| // Copyright 2016 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package rsa |
| |
| import ( |
| "crypto" |
| "crypto/aes" |
| "crypto/cipher" |
| "crypto/rand" |
| "crypto/sha256" |
| "encoding/hex" |
| "fmt" |
| "io" |
| "os" |
| ) |
| |
| // RSA is able to encrypt only a very limited amount of data. In order |
| // to encrypt reasonable amounts of data a hybrid scheme is commonly |
| // used: RSA is used to encrypt a key for a symmetric primitive like |
| // AES-GCM. |
| // |
| // Before encrypting, data is “padded” by embedding it in a known |
| // structure. This is done for a number of reasons, but the most |
| // obvious is to ensure that the value is large enough that the |
| // exponentiation is larger than the modulus. (Otherwise it could be |
| // decrypted with a square-root.) |
| // |
| // In these designs, when using PKCS#1 v1.5, it's vitally important to |
| // avoid disclosing whether the received RSA message was well-formed |
| // (that is, whether the result of decrypting is a correctly padded |
| // message) because this leaks secret information. |
| // DecryptPKCS1v15SessionKey is designed for this situation and copies |
| // the decrypted, symmetric key (if well-formed) in constant-time over |
| // a buffer that contains a random key. Thus, if the RSA result isn't |
| // well-formed, the implementation uses a random key in constant time. |
| func ExampleDecryptPKCS1v15SessionKey() { |
| // crypto/rand.Reader is a good source of entropy for blinding the RSA |
| // operation. |
| rng := rand.Reader |
| |
| // The hybrid scheme should use at least a 16-byte symmetric key. Here |
| // we read the random key that will be used if the RSA decryption isn't |
| // well-formed. |
| key := make([]byte, 32) |
| if _, err := io.ReadFull(rng, key); err != nil { |
| panic("RNG failure") |
| } |
| |
| rsaCiphertext, _ := hex.DecodeString("aabbccddeeff") |
| |
| if err := DecryptPKCS1v15SessionKey(rng, rsaPrivateKey, rsaCiphertext, key); err != nil { |
| // Any errors that result will be “public” – meaning that they |
| // can be determined without any secret information. (For |
| // instance, if the length of key is impossible given the RSA |
| // public key.) |
| fmt.Fprintf(os.Stderr, "Error from RSA decryption: %s\n", err) |
| return |
| } |
| |
| // Given the resulting key, a symmetric scheme can be used to decrypt a |
| // larger ciphertext. |
| block, err := aes.NewCipher(key) |
| if err != nil { |
| panic("aes.NewCipher failed: " + err.Error()) |
| } |
| |
| // Since the key is random, using a fixed nonce is acceptable as the |
| // (key, nonce) pair will still be unique, as required. |
| var zeroNonce [12]byte |
| aead, err := cipher.NewGCM(block) |
| if err != nil { |
| panic("cipher.NewGCM failed: " + err.Error()) |
| } |
| ciphertext, _ := hex.DecodeString("00112233445566") |
| plaintext, err := aead.Open(nil, zeroNonce[:], ciphertext, nil) |
| if err != nil { |
| // The RSA ciphertext was badly formed; the decryption will |
| // fail here because the AES-GCM key will be incorrect. |
| fmt.Fprintf(os.Stderr, "Error decrypting: %s\n", err) |
| return |
| } |
| |
| fmt.Printf("Plaintext: %s\n", string(plaintext)) |
| } |
| |
| func ExampleSignPKCS1v15() { |
| // crypto/rand.Reader is a good source of entropy for blinding the RSA |
| // operation. |
| rng := rand.Reader |
| |
| message := []byte("message to be signed") |
| |
| // Only small messages can be signed directly; thus the hash of a |
| // message, rather than the message itself, is signed. This requires |
| // that the hash function be collision resistant. SHA-256 is the |
| // least-strong hash function that should be used for this at the time |
| // of writing (2016). |
| hashed := sha256.Sum256(message) |
| |
| signature, err := SignPKCS1v15(rng, rsaPrivateKey, crypto.SHA256, hashed[:]) |
| if err != nil { |
| fmt.Fprintf(os.Stderr, "Error from signing: %s\n", err) |
| return |
| } |
| |
| fmt.Printf("Signature: %x\n", signature) |
| } |
| |
| func ExampleVerifyPKCS1v15() { |
| message := []byte("message to be signed") |
| signature, _ := hex.DecodeString("ad2766728615cc7a746cc553916380ca7bfa4f8983b990913bc69eb0556539a350ff0f8fe65ddfd3ebe91fe1c299c2fac135bc8c61e26be44ee259f2f80c1530") |
| |
| // Only small messages can be signed directly; thus the hash of a |
| // message, rather than the message itself, is signed. This requires |
| // that the hash function be collision resistant. SHA-256 is the |
| // least-strong hash function that should be used for this at the time |
| // of writing (2016). |
| hashed := sha256.Sum256(message) |
| |
| err := VerifyPKCS1v15(&rsaPrivateKey.PublicKey, crypto.SHA256, hashed[:], signature) |
| if err != nil { |
| fmt.Fprintf(os.Stderr, "Error from verification: %s\n", err) |
| return |
| } |
| |
| // signature is a valid signature of message from the public key. |
| } |
| |
| func ExampleEncryptOAEP() { |
| secretMessage := []byte("send reinforcements, we're going to advance") |
| label := []byte("orders") |
| |
| // crypto/rand.Reader is a good source of entropy for randomizing the |
| // encryption function. |
| rng := rand.Reader |
| |
| ciphertext, err := EncryptOAEP(sha256.New(), rng, &test2048Key.PublicKey, secretMessage, label) |
| if err != nil { |
| fmt.Fprintf(os.Stderr, "Error from encryption: %s\n", err) |
| return |
| } |
| |
| // Since encryption is a randomized function, ciphertext will be |
| // different each time. |
| fmt.Printf("Ciphertext: %x\n", ciphertext) |
| } |
| |
| func ExampleDecryptOAEP() { |
| ciphertext, _ := hex.DecodeString("4d1ee10e8f286390258c51a5e80802844c3e6358ad6690b7285218a7c7ed7fc3a4c7b950fbd04d4b0239cc060dcc7065ca6f84c1756deb71ca5685cadbb82be025e16449b905c568a19c088a1abfad54bf7ecc67a7df39943ec511091a34c0f2348d04e058fcff4d55644de3cd1d580791d4524b92f3e91695582e6e340a1c50b6c6d78e80b4e42c5b4d45e479b492de42bbd39cc642ebb80226bb5200020d501b24a37bcc2ec7f34e596b4fd6b063de4858dbf5a4e3dd18e262eda0ec2d19dbd8e890d672b63d368768360b20c0b6b8592a438fa275e5fa7f60bef0dd39673fd3989cc54d2cb80c08fcd19dacbc265ee1c6014616b0e04ea0328c2a04e73460") |
| label := []byte("orders") |
| |
| // crypto/rand.Reader is a good source of entropy for blinding the RSA |
| // operation. |
| rng := rand.Reader |
| |
| plaintext, err := DecryptOAEP(sha256.New(), rng, test2048Key, ciphertext, label) |
| if err != nil { |
| fmt.Fprintf(os.Stderr, "Error from decryption: %s\n", err) |
| return |
| } |
| |
| fmt.Printf("Plaintext: %s\n", string(plaintext)) |
| |
| // Remember that encryption only provides confidentiality. The |
| // ciphertext should be signed before authenticity is assumed and, even |
| // then, consider that messages might be reordered. |
| } |