blob: 0d4dbb5b2ee170289b834e93a504ed37584ec744 [file] [log] [blame]
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gc
import (
"cmd/compile/internal/ssa"
"container/heap"
"fmt"
)
// This file contains the algorithm to place phi nodes in a function.
// For small functions, we use Braun, Buchwald, Hack, Leißa, Mallon, and Zwinkau.
// http://pp.info.uni-karlsruhe.de/uploads/publikationen/braun13cc.pdf
// For large functions, we use Sreedhar & Gao: A Linear Time Algorithm for Placing Φ-Nodes.
// http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.8.1979&rep=rep1&type=pdf
const smallBlocks = 500
const debugPhi = false
// insertPhis finds all the places in the function where a phi is
// necessary and inserts them.
// Uses FwdRef ops to find all uses of variables, and s.defvars to find
// all definitions.
// Phi values are inserted, and all FwdRefs are changed to a Copy
// of the appropriate phi or definition.
// TODO: make this part of cmd/compile/internal/ssa somehow?
func (s *state) insertPhis() {
if len(s.f.Blocks) <= smallBlocks {
sps := simplePhiState{s: s, f: s.f, defvars: s.defvars}
sps.insertPhis()
return
}
ps := phiState{s: s, f: s.f, defvars: s.defvars}
ps.insertPhis()
}
type phiState struct {
s *state // SSA state
f *ssa.Func // function to work on
defvars []map[*Node]*ssa.Value // defined variables at end of each block
varnum map[*Node]int32 // variable numbering
// properties of the dominator tree
idom []*ssa.Block // dominator parents
tree []domBlock // dominator child+sibling
level []int32 // level in dominator tree (0 = root or unreachable, 1 = children of root, ...)
// scratch locations
priq blockHeap // priority queue of blocks, higher level (toward leaves) = higher priority
q []*ssa.Block // inner loop queue
queued *sparseSet // has been put in q
hasPhi *sparseSet // has a phi
hasDef *sparseSet // has a write of the variable we're processing
// miscellaneous
placeholder *ssa.Value // dummy value to use as a "not set yet" placeholder.
}
func (s *phiState) insertPhis() {
if debugPhi {
fmt.Println(s.f.String())
}
// Find all the variables for which we need to match up reads & writes.
// This step prunes any basic-block-only variables from consideration.
// Generate a numbering for these variables.
s.varnum = map[*Node]int32{}
var vars []*Node
var vartypes []ssa.Type
for _, b := range s.f.Blocks {
for _, v := range b.Values {
if v.Op != ssa.OpFwdRef {
continue
}
var_ := v.Aux.(*Node)
// Optimization: look back 1 block for the definition.
if len(b.Preds) == 1 {
c := b.Preds[0].Block()
if w := s.defvars[c.ID][var_]; w != nil {
v.Op = ssa.OpCopy
v.Aux = nil
v.AddArg(w)
continue
}
}
if _, ok := s.varnum[var_]; ok {
continue
}
s.varnum[var_] = int32(len(vartypes))
if debugPhi {
fmt.Printf("var%d = %v\n", len(vartypes), var_)
}
vars = append(vars, var_)
vartypes = append(vartypes, v.Type)
}
}
if len(vartypes) == 0 {
return
}
// Find all definitions of the variables we need to process.
// defs[n] contains all the blocks in which variable number n is assigned.
defs := make([][]*ssa.Block, len(vartypes))
for _, b := range s.f.Blocks {
for var_ := range s.defvars[b.ID] { // TODO: encode defvars some other way (explicit ops)? make defvars[n] a slice instead of a map.
if n, ok := s.varnum[var_]; ok {
defs[n] = append(defs[n], b)
}
}
}
// Make dominator tree.
s.idom = s.f.Idom()
s.tree = make([]domBlock, s.f.NumBlocks())
for _, b := range s.f.Blocks {
p := s.idom[b.ID]
if p != nil {
s.tree[b.ID].sibling = s.tree[p.ID].firstChild
s.tree[p.ID].firstChild = b
}
}
// Compute levels in dominator tree.
// With parent pointers we can do a depth-first walk without
// any auxiliary storage.
s.level = make([]int32, s.f.NumBlocks())
b := s.f.Entry
levels:
for {
if p := s.idom[b.ID]; p != nil {
s.level[b.ID] = s.level[p.ID] + 1
if debugPhi {
fmt.Printf("level %s = %d\n", b, s.level[b.ID])
}
}
if c := s.tree[b.ID].firstChild; c != nil {
b = c
continue
}
for {
if c := s.tree[b.ID].sibling; c != nil {
b = c
continue levels
}
b = s.idom[b.ID]
if b == nil {
break levels
}
}
}
// Allocate scratch locations.
s.priq.level = s.level
s.q = make([]*ssa.Block, 0, s.f.NumBlocks())
s.queued = newSparseSet(s.f.NumBlocks())
s.hasPhi = newSparseSet(s.f.NumBlocks())
s.hasDef = newSparseSet(s.f.NumBlocks())
s.placeholder = s.s.entryNewValue0(ssa.OpUnknown, ssa.TypeInvalid)
// Generate phi ops for each variable.
for n := range vartypes {
s.insertVarPhis(n, vars[n], defs[n], vartypes[n])
}
// Resolve FwdRefs to the correct write or phi.
s.resolveFwdRefs()
// Erase variable numbers stored in AuxInt fields of phi ops. They are no longer needed.
for _, b := range s.f.Blocks {
for _, v := range b.Values {
if v.Op == ssa.OpPhi {
v.AuxInt = 0
}
}
}
}
func (s *phiState) insertVarPhis(n int, var_ *Node, defs []*ssa.Block, typ ssa.Type) {
priq := &s.priq
q := s.q
queued := s.queued
queued.clear()
hasPhi := s.hasPhi
hasPhi.clear()
hasDef := s.hasDef
hasDef.clear()
// Add defining blocks to priority queue.
for _, b := range defs {
priq.a = append(priq.a, b)
hasDef.add(b.ID)
if debugPhi {
fmt.Printf("def of var%d in %s\n", n, b)
}
}
heap.Init(priq)
// Visit blocks defining variable n, from deepest to shallowest.
for len(priq.a) > 0 {
currentRoot := heap.Pop(priq).(*ssa.Block)
if debugPhi {
fmt.Printf("currentRoot %s\n", currentRoot)
}
// Walk subtree below definition.
// Skip subtrees we've done in previous iterations.
// Find edges exiting tree dominated by definition (the dominance frontier).
// Insert phis at target blocks.
if queued.contains(currentRoot.ID) {
s.s.Fatalf("root already in queue")
}
q = append(q, currentRoot)
queued.add(currentRoot.ID)
for len(q) > 0 {
b := q[len(q)-1]
q = q[:len(q)-1]
if debugPhi {
fmt.Printf(" processing %s\n", b)
}
for _, e := range b.Succs {
c := e.Block()
// TODO: if the variable is dead at c, skip it.
if s.level[c.ID] > s.level[currentRoot.ID] {
// a D-edge, or an edge whose target is in currentRoot's subtree.
continue
}
if !hasPhi.contains(c.ID) {
// Add a phi to block c for variable n.
hasPhi.add(c.ID)
v := c.NewValue0I(currentRoot.Line, ssa.OpPhi, typ, int64(n)) // TODO: line number right?
// Note: we store the variable number in the phi's AuxInt field. Used temporarily by phi building.
s.s.addNamedValue(var_, v)
for i := 0; i < len(c.Preds); i++ {
v.AddArg(s.placeholder) // Actual args will be filled in by resolveFwdRefs.
}
if debugPhi {
fmt.Printf("new phi for var%d in %s: %s\n", n, c, v)
}
if !hasDef.contains(c.ID) {
// There's now a new definition of this variable in block c.
// Add it to the priority queue to explore.
heap.Push(priq, c)
hasDef.add(c.ID)
}
}
}
// Visit children if they have not been visited yet.
for c := s.tree[b.ID].firstChild; c != nil; c = s.tree[c.ID].sibling {
if !queued.contains(c.ID) {
q = append(q, c)
queued.add(c.ID)
}
}
}
}
}
// resolveFwdRefs links all FwdRef uses up to their nearest dominating definition.
func (s *phiState) resolveFwdRefs() {
// Do a depth-first walk of the dominator tree, keeping track
// of the most-recently-seen value for each variable.
// Map from variable ID to SSA value at the current point of the walk.
values := make([]*ssa.Value, len(s.varnum))
for i := range values {
values[i] = s.placeholder
}
// Stack of work to do.
type stackEntry struct {
b *ssa.Block // block to explore
// variable/value pair to reinstate on exit
n int32 // variable ID
v *ssa.Value
// Note: only one of b or n,v will be set.
}
var stk []stackEntry
stk = append(stk, stackEntry{b: s.f.Entry})
for len(stk) > 0 {
work := stk[len(stk)-1]
stk = stk[:len(stk)-1]
b := work.b
if b == nil {
// On exit from a block, this case will undo any assignments done below.
values[work.n] = work.v
continue
}
// Process phis as new defs. They come before FwdRefs in this block.
for _, v := range b.Values {
if v.Op != ssa.OpPhi {
continue
}
n := int32(v.AuxInt)
// Remember the old assignment so we can undo it when we exit b.
stk = append(stk, stackEntry{n: n, v: values[n]})
// Record the new assignment.
values[n] = v
}
// Replace a FwdRef op with the current incoming value for its variable.
for _, v := range b.Values {
if v.Op != ssa.OpFwdRef {
continue
}
n := s.varnum[v.Aux.(*Node)]
v.Op = ssa.OpCopy
v.Aux = nil
v.AddArg(values[n])
}
// Establish values for variables defined in b.
for var_, v := range s.defvars[b.ID] {
n, ok := s.varnum[var_]
if !ok {
// some variable not live across a basic block boundary.
continue
}
// Remember the old assignment so we can undo it when we exit b.
stk = append(stk, stackEntry{n: n, v: values[n]})
// Record the new assignment.
values[n] = v
}
// Replace phi args in successors with the current incoming value.
for _, e := range b.Succs {
c, i := e.Block(), e.Index()
for j := len(c.Values) - 1; j >= 0; j-- {
v := c.Values[j]
if v.Op != ssa.OpPhi {
break // All phis will be at the end of the block during phi building.
}
v.SetArg(i, values[v.AuxInt])
}
}
// Walk children in dominator tree.
for c := s.tree[b.ID].firstChild; c != nil; c = s.tree[c.ID].sibling {
stk = append(stk, stackEntry{b: c})
}
}
}
// domBlock contains extra per-block information to record the dominator tree.
type domBlock struct {
firstChild *ssa.Block // first child of block in dominator tree
sibling *ssa.Block // next child of parent in dominator tree
}
// A block heap is used as a priority queue to implement the PiggyBank
// from Sreedhar and Gao. That paper uses an array which is better
// asymptotically but worse in the common case when the PiggyBank
// holds a sparse set of blocks.
type blockHeap struct {
a []*ssa.Block // block IDs in heap
level []int32 // depth in dominator tree (static, used for determining priority)
}
func (h *blockHeap) Len() int { return len(h.a) }
func (h *blockHeap) Swap(i, j int) { a := h.a; a[i], a[j] = a[j], a[i] }
func (h *blockHeap) Push(x interface{}) {
v := x.(*ssa.Block)
h.a = append(h.a, v)
}
func (h *blockHeap) Pop() interface{} {
old := h.a
n := len(old)
x := old[n-1]
h.a = old[:n-1]
return x
}
func (h *blockHeap) Less(i, j int) bool {
return h.level[h.a[i].ID] > h.level[h.a[j].ID]
}
// TODO: stop walking the iterated domininance frontier when
// the variable is dead. Maybe detect that by checking if the
// node we're on is reverse dominated by all the reads?
// Reverse dominated by the highest common successor of all the reads?
// copy of ../ssa/sparseset.go
// TODO: move this file to ../ssa, then use sparseSet there.
type sparseSet struct {
dense []ssa.ID
sparse []int32
}
// newSparseSet returns a sparseSet that can represent
// integers between 0 and n-1
func newSparseSet(n int) *sparseSet {
return &sparseSet{dense: nil, sparse: make([]int32, n)}
}
func (s *sparseSet) contains(x ssa.ID) bool {
i := s.sparse[x]
return i < int32(len(s.dense)) && s.dense[i] == x
}
func (s *sparseSet) add(x ssa.ID) {
i := s.sparse[x]
if i < int32(len(s.dense)) && s.dense[i] == x {
return
}
s.dense = append(s.dense, x)
s.sparse[x] = int32(len(s.dense)) - 1
}
func (s *sparseSet) clear() {
s.dense = s.dense[:0]
}
// Variant to use for small functions.
type simplePhiState struct {
s *state // SSA state
f *ssa.Func // function to work on
fwdrefs []*ssa.Value // list of FwdRefs to be processed
defvars []map[*Node]*ssa.Value // defined variables at end of each block
}
func (s *simplePhiState) insertPhis() {
// Find FwdRef ops.
for _, b := range s.f.Blocks {
for _, v := range b.Values {
if v.Op != ssa.OpFwdRef {
continue
}
s.fwdrefs = append(s.fwdrefs, v)
var_ := v.Aux.(*Node)
if _, ok := s.defvars[b.ID][var_]; !ok {
s.defvars[b.ID][var_] = v // treat FwdDefs as definitions.
}
}
}
var args []*ssa.Value
loop:
for len(s.fwdrefs) > 0 {
v := s.fwdrefs[len(s.fwdrefs)-1]
s.fwdrefs = s.fwdrefs[:len(s.fwdrefs)-1]
b := v.Block
var_ := v.Aux.(*Node)
if len(b.Preds) == 0 {
if b == s.f.Entry {
// No variable should be live at entry.
s.s.Fatalf("Value live at entry. It shouldn't be. func %s, node %v, value %v", s.f.Name, var_, v)
}
// This block is dead; it has no predecessors and it is not the entry block.
// It doesn't matter what we use here as long as it is well-formed.
v.Op = ssa.OpUnknown
v.Aux = nil
continue
}
// Find variable value on each predecessor.
args = args[:0]
for _, e := range b.Preds {
args = append(args, s.lookupVarOutgoing(e.Block(), v.Type, var_, v.Line))
}
// Decide if we need a phi or not. We need a phi if there
// are two different args (which are both not v).
var w *ssa.Value
for _, a := range args {
if a == v {
continue // self-reference
}
if a == w {
continue // already have this witness
}
if w != nil {
// two witnesses, need a phi value
v.Op = ssa.OpPhi
v.AddArgs(args...)
v.Aux = nil
continue loop
}
w = a // save witness
}
if w == nil {
s.s.Fatalf("no witness for reachable phi %s", v)
}
// One witness. Make v a copy of w.
v.Op = ssa.OpCopy
v.Aux = nil
v.AddArg(w)
}
}
// lookupVarOutgoing finds the variable's value at the end of block b.
func (s *simplePhiState) lookupVarOutgoing(b *ssa.Block, t ssa.Type, var_ *Node, line int32) *ssa.Value {
for {
if v := s.defvars[b.ID][var_]; v != nil {
return v
}
// The variable is not defined by b and we haven't looked it up yet.
// If b has exactly one predecessor, loop to look it up there.
// Otherwise, give up and insert a new FwdRef and resolve it later.
if len(b.Preds) != 1 {
break
}
b = b.Preds[0].Block()
}
// Generate a FwdRef for the variable and return that.
v := b.NewValue0A(line, ssa.OpFwdRef, t, var_)
s.defvars[b.ID][var_] = v
s.s.addNamedValue(var_, v)
s.fwdrefs = append(s.fwdrefs, v)
return v
}