there a cgroup v1 mount with a CPU controller and we
// are placed in a cgroup in this hierarchy. In that case, findCPUMount
// could pick the v2 mount, and findCPURelativePath could find the v2
// relative path.
//
// In this case we'll later fail to read the cgroup files and fall back
// to assuming no cgroup.
n, err := FindCPUMountPoint(out, scratch)
if err != nil {
return 0, 0, err
}
// The relative path always starts with /, so we can directly append it
// to the mount point.
n2, version, err := FindCPURelativePath(out[n:], scratch)
if err != nil {
return 0, 0, err
}
n += n2
return n, version, nil
}
// FindCPURelativePath finds the path to the CPU cgroup that this process is a member of
// relative to the root of the cgroup mount and places it in out. scratch is a
// scratch buffer for internal use.
//
// out must have length PathSize minus the size of the cgroup mount root (if
// known). scratch must have length ParseSize.
//
// Returns the number of bytes written to out and the cgroup version (1 or 2).
//
// Returns ErrNoCgroup if the process is not in a CPU cgroup.
func FindCPURelativePath(out []byte, scratch []byte) (int, Version, error) {
path := []byte("/proc/self/cgroup\x00")
fd, errno := linux.Open(&path[0], linux.O_RDONLY|linux.O_CLOEXEC, 0)
if errno == linux.ENOENT {
return 0, 0, ErrNoCgroup
} else if errno != 0 {
return 0, 0, errSyscallFailed
}
// The relative path always starts with /, so we can directly append it
// to the mount point.
n, version, err := parseCPURelativePath(fd, linux.Read, out[:], scratch)
if err != nil {
linux.Close(fd)
return 0, 0, err
}
linux.Close(fd)
return n, version, nil
}
// Finds the path of the current process's CPU cgroup relative to the cgroup
// mount and writes it to out.
//
// Returns the number of bytes written and the cgroup version (1 or 2).
func parseCPURelativePath(fd int, read func(fd int, b []byte) (int, uintptr), out []byte, scratch []byte) (int, Version, error) {
// The format of each line is
//
// hierarchy-ID:controller-list:cgroup-path
//
// controller-list is comma-separated.
// See man 5 cgroup for more details.
//
// cgroup v2 has hierarchy-ID 0. If a v1 hierarchy contains "cpu", that
// is the CPU controller. Otherwise the v2 hierarchy (if any) is the
// CPU controller.
//
// hierarchy-ID and controller-list have relatively small maximum
// sizes, and the path can be up to _PATH_MAX, so we need a bit more
// than 1 _PATH_MAX of scratch space.
l := newLineReader(fd, scratch, read)
// Bytes written to out.
n := 0
for {
err := l.next()
if err == errIncompleteLine {
// Don't allow incomplete lines. While in theory the
// incomplete line may be for a controller we don't
// care about, in practice all lines should be of
// similar length, so we should just have a buffer big
// enough for any.
return 0, 0, err
} else if err == errEOF {
break
} else if err != nil {
return 0, 0, err
}
line := l.line()
// The format of each line is
//
// hierarchy-ID:controller-list:cgroup-path
//
// controller-list is comma-separated.
// See man 5 cgroup for more details.
i := bytealg.IndexByte(line, ':')
if i < 0 {
return 0, 0, errMalformedFile
}
hierarchy := line[:i]
line = line[i+1:]
i = bytealg.IndexByte(line, ':')
if i < 0 {
return 0, 0, errMalformedFile
}
controllers := line[:i]
line = line[i+1:]
path := line
if string(hierarchy) == "0" {
// v2 hierarchy.
n = copy(out, path)
// Keep searching, we might find a v1 hierarchy with a
// CPU controller, which takes precedence.
} else {
// v1 hierarchy
if containsCPU(controllers) {
// Found a v1 CPU controller. This must be the
// only one, so we're done.
return copy(out, path), V1, nil
}
}
}
if n == 0 {
// Found nothing.
return 0, 0, ErrNoCgroup
}
// Must be v2, v1 returns above.
return n, V2, nil
}
// Returns true if comma-separated list b contains "cpu".
func containsCPU(b []byte) bool {
for len(b) > 0 {
i := bytealg.IndexByte(b, ',')
if i < 0 {
// Neither cmd/compile nor gccgo allocates for these string conversions.
return string(b) == "cpu"
}
curr := b[:i]
rest := b[i+1:]
if string(curr) == "cpu" {
return true
}
b = rest
}
return false
}
// FindCPUMountPoint finds the root of the CPU cgroup mount places it in out.
// scratch is a scratch buffer for internal use.
//
// out must have length PathSize. scratch must have length ParseSize.
//
// Returns the number of bytes written to out.
//
// Returns ErrNoCgroup if the process is not in a CPU cgroup.
func FindCPUMountPoint(out []byte, scratch []byte) (int, error) {
checkBufferSize(out, PathSize)
checkBufferSize(scratch, ParseSize)
path := []byte("/proc/self/mountinfo\x00")
fd, errno := linux.Open(&path[0], linux.O_RDONLY|linux.O_CLOEXEC, 0)
if errno == linux.ENOENT {
return 0, ErrNoCgroup
} else if errno != 0 {
return 0, errSyscallFailed
}
n, err := parseCPUMount(fd, linux.Read, out, scratch)
if err != nil {
linux.Close(fd)
return 0, err
}
linux.Close(fd)
return n, nil
}
// Returns the mount point for the cpu cgroup controller (v1 or v2) from
// /proc/self/mountinfo.
func parseCPUMount(fd int, read func(fd int, b []byte) (int, uintptr), out []byte, scratch []byte) (int, error) {
// The format of each line is:
//
// 36 35 98:0 /mnt1 /mnt2 rw,noatime master:1 - ext3 /dev/root rw,errors=continue
// (1)(2)(3) (4) (5) (6) (7) (8) (9) (10) (11)
//
// (1) mount ID: unique identifier of the mount (may be reused after umount)
// (2) parent ID: ID of parent (or of self for the top of the mount tree)
// (3) major:minor: value of st_dev for files on filesystem
// (4) root: root of the mount within the filesystem
// (5) mount point: mount point relative to the process's root
// (6) mount options: per mount options
// (7) optional fields: zero or more fields of the form "tag[:value]"
// (8) separator: marks the end of the optional fields
// (9) filesystem type: name of filesystem of the form "type[.subtype]"
// (10) mount source: filesystem specific information or "none"
// (11) super options: per super block options
//
// See man 5 proc_pid_mountinfo for more details.
//
// Note that emitted paths will not contain space, tab, newline, or
// carriage return. Those are escaped. See Linux show_mountinfo ->
// show_path. We must unescape before returning.
//
// We return the mount point (5) if the filesystem type (9) is cgroup2,
// or cgroup with "cpu" in the super options (11).
//
// (4), (5), and (10) are up to _PATH_MAX. The remaining fields have a
// small fixed maximum size, so 4*_PATH_MAX is plenty of scratch space.
// Note that non-cgroup mounts may have arbitrarily long (11), but we
// can skip those when parsing.
l := newLineReader(fd, scratch, read)
// Bytes written to out.
n := 0
for {
//incomplete := false
err := l.next()
if err == errIncompleteLine {
// An incomplete line is fine as long as it doesn't
// impede parsing the fields we need. It shouldn't be
// possible for any mount to use more than 3*PATH_MAX
// before (9) because there are two paths and all other
// earlier fields have bounded options. Only (11) has
// unbounded options.
} else if err == errEOF {
break
} else if err != nil {
return 0, err
}
line := l.line()
// Skip first four fields.
for range 4 {
i := bytealg.IndexByte(line, ' ')
if i < 0 {
return 0, errMalformedFile
}
line = line[i+1:]
}
// (5) mount point: mount point relative to the process's root
i := bytealg.IndexByte(line, ' ')
if i < 0 {
return 0, errMalformedFile
}
mnt := line[:i]
line = line[i+1:]
// Skip ahead past optional fields, delimited by " - ".
for {
i = bytealg.IndexByte(line, ' ')
if i < 0 {
return 0, errMalformedFile
}
if i+3 >= len(line) {
return 0, errMalformedFile
}
delim := line[i : i+3]
if string(delim) == " - " {
line = line[i+3:]
break
}
line = line[i+1:]
}
// (9) filesystem type: name of filesystem of the form "type[.subtype]"
i = bytealg.IndexByte(line, ' ')
if i < 0 {
return 0, errMalformedFile
}
ftype := line[:i]
line = line[i+1:]
if string(ftype) != "cgroup" && string(ftype) != "cgroup2" {
continue
}
// As in findCPUPath, cgroup v1 with a CPU controller takes
// precendence over cgroup v2.
if string(ftype) == "cgroup2" {
// v2 hierarchy.
n, err = unescapePath(out, mnt)
if err != nil {
// Don't keep searching on error. The kernel
// should never produce broken escaping.
return n, err
}
// Keep searching, we might find a v1 hierarchy with a
// CPU controller, which takes precedence.
continue
}
// (10) mount source: filesystem specific information or "none"
i = bytealg.IndexByte(line, ' ')
if i < 0 {
return 0, errMalformedFile
}
// Don't care about mount source.
line = line[i+1:]
// (11) super options: per super block options
superOpt := line
// v1 hierarchy
if containsCPU(superOpt) {
// Found a v1 CPU controller. This must be the
// only one, so we're done.
return unescapePath(out, mnt)
}
}
if n == 0 {
// Found nothing.
return 0, ErrNoCgroup
}
return n, nil
}
var errInvalidEscape error = stringError("invalid path escape sequence")
// unescapePath copies in to out, unescaping escape sequences generated by
// Linux's show_path.
//
// That is, '\', ' ', '\t', and '\n' are converted to octal escape sequences,
// like '\040' for space.
//
// out must be at least as large as in.
//
// Returns the number of bytes written to out.
//
// Also see escapePath in cgroup_linux_test.go.
func unescapePath(out []byte, in []byte) (int, error) {
// Not strictly necessary, but simplifies the implementation and will
// always hold in users.
if len(out) < len(in) {
throw("output too small")
}
var outi, ini int
for ini < len(in) {
c := in[ini]
if c != '\\' {
out[outi] = c
outi++
ini++
continue
}
// Start of escape sequence.
// Escape sequence is always 4 characters: one slash and three
// digits.
if ini+3 >= len(in) {
return outi, errInvalidEscape
}
var outc byte
for i := range 3 {
c := in[ini+1+i]
if c < '0' || c > '9' {
return outi, errInvalidEscape
}
outc *= 8
outc += c - '0'
}
out[outi] = outc
outi++
ini += 4
}
return outi, nil
}