| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package gc |
| |
| import ( |
| "cmd/compile/internal/big" |
| "fmt" |
| "math" |
| ) |
| |
| // implements float arithmetic |
| |
| const ( |
| // Maximum size in bits for Mpints before signalling |
| // overflow and also mantissa precision for Mpflts. |
| Mpprec = 512 |
| // Turn on for constant arithmetic debugging output. |
| Mpdebug = false |
| ) |
| |
| // Mpflt represents a floating-point constant. |
| type Mpflt struct { |
| Val big.Float |
| } |
| |
| // Mpcplx represents a complex constant. |
| type Mpcplx struct { |
| Real Mpflt |
| Imag Mpflt |
| } |
| |
| func newMpflt() *Mpflt { |
| var a Mpflt |
| a.Val.SetPrec(Mpprec) |
| return &a |
| } |
| |
| func (a *Mpflt) SetInt(b *Mpint) { |
| if b.Ovf { |
| // sign doesn't really matter but copy anyway |
| a.Val.SetInf(b.Val.Sign() < 0) |
| return |
| } |
| a.Val.SetInt(&b.Val) |
| } |
| |
| func (a *Mpflt) Set(b *Mpflt) { |
| a.Val.Set(&b.Val) |
| } |
| |
| func (a *Mpflt) Add(b *Mpflt) { |
| if Mpdebug { |
| fmt.Printf("\n%v + %v", a, b) |
| } |
| |
| a.Val.Add(&a.Val, &b.Val) |
| |
| if Mpdebug { |
| fmt.Printf(" = %v\n\n", a) |
| } |
| } |
| |
| func (a *Mpflt) AddFloat64(c float64) { |
| var b Mpflt |
| |
| b.SetFloat64(c) |
| a.Add(&b) |
| } |
| |
| func (a *Mpflt) Sub(b *Mpflt) { |
| if Mpdebug { |
| fmt.Printf("\n%v - %v", a, b) |
| } |
| |
| a.Val.Sub(&a.Val, &b.Val) |
| |
| if Mpdebug { |
| fmt.Printf(" = %v\n\n", a) |
| } |
| } |
| |
| func (a *Mpflt) Mul(b *Mpflt) { |
| if Mpdebug { |
| fmt.Printf("%v\n * %v\n", a, b) |
| } |
| |
| a.Val.Mul(&a.Val, &b.Val) |
| |
| if Mpdebug { |
| fmt.Printf(" = %v\n\n", a) |
| } |
| } |
| |
| func (a *Mpflt) MulFloat64(c float64) { |
| var b Mpflt |
| |
| b.SetFloat64(c) |
| a.Mul(&b) |
| } |
| |
| func (a *Mpflt) Quo(b *Mpflt) { |
| if Mpdebug { |
| fmt.Printf("%v\n / %v\n", a, b) |
| } |
| |
| a.Val.Quo(&a.Val, &b.Val) |
| |
| if Mpdebug { |
| fmt.Printf(" = %v\n\n", a) |
| } |
| } |
| |
| func (a *Mpflt) Cmp(b *Mpflt) int { |
| return a.Val.Cmp(&b.Val) |
| } |
| |
| func (a *Mpflt) CmpFloat64(c float64) int { |
| if c == 0 { |
| return a.Val.Sign() // common case shortcut |
| } |
| return a.Val.Cmp(big.NewFloat(c)) |
| } |
| |
| func (a *Mpflt) Float64() float64 { |
| x, _ := a.Val.Float64() |
| |
| // check for overflow |
| if math.IsInf(x, 0) && nsavederrors+nerrors == 0 { |
| yyerror("ovf in Mpflt Float64") |
| } |
| |
| return x + 0 // avoid -0 (should not be needed, but be conservative) |
| } |
| |
| func (a *Mpflt) Float32() float64 { |
| x32, _ := a.Val.Float32() |
| x := float64(x32) |
| |
| // check for overflow |
| if math.IsInf(x, 0) && nsavederrors+nerrors == 0 { |
| yyerror("ovf in Mpflt Float32") |
| } |
| |
| return x + 0 // avoid -0 (should not be needed, but be conservative) |
| } |
| |
| func (a *Mpflt) SetFloat64(c float64) { |
| if Mpdebug { |
| fmt.Printf("\nconst %g", c) |
| } |
| |
| // convert -0 to 0 |
| if c == 0 { |
| c = 0 |
| } |
| a.Val.SetFloat64(c) |
| |
| if Mpdebug { |
| fmt.Printf(" = %v\n", a) |
| } |
| } |
| |
| func (a *Mpflt) Neg() { |
| // avoid -0 |
| if a.Val.Sign() != 0 { |
| a.Val.Neg(&a.Val) |
| } |
| } |
| |
| // |
| // floating point input |
| // required syntax is [+-]d*[.]d*[e[+-]d*] or [+-]0xH*[e[+-]d*] |
| // |
| func (a *Mpflt) SetString(as string) { |
| for len(as) > 0 && (as[0] == ' ' || as[0] == '\t') { |
| as = as[1:] |
| } |
| |
| f, ok := a.Val.SetString(as) |
| if !ok { |
| // At the moment we lose precise error cause; |
| // the old code additionally distinguished between: |
| // - malformed hex constant |
| // - decimal point in hex constant |
| // - constant exponent out of range |
| // - decimal point and binary point in constant |
| // TODO(gri) use different conversion function or check separately |
| yyerror("malformed constant: %s", as) |
| a.Val.SetFloat64(0) |
| return |
| } |
| |
| if f.IsInf() { |
| yyerror("constant too large: %s", as) |
| a.Val.SetFloat64(0) |
| return |
| } |
| |
| // -0 becomes 0 |
| if f.Sign() == 0 && f.Signbit() { |
| a.Val.SetFloat64(0) |
| } |
| } |
| |
| func (f *Mpflt) String() string { |
| return fconv(f, 0) |
| } |
| |
| func fconv(fvp *Mpflt, flag FmtFlag) string { |
| if flag&FmtSharp == 0 { |
| return fvp.Val.Text('b', 0) |
| } |
| |
| // use decimal format for error messages |
| |
| // determine sign |
| f := &fvp.Val |
| var sign string |
| if f.Sign() < 0 { |
| sign = "-" |
| f = new(big.Float).Abs(f) |
| } else if flag&FmtSign != 0 { |
| sign = "+" |
| } |
| |
| // Don't try to convert infinities (will not terminate). |
| if f.IsInf() { |
| return sign + "Inf" |
| } |
| |
| // Use exact fmt formatting if in float64 range (common case): |
| // proceed if f doesn't underflow to 0 or overflow to inf. |
| if x, _ := f.Float64(); f.Sign() == 0 == (x == 0) && !math.IsInf(x, 0) { |
| return fmt.Sprintf("%s%.6g", sign, x) |
| } |
| |
| // Out of float64 range. Do approximate manual to decimal |
| // conversion to avoid precise but possibly slow Float |
| // formatting. |
| // f = mant * 2**exp |
| var mant big.Float |
| exp := f.MantExp(&mant) // 0.5 <= mant < 1.0 |
| |
| // approximate float64 mantissa m and decimal exponent d |
| // f ~ m * 10**d |
| m, _ := mant.Float64() // 0.5 <= m < 1.0 |
| d := float64(exp) * (math.Ln2 / math.Ln10) // log_10(2) |
| |
| // adjust m for truncated (integer) decimal exponent e |
| e := int64(d) |
| m *= math.Pow(10, d-float64(e)) |
| |
| // ensure 1 <= m < 10 |
| switch { |
| case m < 1-0.5e-6: |
| // The %.6g format below rounds m to 5 digits after the |
| // decimal point. Make sure that m*10 < 10 even after |
| // rounding up: m*10 + 0.5e-5 < 10 => m < 1 - 0.5e6. |
| m *= 10 |
| e-- |
| case m >= 10: |
| m /= 10 |
| e++ |
| } |
| |
| return fmt.Sprintf("%s%.6ge%+d", sign, m, e) |
| } |