| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Package rsa implements RSA encryption as specified in PKCS #1 and RFC 8017. |
| // |
| // RSA is a single, fundamental operation that is used in this package to |
| // implement either public-key encryption or public-key signatures. |
| // |
| // The original specification for encryption and signatures with RSA is PKCS #1 |
| // and the terms "RSA encryption" and "RSA signatures" by default refer to |
| // PKCS #1 version 1.5. However, that specification has flaws and new designs |
| // should use version 2, usually called by just OAEP and PSS, where |
| // possible. |
| // |
| // Two sets of interfaces are included in this package. When a more abstract |
| // interface isn't necessary, there are functions for encrypting/decrypting |
| // with v1.5/OAEP and signing/verifying with v1.5/PSS. If one needs to abstract |
| // over the public key primitive, the PrivateKey type implements the |
| // Decrypter and Signer interfaces from the crypto package. |
| // |
| // Operations involving private keys are implemented using constant-time |
| // algorithms, except for [GenerateKey] and for some operations involving |
| // deprecated multi-prime keys. |
| // |
| // # Minimum key size |
| // |
| // [GenerateKey] returns an error if a key of less than 1024 bits is requested, |
| // and all Sign, Verify, Encrypt, and Decrypt methods return an error if used |
| // with a key smaller than 1024 bits. Such keys are insecure and should not be |
| // used. |
| // |
| // The rsa1024min=0 GODEBUG setting suppresses this error, but we recommend |
| // doing so only in tests, if necessary. Tests can set this option using |
| // [testing.T.Setenv] or by including "//go:debug rsa1024min=0" in a *_test.go |
| // source file. |
| // |
| // Alternatively, see the [GenerateKey (TestKey)] example for a pregenerated |
| // test-only 2048-bit key. |
| // |
| // [GenerateKey (TestKey)]: https://pkg.go.dev/crypto/rsa#example-GenerateKey-TestKey |
| package rsa |
| |
| import ( |
| "crypto" |
| "crypto/internal/boring" |
| "crypto/internal/boring/bbig" |
| "crypto/internal/fips140/bigmod" |
| "crypto/internal/fips140/rsa" |
| "crypto/internal/fips140only" |
| "crypto/internal/randutil" |
| "crypto/rand" |
| "crypto/subtle" |
| "errors" |
| "fmt" |
| "internal/godebug" |
| "io" |
| "math" |
| "math/big" |
| ) |
| |
| var bigOne = big.NewInt(1) |
| |
| // A PublicKey represents the public part of an RSA key. |
| // |
| // The values of N and E are not considered confidential, and may leak through |
| // side channels, or could be mathematically derived from other public values. |
| type PublicKey struct { |
| N *big.Int // modulus |
| E int // public exponent |
| } |
| |
| // Any methods implemented on PublicKey might need to also be implemented on |
| // PrivateKey, as the latter embeds the former and will expose its methods. |
| |
| // Size returns the modulus size in bytes. Raw signatures and ciphertexts |
| // for or by this public key will have the same size. |
| func (pub *PublicKey) Size() int { |
| return (pub.N.BitLen() + 7) / 8 |
| } |
| |
| // Equal reports whether pub and x have the same value. |
| func (pub *PublicKey) Equal(x crypto.PublicKey) bool { |
| xx, ok := x.(*PublicKey) |
| if !ok { |
| return false |
| } |
| return bigIntEqual(pub.N, xx.N) && pub.E == xx.E |
| } |
| |
| // OAEPOptions is an interface for passing options to OAEP decryption using the |
| // crypto.Decrypter interface. |
| type OAEPOptions struct { |
| // Hash is the hash function that will be used when generating the mask. |
| Hash crypto.Hash |
| |
| // MGFHash is the hash function used for MGF1. |
| // If zero, Hash is used instead. |
| MGFHash crypto.Hash |
| |
| // Label is an arbitrary byte string that must be equal to the value |
| // used when encrypting. |
| Label []byte |
| } |
| |
| // A PrivateKey represents an RSA key. |
| // |
| // Its fields must not be modified after calling [PrivateKey.Precompute], and |
| // should not be used directly as big.Int values for cryptographic purposes. |
| type PrivateKey struct { |
| PublicKey // public part. |
| D *big.Int // private exponent |
| Primes []*big.Int // prime factors of N, has >= 2 elements. |
| |
| // Precomputed contains precomputed values that speed up RSA operations, |
| // if available. It must be generated by calling PrivateKey.Precompute and |
| // must not be modified afterwards. |
| Precomputed PrecomputedValues |
| } |
| |
| // Public returns the public key corresponding to priv. |
| func (priv *PrivateKey) Public() crypto.PublicKey { |
| return &priv.PublicKey |
| } |
| |
| // Equal reports whether priv and x have equivalent values. It ignores |
| // Precomputed values. |
| func (priv *PrivateKey) Equal(x crypto.PrivateKey) bool { |
| xx, ok := x.(*PrivateKey) |
| if !ok { |
| return false |
| } |
| if !priv.PublicKey.Equal(&xx.PublicKey) || !bigIntEqual(priv.D, xx.D) { |
| return false |
| } |
| if len(priv.Primes) != len(xx.Primes) { |
| return false |
| } |
| for i := range priv.Primes { |
| if !bigIntEqual(priv.Primes[i], xx.Primes[i]) { |
| return false |
| } |
| } |
| return true |
| } |
| |
| // bigIntEqual reports whether a and b are equal leaking only their bit length |
| // through timing side-channels. |
| func bigIntEqual(a, b *big.Int) bool { |
| return subtle.ConstantTimeCompare(a.Bytes(), b.Bytes()) == 1 |
| } |
| |
| // Sign signs digest with priv, reading randomness from rand. If opts is a |
| // *[PSSOptions] then the PSS algorithm will be used, otherwise PKCS #1 v1.5 will |
| // be used. digest must be the result of hashing the input message using |
| // opts.HashFunc(). |
| // |
| // This method implements [crypto.Signer], which is an interface to support keys |
| // where the private part is kept in, for example, a hardware module. Common |
| // uses should use the Sign* functions in this package directly. |
| func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) { |
| if pssOpts, ok := opts.(*PSSOptions); ok { |
| return SignPSS(rand, priv, pssOpts.Hash, digest, pssOpts) |
| } |
| |
| return SignPKCS1v15(rand, priv, opts.HashFunc(), digest) |
| } |
| |
| // Decrypt decrypts ciphertext with priv. If opts is nil or of type |
| // *[PKCS1v15DecryptOptions] then PKCS #1 v1.5 decryption is performed. Otherwise |
| // opts must have type *[OAEPOptions] and OAEP decryption is done. |
| func (priv *PrivateKey) Decrypt(rand io.Reader, ciphertext []byte, opts crypto.DecrypterOpts) (plaintext []byte, err error) { |
| if opts == nil { |
| return DecryptPKCS1v15(rand, priv, ciphertext) |
| } |
| |
| switch opts := opts.(type) { |
| case *OAEPOptions: |
| if opts.MGFHash == 0 { |
| return decryptOAEP(opts.Hash.New(), opts.Hash.New(), priv, ciphertext, opts.Label) |
| } else { |
| return decryptOAEP(opts.Hash.New(), opts.MGFHash.New(), priv, ciphertext, opts.Label) |
| } |
| |
| case *PKCS1v15DecryptOptions: |
| if l := opts.SessionKeyLen; l > 0 { |
| plaintext = make([]byte, l) |
| if _, err := io.ReadFull(rand, plaintext); err != nil { |
| return nil, err |
| } |
| if err := DecryptPKCS1v15SessionKey(rand, priv, ciphertext, plaintext); err != nil { |
| return nil, err |
| } |
| return plaintext, nil |
| } else { |
| return DecryptPKCS1v15(rand, priv, ciphertext) |
| } |
| |
| default: |
| return nil, errors.New("crypto/rsa: invalid options for Decrypt") |
| } |
| } |
| |
| type PrecomputedValues struct { |
| Dp, Dq *big.Int // D mod (P-1) (or mod Q-1) |
| Qinv *big.Int // Q^-1 mod P |
| |
| // CRTValues is used for the 3rd and subsequent primes. Due to a |
| // historical accident, the CRT for the first two primes is handled |
| // differently in PKCS #1 and interoperability is sufficiently |
| // important that we mirror this. |
| // |
| // Deprecated: These values are still filled in by Precompute for |
| // backwards compatibility but are not used. Multi-prime RSA is very rare, |
| // and is implemented by this package without CRT optimizations to limit |
| // complexity. |
| CRTValues []CRTValue |
| |
| fips *rsa.PrivateKey |
| } |
| |
| // CRTValue contains the precomputed Chinese remainder theorem values. |
| type CRTValue struct { |
| Exp *big.Int // D mod (prime-1). |
| Coeff *big.Int // R·Coeff ≡ 1 mod Prime. |
| R *big.Int // product of primes prior to this (inc p and q). |
| } |
| |
| // Validate performs basic sanity checks on the key. |
| // It returns nil if the key is valid, or else an error describing a problem. |
| // |
| // It runs faster on valid keys if run after [PrivateKey.Precompute]. |
| func (priv *PrivateKey) Validate() error { |
| // We can operate on keys based on d alone, but they can't be encoded with |
| // [crypto/x509.MarshalPKCS1PrivateKey], which unfortunately doesn't return |
| // an error, so we need to reject them here. |
| if len(priv.Primes) < 2 { |
| return errors.New("crypto/rsa: missing primes") |
| } |
| // If Precomputed.fips is set and consistent, then the key has been |
| // validated by [rsa.NewPrivateKey] or [rsa.NewPrivateKeyWithoutCRT]. |
| if priv.precomputedIsConsistent() { |
| return nil |
| } |
| if priv.Precomputed.fips != nil { |
| return errors.New("crypto/rsa: precomputed values are inconsistent with the key") |
| } |
| _, err := priv.precompute() |
| return err |
| } |
| |
| func (priv *PrivateKey) precomputedIsConsistent() bool { |
| if priv.Precomputed.fips == nil { |
| return false |
| } |
| N, e, d, P, Q, dP, dQ, qInv := priv.Precomputed.fips.Export() |
| if !bigIntEqualToBytes(priv.N, N) || priv.E != e || !bigIntEqualToBytes(priv.D, d) { |
| return false |
| } |
| if len(priv.Primes) != 2 { |
| return P == nil && Q == nil && dP == nil && dQ == nil && qInv == nil |
| } |
| return bigIntEqualToBytes(priv.Primes[0], P) && |
| bigIntEqualToBytes(priv.Primes[1], Q) && |
| bigIntEqualToBytes(priv.Precomputed.Dp, dP) && |
| bigIntEqualToBytes(priv.Precomputed.Dq, dQ) && |
| bigIntEqualToBytes(priv.Precomputed.Qinv, qInv) |
| } |
| |
| // bigIntEqual reports whether a and b are equal, ignoring leading zero bytes in |
| // b, and leaking only their bit length through timing side-channels. |
| func bigIntEqualToBytes(a *big.Int, b []byte) bool { |
| if a == nil || a.BitLen() > len(b)*8 { |
| return false |
| } |
| buf := a.FillBytes(make([]byte, len(b))) |
| return subtle.ConstantTimeCompare(buf, b) == 1 |
| } |
| |
| // rsa1024min is a GODEBUG that re-enables weak RSA keys if set to "0". |
| // See https://go.dev/issue/68762. |
| var rsa1024min = godebug.New("rsa1024min") |
| |
| func checkKeySize(size int) error { |
| if size >= 1024 { |
| return nil |
| } |
| if rsa1024min.Value() == "0" { |
| rsa1024min.IncNonDefault() |
| return nil |
| } |
| return fmt.Errorf("crypto/rsa: %d-bit keys are insecure (see https://go.dev/pkg/crypto/rsa#hdr-Minimum_key_size)", size) |
| } |
| |
| func checkPublicKeySize(k *PublicKey) error { |
| if k.N == nil { |
| return errors.New("crypto/rsa: missing public modulus") |
| } |
| return checkKeySize(k.N.BitLen()) |
| } |
| |
| // GenerateKey generates a random RSA private key of the given bit size. |
| // |
| // If bits is less than 1024, [GenerateKey] returns an error. See the "[Minimum |
| // key size]" section for further details. |
| // |
| // Most applications should use [crypto/rand.Reader] as rand. Note that the |
| // returned key does not depend deterministically on the bytes read from rand, |
| // and may change between calls and/or between versions. |
| // |
| // [Minimum key size]: https://pkg.go.dev/crypto/rsa#hdr-Minimum_key_size |
| func GenerateKey(random io.Reader, bits int) (*PrivateKey, error) { |
| if err := checkKeySize(bits); err != nil { |
| return nil, err |
| } |
| |
| if boring.Enabled && random == boring.RandReader && |
| (bits == 2048 || bits == 3072 || bits == 4096) { |
| bN, bE, bD, bP, bQ, bDp, bDq, bQinv, err := boring.GenerateKeyRSA(bits) |
| if err != nil { |
| return nil, err |
| } |
| N := bbig.Dec(bN) |
| E := bbig.Dec(bE) |
| D := bbig.Dec(bD) |
| P := bbig.Dec(bP) |
| Q := bbig.Dec(bQ) |
| Dp := bbig.Dec(bDp) |
| Dq := bbig.Dec(bDq) |
| Qinv := bbig.Dec(bQinv) |
| e64 := E.Int64() |
| if !E.IsInt64() || int64(int(e64)) != e64 { |
| return nil, errors.New("crypto/rsa: generated key exponent too large") |
| } |
| |
| key := &PrivateKey{ |
| PublicKey: PublicKey{ |
| N: N, |
| E: int(e64), |
| }, |
| D: D, |
| Primes: []*big.Int{P, Q}, |
| Precomputed: PrecomputedValues{ |
| Dp: Dp, |
| Dq: Dq, |
| Qinv: Qinv, |
| CRTValues: make([]CRTValue, 0), // non-nil, to match Precompute |
| }, |
| } |
| return key, nil |
| } |
| |
| if fips140only.Enabled && bits < 2048 { |
| return nil, errors.New("crypto/rsa: use of keys smaller than 2048 bits is not allowed in FIPS 140-only mode") |
| } |
| if fips140only.Enabled && bits%2 == 1 { |
| return nil, errors.New("crypto/rsa: use of keys with odd size is not allowed in FIPS 140-only mode") |
| } |
| if fips140only.Enabled && !fips140only.ApprovedRandomReader(random) { |
| return nil, errors.New("crypto/rsa: only crypto/rand.Reader is allowed in FIPS 140-only mode") |
| } |
| |
| k, err := rsa.GenerateKey(random, bits) |
| if bits < 256 && err != nil { |
| // Toy-sized keys have a non-negligible chance of hitting two hard |
| // failure cases: p == q and d <= 2^(nlen / 2). |
| // |
| // Since these are impossible to hit for real keys, we don't want to |
| // make the production code path more complex and harder to think about |
| // to handle them. |
| // |
| // Instead, just rerun the whole process a total of 8 times, which |
| // brings the chance of failure for 32-bit keys down to the same as for |
| // 256-bit keys. |
| for i := 1; i < 8 && err != nil; i++ { |
| k, err = rsa.GenerateKey(random, bits) |
| } |
| } |
| if err != nil { |
| return nil, err |
| } |
| N, e, d, p, q, dP, dQ, qInv := k.Export() |
| key := &PrivateKey{ |
| PublicKey: PublicKey{ |
| N: new(big.Int).SetBytes(N), |
| E: e, |
| }, |
| D: new(big.Int).SetBytes(d), |
| Primes: []*big.Int{ |
| new(big.Int).SetBytes(p), |
| new(big.Int).SetBytes(q), |
| }, |
| Precomputed: PrecomputedValues{ |
| fips: k, |
| Dp: new(big.Int).SetBytes(dP), |
| Dq: new(big.Int).SetBytes(dQ), |
| Qinv: new(big.Int).SetBytes(qInv), |
| CRTValues: make([]CRTValue, 0), // non-nil, to match Precompute |
| }, |
| } |
| return key, nil |
| } |
| |
| // GenerateMultiPrimeKey generates a multi-prime RSA keypair of the given bit |
| // size and the given random source. |
| // |
| // Table 1 in "[On the Security of Multi-prime RSA]" suggests maximum numbers of |
| // primes for a given bit size. |
| // |
| // Although the public keys are compatible (actually, indistinguishable) from |
| // the 2-prime case, the private keys are not. Thus it may not be possible to |
| // export multi-prime private keys in certain formats or to subsequently import |
| // them into other code. |
| // |
| // This package does not implement CRT optimizations for multi-prime RSA, so the |
| // keys with more than two primes will have worse performance. |
| // |
| // Deprecated: The use of this function with a number of primes different from |
| // two is not recommended for the above security, compatibility, and performance |
| // reasons. Use [GenerateKey] instead. |
| // |
| // [On the Security of Multi-prime RSA]: http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf |
| func GenerateMultiPrimeKey(random io.Reader, nprimes int, bits int) (*PrivateKey, error) { |
| if nprimes == 2 { |
| return GenerateKey(random, bits) |
| } |
| if fips140only.Enabled { |
| return nil, errors.New("crypto/rsa: multi-prime RSA is not allowed in FIPS 140-only mode") |
| } |
| |
| randutil.MaybeReadByte(random) |
| |
| priv := new(PrivateKey) |
| priv.E = 65537 |
| |
| if nprimes < 2 { |
| return nil, errors.New("crypto/rsa: GenerateMultiPrimeKey: nprimes must be >= 2") |
| } |
| |
| if bits < 64 { |
| primeLimit := float64(uint64(1) << uint(bits/nprimes)) |
| // pi approximates the number of primes less than primeLimit |
| pi := primeLimit / (math.Log(primeLimit) - 1) |
| // Generated primes start with 11 (in binary) so we can only |
| // use a quarter of them. |
| pi /= 4 |
| // Use a factor of two to ensure that key generation terminates |
| // in a reasonable amount of time. |
| pi /= 2 |
| if pi <= float64(nprimes) { |
| return nil, errors.New("crypto/rsa: too few primes of given length to generate an RSA key") |
| } |
| } |
| |
| primes := make([]*big.Int, nprimes) |
| |
| NextSetOfPrimes: |
| for { |
| todo := bits |
| // crypto/rand should set the top two bits in each prime. |
| // Thus each prime has the form |
| // p_i = 2^bitlen(p_i) × 0.11... (in base 2). |
| // And the product is: |
| // P = 2^todo × α |
| // where α is the product of nprimes numbers of the form 0.11... |
| // |
| // If α < 1/2 (which can happen for nprimes > 2), we need to |
| // shift todo to compensate for lost bits: the mean value of 0.11... |
| // is 7/8, so todo + shift - nprimes * log2(7/8) ~= bits - 1/2 |
| // will give good results. |
| if nprimes >= 7 { |
| todo += (nprimes - 2) / 5 |
| } |
| for i := 0; i < nprimes; i++ { |
| var err error |
| primes[i], err = rand.Prime(random, todo/(nprimes-i)) |
| if err != nil { |
| return nil, err |
| } |
| todo -= primes[i].BitLen() |
| } |
| |
| // Make sure that primes is pairwise unequal. |
| for i, prime := range primes { |
| for j := 0; j < i; j++ { |
| if prime.Cmp(primes[j]) == 0 { |
| continue NextSetOfPrimes |
| } |
| } |
| } |
| |
| n := new(big.Int).Set(bigOne) |
| totient := new(big.Int).Set(bigOne) |
| pminus1 := new(big.Int) |
| for _, prime := range primes { |
| n.Mul(n, prime) |
| pminus1.Sub(prime, bigOne) |
| totient.Mul(totient, pminus1) |
| } |
| if n.BitLen() != bits { |
| // This should never happen for nprimes == 2 because |
| // crypto/rand should set the top two bits in each prime. |
| // For nprimes > 2 we hope it does not happen often. |
| continue NextSetOfPrimes |
| } |
| |
| priv.D = new(big.Int) |
| e := big.NewInt(int64(priv.E)) |
| ok := priv.D.ModInverse(e, totient) |
| |
| if ok != nil { |
| priv.Primes = primes |
| priv.N = n |
| break |
| } |
| } |
| |
| priv.Precompute() |
| if err := priv.Validate(); err != nil { |
| return nil, err |
| } |
| |
| return priv, nil |
| } |
| |
| // ErrMessageTooLong is returned when attempting to encrypt or sign a message |
| // which is too large for the size of the key. When using [SignPSS], this can also |
| // be returned if the size of the salt is too large. |
| var ErrMessageTooLong = errors.New("crypto/rsa: message too long for RSA key size") |
| |
| // ErrDecryption represents a failure to decrypt a message. |
| // It is deliberately vague to avoid adaptive attacks. |
| var ErrDecryption = errors.New("crypto/rsa: decryption error") |
| |
| // ErrVerification represents a failure to verify a signature. |
| // It is deliberately vague to avoid adaptive attacks. |
| var ErrVerification = errors.New("crypto/rsa: verification error") |
| |
| // Precompute performs some calculations that speed up private key operations |
| // in the future. It is safe to run on non-validated private keys. |
| func (priv *PrivateKey) Precompute() { |
| if priv.precomputedIsConsistent() { |
| return |
| } |
| |
| precomputed, err := priv.precompute() |
| if err != nil { |
| // We don't have a way to report errors, so just leave Precomputed.fips |
| // nil. Validate will re-run precompute and report its error. |
| priv.Precomputed.fips = nil |
| return |
| } |
| priv.Precomputed = precomputed |
| } |
| |
| func (priv *PrivateKey) precompute() (PrecomputedValues, error) { |
| var precomputed PrecomputedValues |
| |
| if priv.N == nil { |
| return precomputed, errors.New("crypto/rsa: missing public modulus") |
| } |
| if priv.D == nil { |
| return precomputed, errors.New("crypto/rsa: missing private exponent") |
| } |
| if len(priv.Primes) != 2 { |
| return priv.precomputeLegacy() |
| } |
| if priv.Primes[0] == nil { |
| return precomputed, errors.New("crypto/rsa: prime P is nil") |
| } |
| if priv.Primes[1] == nil { |
| return precomputed, errors.New("crypto/rsa: prime Q is nil") |
| } |
| |
| // If the CRT values are already set, use them. |
| if priv.Precomputed.Dp != nil && priv.Precomputed.Dq != nil && priv.Precomputed.Qinv != nil { |
| k, err := rsa.NewPrivateKeyWithPrecomputation(priv.N.Bytes(), priv.E, priv.D.Bytes(), |
| priv.Primes[0].Bytes(), priv.Primes[1].Bytes(), |
| priv.Precomputed.Dp.Bytes(), priv.Precomputed.Dq.Bytes(), priv.Precomputed.Qinv.Bytes()) |
| if err != nil { |
| return precomputed, err |
| } |
| precomputed = priv.Precomputed |
| precomputed.fips = k |
| precomputed.CRTValues = make([]CRTValue, 0) |
| return precomputed, nil |
| } |
| |
| k, err := rsa.NewPrivateKey(priv.N.Bytes(), priv.E, priv.D.Bytes(), |
| priv.Primes[0].Bytes(), priv.Primes[1].Bytes()) |
| if err != nil { |
| return precomputed, err |
| } |
| |
| precomputed.fips = k |
| _, _, _, _, _, dP, dQ, qInv := k.Export() |
| precomputed.Dp = new(big.Int).SetBytes(dP) |
| precomputed.Dq = new(big.Int).SetBytes(dQ) |
| precomputed.Qinv = new(big.Int).SetBytes(qInv) |
| precomputed.CRTValues = make([]CRTValue, 0) |
| return precomputed, nil |
| } |
| |
| func (priv *PrivateKey) precomputeLegacy() (PrecomputedValues, error) { |
| var precomputed PrecomputedValues |
| |
| k, err := rsa.NewPrivateKeyWithoutCRT(priv.N.Bytes(), priv.E, priv.D.Bytes()) |
| if err != nil { |
| return precomputed, err |
| } |
| precomputed.fips = k |
| |
| if len(priv.Primes) < 2 { |
| return precomputed, nil |
| } |
| |
| // Ensure the Mod and ModInverse calls below don't panic. |
| for _, prime := range priv.Primes { |
| if prime == nil { |
| return precomputed, errors.New("crypto/rsa: prime factor is nil") |
| } |
| if prime.Cmp(bigOne) <= 0 { |
| return precomputed, errors.New("crypto/rsa: prime factor is <= 1") |
| } |
| } |
| |
| precomputed.Dp = new(big.Int).Sub(priv.Primes[0], bigOne) |
| precomputed.Dp.Mod(priv.D, precomputed.Dp) |
| |
| precomputed.Dq = new(big.Int).Sub(priv.Primes[1], bigOne) |
| precomputed.Dq.Mod(priv.D, precomputed.Dq) |
| |
| precomputed.Qinv = new(big.Int).ModInverse(priv.Primes[1], priv.Primes[0]) |
| if precomputed.Qinv == nil { |
| return precomputed, errors.New("crypto/rsa: prime factors are not relatively prime") |
| } |
| |
| r := new(big.Int).Mul(priv.Primes[0], priv.Primes[1]) |
| precomputed.CRTValues = make([]CRTValue, len(priv.Primes)-2) |
| for i := 2; i < len(priv.Primes); i++ { |
| prime := priv.Primes[i] |
| values := &precomputed.CRTValues[i-2] |
| |
| values.Exp = new(big.Int).Sub(prime, bigOne) |
| values.Exp.Mod(priv.D, values.Exp) |
| |
| values.R = new(big.Int).Set(r) |
| values.Coeff = new(big.Int).ModInverse(r, prime) |
| if values.Coeff == nil { |
| return precomputed, errors.New("crypto/rsa: prime factors are not relatively prime") |
| } |
| |
| r.Mul(r, prime) |
| } |
| |
| return precomputed, nil |
| } |
| |
| func fipsPublicKey(pub *PublicKey) (*rsa.PublicKey, error) { |
| N, err := bigmod.NewModulus(pub.N.Bytes()) |
| if err != nil { |
| return nil, err |
| } |
| return &rsa.PublicKey{N: N, E: pub.E}, nil |
| } |
| |
| func fipsPrivateKey(priv *PrivateKey) (*rsa.PrivateKey, error) { |
| if priv.Precomputed.fips != nil { |
| return priv.Precomputed.fips, nil |
| } |
| precomputed, err := priv.precompute() |
| if err != nil { |
| return nil, err |
| } |
| return precomputed.fips, nil |
| } |