blob: f88e3702775e31965c78d397f37b91df1dfe8ef1 [file] [log] [blame]
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gc
import (
"cmd/compile/internal/ssa"
"cmd/internal/obj"
"cmd/internal/sys"
"fmt"
"sort"
"strings"
)
// "Portable" code generation.
var makefuncdatasym_nsym int
func makefuncdatasym(nameprefix string, funcdatakind int64) *Sym {
sym := lookupN(nameprefix, makefuncdatasym_nsym)
makefuncdatasym_nsym++
pnod := newname(sym)
pnod.Class = PEXTERN
p := Gins(obj.AFUNCDATA, nil, pnod)
Addrconst(&p.From, funcdatakind)
return sym
}
// gvardef inserts a VARDEF for n into the instruction stream.
// VARDEF is an annotation for the liveness analysis, marking a place
// where a complete initialization (definition) of a variable begins.
// Since the liveness analysis can see initialization of single-word
// variables quite easy, gvardef is usually only called for multi-word
// or 'fat' variables, those satisfying isfat(n->type).
// However, gvardef is also called when a non-fat variable is initialized
// via a block move; the only time this happens is when you have
// return f()
// for a function with multiple return values exactly matching the return
// types of the current function.
//
// A 'VARDEF x' annotation in the instruction stream tells the liveness
// analysis to behave as though the variable x is being initialized at that
// point in the instruction stream. The VARDEF must appear before the
// actual (multi-instruction) initialization, and it must also appear after
// any uses of the previous value, if any. For example, if compiling:
//
// x = x[1:]
//
// it is important to generate code like:
//
// base, len, cap = pieces of x[1:]
// VARDEF x
// x = {base, len, cap}
//
// If instead the generated code looked like:
//
// VARDEF x
// base, len, cap = pieces of x[1:]
// x = {base, len, cap}
//
// then the liveness analysis would decide the previous value of x was
// unnecessary even though it is about to be used by the x[1:] computation.
// Similarly, if the generated code looked like:
//
// base, len, cap = pieces of x[1:]
// x = {base, len, cap}
// VARDEF x
//
// then the liveness analysis will not preserve the new value of x, because
// the VARDEF appears to have "overwritten" it.
//
// VARDEF is a bit of a kludge to work around the fact that the instruction
// stream is working on single-word values but the liveness analysis
// wants to work on individual variables, which might be multi-word
// aggregates. It might make sense at some point to look into letting
// the liveness analysis work on single-word values as well, although
// there are complications around interface values, slices, and strings,
// all of which cannot be treated as individual words.
//
// VARKILL is the opposite of VARDEF: it marks a value as no longer needed,
// even if its address has been taken. That is, a VARKILL annotation asserts
// that its argument is certainly dead, for use when the liveness analysis
// would not otherwise be able to deduce that fact.
func gvardefx(n *Node, as obj.As) {
if n == nil {
Fatalf("gvardef nil")
}
if n.Op != ONAME {
yyerror("gvardef %#v; %v", n.Op, n)
return
}
switch n.Class {
case PAUTO, PPARAM, PPARAMOUT:
if !n.Used {
Prog(obj.ANOP)
return
}
if as == obj.AVARLIVE {
Gins(as, n, nil)
} else {
Gins(as, nil, n)
}
}
}
func Gvardef(n *Node) {
gvardefx(n, obj.AVARDEF)
}
func Gvarkill(n *Node) {
gvardefx(n, obj.AVARKILL)
}
func Gvarlive(n *Node) {
gvardefx(n, obj.AVARLIVE)
}
func removevardef(firstp *obj.Prog) {
for p := firstp; p != nil; p = p.Link {
for p.Link != nil && (p.Link.As == obj.AVARDEF || p.Link.As == obj.AVARKILL || p.Link.As == obj.AVARLIVE) {
p.Link = p.Link.Link
}
if p.To.Type == obj.TYPE_BRANCH {
for p.To.Val.(*obj.Prog) != nil && (p.To.Val.(*obj.Prog).As == obj.AVARDEF || p.To.Val.(*obj.Prog).As == obj.AVARKILL || p.To.Val.(*obj.Prog).As == obj.AVARLIVE) {
p.To.Val = p.To.Val.(*obj.Prog).Link
}
}
}
}
func emitptrargsmap() {
if Curfn.Func.Nname.Sym.Name == "_" {
return
}
sym := lookup(fmt.Sprintf("%s.args_stackmap", Curfn.Func.Nname.Sym.Name))
nptr := int(Curfn.Type.ArgWidth() / int64(Widthptr))
bv := bvalloc(int32(nptr) * 2)
nbitmap := 1
if Curfn.Type.Results().NumFields() > 0 {
nbitmap = 2
}
off := duint32(sym, 0, uint32(nbitmap))
off = duint32(sym, off, uint32(bv.n))
var xoffset int64
if Curfn.IsMethod() {
xoffset = 0
onebitwalktype1(Curfn.Type.Recvs(), &xoffset, bv)
}
if Curfn.Type.Params().NumFields() > 0 {
xoffset = 0
onebitwalktype1(Curfn.Type.Params(), &xoffset, bv)
}
off = dbvec(sym, off, bv)
if Curfn.Type.Results().NumFields() > 0 {
xoffset = 0
onebitwalktype1(Curfn.Type.Results(), &xoffset, bv)
off = dbvec(sym, off, bv)
}
ggloblsym(sym, int32(off), obj.RODATA|obj.LOCAL)
}
// cmpstackvarlt reports whether the stack variable a sorts before b.
//
// Sort the list of stack variables. Autos after anything else,
// within autos, unused after used, within used, things with
// pointers first, zeroed things first, and then decreasing size.
// Because autos are laid out in decreasing addresses
// on the stack, pointers first, zeroed things first and decreasing size
// really means, in memory, things with pointers needing zeroing at
// the top of the stack and increasing in size.
// Non-autos sort on offset.
func cmpstackvarlt(a, b *Node) bool {
if (a.Class == PAUTO) != (b.Class == PAUTO) {
return b.Class == PAUTO
}
if a.Class != PAUTO {
return a.Xoffset < b.Xoffset
}
if a.Used != b.Used {
return a.Used
}
ap := haspointers(a.Type)
bp := haspointers(b.Type)
if ap != bp {
return ap
}
ap = a.Name.Needzero
bp = b.Name.Needzero
if ap != bp {
return ap
}
if a.Type.Width != b.Type.Width {
return a.Type.Width > b.Type.Width
}
return a.Sym.Name < b.Sym.Name
}
// byStackvar implements sort.Interface for []*Node using cmpstackvarlt.
type byStackVar []*Node
func (s byStackVar) Len() int { return len(s) }
func (s byStackVar) Less(i, j int) bool { return cmpstackvarlt(s[i], s[j]) }
func (s byStackVar) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
var scratchFpMem *Node
func (s *ssaExport) AllocFrame(f *ssa.Func) {
Stksize = 0
stkptrsize = 0
// Mark the PAUTO's unused.
for _, ln := range Curfn.Func.Dcl {
if ln.Class == PAUTO {
ln.Used = false
}
}
for _, l := range f.RegAlloc {
if ls, ok := l.(ssa.LocalSlot); ok {
ls.N.(*Node).Used = true
}
}
scratchUsed := false
for _, b := range f.Blocks {
for _, v := range b.Values {
switch a := v.Aux.(type) {
case *ssa.ArgSymbol:
a.Node.(*Node).Used = true
case *ssa.AutoSymbol:
a.Node.(*Node).Used = true
}
if !scratchUsed {
scratchUsed = v.Op.UsesScratch()
}
}
}
if f.Config.NeedsFpScratch {
scratchFpMem = temp(Types[TUINT64])
scratchFpMem.Used = scratchUsed
}
sort.Sort(byStackVar(Curfn.Func.Dcl))
// Reassign stack offsets of the locals that are used.
for i, n := range Curfn.Func.Dcl {
if n.Op != ONAME || n.Class != PAUTO {
continue
}
if !n.Used {
Curfn.Func.Dcl = Curfn.Func.Dcl[:i]
break
}
dowidth(n.Type)
w := n.Type.Width
if w >= Thearch.MAXWIDTH || w < 0 {
Fatalf("bad width")
}
Stksize += w
Stksize = Rnd(Stksize, int64(n.Type.Align))
if haspointers(n.Type) {
stkptrsize = Stksize
}
if Thearch.LinkArch.InFamily(sys.MIPS64, sys.ARM, sys.ARM64, sys.PPC64, sys.S390X) {
Stksize = Rnd(Stksize, int64(Widthptr))
}
if Stksize >= 1<<31 {
setlineno(Curfn)
yyerror("stack frame too large (>2GB)")
}
n.Xoffset = -Stksize
}
Stksize = Rnd(Stksize, int64(Widthreg))
stkptrsize = Rnd(stkptrsize, int64(Widthreg))
}
func compile(fn *Node) {
if Newproc == nil {
Newproc = Sysfunc("newproc")
Deferproc = Sysfunc("deferproc")
Deferreturn = Sysfunc("deferreturn")
panicindex = Sysfunc("panicindex")
panicslice = Sysfunc("panicslice")
panicdivide = Sysfunc("panicdivide")
growslice = Sysfunc("growslice")
writebarrierptr = Sysfunc("writebarrierptr")
typedmemmove = Sysfunc("typedmemmove")
panicdottype = Sysfunc("panicdottype")
}
defer func(lno int32) {
lineno = lno
}(setlineno(fn))
Curfn = fn
dowidth(Curfn.Type)
if fn.Nbody.Len() == 0 {
if pure_go || strings.HasPrefix(fn.Func.Nname.Sym.Name, "init.") {
yyerror("missing function body for %q", fn.Func.Nname.Sym.Name)
return
}
if Debug['A'] != 0 {
return
}
emitptrargsmap()
return
}
saveerrors()
if Curfn.Type.FuncType().Outnamed {
// add clearing of the output parameters
for _, t := range Curfn.Type.Results().Fields().Slice() {
if t.Nname != nil {
n := nod(OAS, t.Nname, nil)
n = typecheck(n, Etop)
Curfn.Nbody.Prepend(n)
}
}
}
order(Curfn)
if nerrors != 0 {
return
}
hasdefer = false
walk(Curfn)
if nerrors != 0 {
return
}
if instrumenting {
instrument(Curfn)
}
if nerrors != 0 {
return
}
// Build an SSA backend function.
ssafn := buildssa(Curfn)
if nerrors != 0 {
return
}
newplist()
setlineno(Curfn)
nam := Curfn.Func.Nname
if isblank(nam) {
nam = nil
}
ptxt := Gins(obj.ATEXT, nam, nil)
ptxt.From3 = new(obj.Addr)
if fn.Func.Dupok {
ptxt.From3.Offset |= obj.DUPOK
}
if fn.Func.Wrapper {
ptxt.From3.Offset |= obj.WRAPPER
}
if fn.Func.Needctxt {
ptxt.From3.Offset |= obj.NEEDCTXT
}
if fn.Func.Pragma&Nosplit != 0 {
ptxt.From3.Offset |= obj.NOSPLIT
}
if fn.Func.ReflectMethod {
ptxt.From3.Offset |= obj.REFLECTMETHOD
}
if fn.Func.Pragma&Systemstack != 0 {
ptxt.From.Sym.Cfunc = true
}
// Clumsy but important.
// See test/recover.go for test cases and src/reflect/value.go
// for the actual functions being considered.
if myimportpath == "reflect" {
if Curfn.Func.Nname.Sym.Name == "callReflect" || Curfn.Func.Nname.Sym.Name == "callMethod" {
ptxt.From3.Offset |= obj.WRAPPER
}
}
gcargs := makefuncdatasym("gcargs·", obj.FUNCDATA_ArgsPointerMaps)
gclocals := makefuncdatasym("gclocals·", obj.FUNCDATA_LocalsPointerMaps)
if obj.Fieldtrack_enabled != 0 && len(Curfn.Func.FieldTrack) > 0 {
trackSyms := make([]*Sym, 0, len(Curfn.Func.FieldTrack))
for sym := range Curfn.Func.FieldTrack {
trackSyms = append(trackSyms, sym)
}
sort.Sort(symByName(trackSyms))
for _, sym := range trackSyms {
gtrack(sym)
}
}
for _, n := range fn.Func.Dcl {
if n.Op != ONAME { // might be OTYPE or OLITERAL
continue
}
switch n.Class {
case PAUTO:
if !n.Used {
continue
}
fallthrough
case PPARAM, PPARAMOUT:
p := Gins(obj.ATYPE, n, nil)
p.From.Gotype = Linksym(ngotype(n))
}
}
genssa(ssafn, ptxt, gcargs, gclocals)
ssafn.Free()
}
type symByName []*Sym
func (a symByName) Len() int { return len(a) }
func (a symByName) Less(i, j int) bool { return a[i].Name < a[j].Name }
func (a symByName) Swap(i, j int) { a[i], a[j] = a[j], a[i] }