| <!-- title The Go Programming Language Specification --> |
| <!-- subtitle Version of July 14, 2010 --> |
| |
| <!-- |
| TODO |
| [ ] need language about function/method calls and parameter passing rules |
| [ ] last paragraph of #Assignments (constant promotion) should be elsewhere |
| and mention assignment to empty interface. |
| [ ] need to say something about "scope" of selectors? |
| [ ] clarify what a field name is in struct declarations |
| (struct{T} vs struct {T T} vs struct {t T}) |
| [ ] need explicit language about the result type of operations |
| [ ] may want to have some examples for the types of shift operations |
| [ ] should string(1<<s) and float(1<<s) be valid? |
| [ ] should probably write something about evaluation order of statements even |
| though obvious |
| [ ] specify iteration direction for range clause |
| [ ] review language on implicit dereferencing |
| [ ] clarify what it means for two functions to be "the same" when comparing them |
| --> |
| |
| |
| <h2 id="Introduction">Introduction</h2> |
| |
| <p> |
| This is a reference manual for the Go programming language. For |
| more information and other documents, see <a href="http://golang.org/">http://golang.org</a>. |
| </p> |
| |
| <p> |
| Go is a general-purpose language designed with systems programming |
| in mind. It is strongly typed and garbage-collected and has explicit |
| support for concurrent programming. Programs are constructed from |
| <i>packages</i>, whose properties allow efficient management of |
| dependencies. The existing implementations use a traditional |
| compile/link model to generate executable binaries. |
| </p> |
| |
| <p> |
| The grammar is compact and regular, allowing for easy analysis by |
| automatic tools such as integrated development environments. |
| </p> |
| |
| <h2 id="Notation">Notation</h2> |
| <p> |
| The syntax is specified using Extended Backus-Naur Form (EBNF): |
| </p> |
| |
| <pre class="grammar"> |
| Production = production_name "=" Expression "." . |
| Expression = Alternative { "|" Alternative } . |
| Alternative = Term { Term } . |
| Term = production_name | token [ "..." token ] | Group | Option | Repetition . |
| Group = "(" Expression ")" . |
| Option = "[" Expression "]" . |
| Repetition = "{" Expression "}" . |
| </pre> |
| |
| <p> |
| Productions are expressions constructed from terms and the following |
| operators, in increasing precedence: |
| </p> |
| <pre class="grammar"> |
| | alternation |
| () grouping |
| [] option (0 or 1 times) |
| {} repetition (0 to n times) |
| </pre> |
| |
| <p> |
| Lower-case production names are used to identify lexical tokens. |
| Non-terminals are in CamelCase. Lexical symbols are enclosed in |
| double quotes <code>""</code> or back quotes <code>``</code>. |
| </p> |
| |
| <p> |
| The form <code>a ... b</code> represents the set of characters from |
| <code>a</code> through <code>b</code> as alternatives. |
| </p> |
| |
| <h2 id="Source_code_representation">Source code representation</h2> |
| |
| <p> |
| Source code is Unicode text encoded in |
| <a href="http://en.wikipedia.org/wiki/UTF-8">UTF-8</a>. The text is not |
| canonicalized, so a single accented code point is distinct from the |
| same character constructed from combining an accent and a letter; |
| those are treated as two code points. For simplicity, this document |
| will use the term <i>character</i> to refer to a Unicode code point. |
| </p> |
| <p> |
| Each code point is distinct; for instance, upper and lower case letters |
| are different characters. |
| </p> |
| <p> |
| Implementation restriction: For compatibility with other tools, a |
| compiler may disallow the NUL character (U+0000) in the source text. |
| </p> |
| |
| <h3 id="Characters">Characters</h3> |
| |
| <p> |
| The following terms are used to denote specific Unicode character classes: |
| </p> |
| <pre class="ebnf"> |
| unicode_char = /* an arbitrary Unicode code point */ . |
| unicode_letter = /* a Unicode code point classified as "Letter" */ . |
| unicode_digit = /* a Unicode code point classified as "Digit" */ . |
| </pre> |
| |
| <p> |
| In <a href="http://www.unicode.org/versions/Unicode5.2.0/">The Unicode Standard 5.2</a>, |
| Section 4.5 General Category-Normative |
| defines a set of character categories. Go treats |
| those characters in category Lu, Ll, Lt, Lm, or Lo as Unicode letters, |
| and those in category Nd as Unicode digits. |
| </p> |
| |
| <h3 id="Letters_and_digits">Letters and digits</h3> |
| |
| <p> |
| The underscore character <code>_</code> (U+005F) is considered a letter. |
| </p> |
| <pre class="ebnf"> |
| letter = unicode_letter | "_" . |
| decimal_digit = "0" ... "9" . |
| octal_digit = "0" ... "7" . |
| hex_digit = "0" ... "9" | "A" ... "F" | "a" ... "f" . |
| </pre> |
| |
| <h2 id="Lexical_elements">Lexical elements</h2> |
| |
| <h3 id="Comments">Comments</h3> |
| |
| <p> |
| There are two forms of comments: |
| </p> |
| |
| <ol> |
| <li> |
| <i>Line comments</i> start with the character sequence <code>//</code> |
| and continue through the next newline. A line comment acts like a newline. |
| </li> |
| <li> |
| <i>General comments</i> start with the character sequence <code>/*</code> |
| and continue through the character sequence <code>*/</code>. A general |
| comment that spans multiple lines acts like a newline, otherwise it acts |
| like a space. |
| </li> |
| </ol> |
| |
| <p> |
| Comments do not nest. |
| </p> |
| |
| |
| <h3 id="Tokens">Tokens</h3> |
| |
| <p> |
| Tokens form the vocabulary of the Go language. |
| There are four classes: <i>identifiers</i>, <i>keywords</i>, <i>operators |
| and delimiters</i>, and <i>literals</i>. <i>White space</i>, formed from |
| spaces (U+0020), horizontal tabs (U+0009), |
| carriage returns (U+000D), and newlines (U+000A), |
| is ignored except as it separates tokens |
| that would otherwise combine into a single token. Also, a newline |
| may trigger the insertion of a <a href="#Semicolons">semicolon</a>. |
| While breaking the input into tokens, |
| the next token is the longest sequence of characters that form a |
| valid token. |
| </p> |
| |
| <h3 id="Semicolons">Semicolons</h3> |
| |
| <p> |
| The formal grammar uses semicolons <code>";"</code> as terminators in |
| a number of productions. Go programs may omit most of these semicolons |
| using the following two rules: |
| </p> |
| |
| <ol> |
| <li> |
| <p> |
| When the input is broken into tokens, a semicolon is automatically inserted |
| into the token stream at the end of a non-blank line if the line's final |
| token is |
| </p> |
| <ul> |
| <li>an |
| <a href="#Identifiers">identifier</a> |
| </li> |
| |
| <li>an |
| <a href="#Integer_literals">integer</a>, |
| <a href="#Floating-point_literals">floating-point</a>, |
| <a href="#Imaginary_literals">imaginary</a>, |
| <a href="#Character_literals">character</a>, or |
| <a href="#String_literals">string</a> literal |
| </li> |
| |
| <li>one of the <a href="#Keywords">keywords</a> |
| <code>break</code>, |
| <code>continue</code>, |
| <code>fallthrough</code>, or |
| <code>return</code> |
| </li> |
| |
| <li>one of the <a href="#Operators_and_Delimiters">operators and delimiters</a> |
| <code>++</code>, |
| <code>--</code>, |
| <code>)</code>, |
| <code>]</code>, or |
| <code>}</code> |
| </li> |
| </ul> |
| </li> |
| |
| <li> |
| To allow complex statements to occupy a single line, a semicolon |
| may be omitted before a closing <code>")"</code> or <code>"}"</code>. |
| </li> |
| </ol> |
| |
| <p> |
| To reflect idiomatic use, code examples in this document elide semicolons |
| using these rules. |
| </p> |
| |
| |
| <h3 id="Identifiers">Identifiers</h3> |
| |
| <p> |
| Identifiers name program entities such as variables and types. |
| An identifier is a sequence of one or more letters and digits. |
| The first character in an identifier must be a letter. |
| </p> |
| <pre class="ebnf"> |
| identifier = letter { letter | unicode_digit } . |
| </pre> |
| <pre> |
| a |
| _x9 |
| ThisVariableIsExported |
| αβ |
| </pre> |
| |
| <p> |
| Some identifiers are <a href="#Predeclared_identifiers">predeclared</a>. |
| </p> |
| |
| |
| <h3 id="Keywords">Keywords</h3> |
| |
| <p> |
| The following keywords are reserved and may not be used as identifiers. |
| </p> |
| <pre class="grammar"> |
| break default func interface select |
| case defer go map struct |
| chan else goto package switch |
| const fallthrough if range type |
| continue for import return var |
| </pre> |
| |
| <h3 id="Operators_and_Delimiters">Operators and Delimiters</h3> |
| |
| <p> |
| The following character sequences represent <a href="#Operators">operators</a>, delimiters, and other special tokens: |
| </p> |
| <pre class="grammar"> |
| + & += &= && == != ( ) |
| - | -= |= || < <= [ ] |
| * ^ *= ^= <- > >= { } |
| / << /= <<= ++ = := , ; |
| % >> %= >>= -- ! ... . : |
| &^ &^= |
| </pre> |
| |
| <h3 id="Integer_literals">Integer literals</h3> |
| |
| <p> |
| An integer literal is a sequence of digits representing an |
| <a href="#Constants">integer constant</a>. |
| An optional prefix sets a non-decimal base: <code>0</code> for octal, <code>0x</code> or |
| <code>0X</code> for hexadecimal. In hexadecimal literals, letters |
| <code>a-f</code> and <code>A-F</code> represent values 10 through 15. |
| </p> |
| <pre class="ebnf"> |
| int_lit = decimal_lit | octal_lit | hex_lit . |
| decimal_lit = ( "1" ... "9" ) { decimal_digit } . |
| octal_lit = "0" { octal_digit } . |
| hex_lit = "0" ( "x" | "X" ) hex_digit { hex_digit } . |
| </pre> |
| |
| <pre> |
| 42 |
| 0600 |
| 0xBadFace |
| 170141183460469231731687303715884105727 |
| </pre> |
| |
| <h3 id="Floating-point_literals">Floating-point literals</h3> |
| <p> |
| A floating-point literal is a decimal representation of a |
| <a href="#Constants">floating-point constant</a>. |
| It has an integer part, a decimal point, a fractional part, |
| and an exponent part. The integer and fractional part comprise |
| decimal digits; the exponent part is an <code>e</code> or <code>E</code> |
| followed by an optionally signed decimal exponent. One of the |
| integer part or the fractional part may be elided; one of the decimal |
| point or the exponent may be elided. |
| </p> |
| <pre class="ebnf"> |
| float_lit = decimals "." [ decimals ] [ exponent ] | |
| decimals exponent | |
| "." decimals [ exponent ] . |
| decimals = decimal_digit { decimal_digit } . |
| exponent = ( "e" | "E" ) [ "+" | "-" ] decimals . |
| </pre> |
| |
| <pre> |
| 0. |
| 72.40 |
| 072.40 // == 72.40 |
| 2.71828 |
| 1.e+0 |
| 6.67428e-11 |
| 1E6 |
| .25 |
| .12345E+5 |
| </pre> |
| |
| <h3 id="Imaginary_literals">Imaginary literals</h3> |
| <p> |
| An imaginary literal is a decimal representation of the imaginary part of a |
| <a href="#Constants">complex constant</a>. |
| It consists of a |
| <a href="#Floating-point_literals">floating-point literal</a> |
| or decimal integer followed |
| by the lower-case letter <code>i</code>. |
| </p> |
| <pre class="ebnf"> |
| imaginary_lit = (decimals | float_lit) "i" . |
| </pre> |
| |
| <pre> |
| 0i |
| 011i // == 11i |
| 0.i |
| 2.71828i |
| 1.e+0i |
| 6.67428e-11i |
| 1E6i |
| .25i |
| .12345E+5i |
| </pre> |
| |
| |
| <h3 id="Character_literals">Character literals</h3> |
| |
| <p> |
| A character literal represents an <a href="#Constants">integer constant</a>, |
| typically a Unicode code point, as one or more characters enclosed in single |
| quotes. Within the quotes, any character may appear except single |
| quote and newline. A single quoted character represents itself, |
| while multi-character sequences beginning with a backslash encode |
| values in various formats. |
| </p> |
| <p> |
| The simplest form represents the single character within the quotes; |
| since Go source text is Unicode characters encoded in UTF-8, multiple |
| UTF-8-encoded bytes may represent a single integer value. For |
| instance, the literal <code>'a'</code> holds a single byte representing |
| a literal <code>a</code>, Unicode U+0061, value <code>0x61</code>, while |
| <code>'ä'</code> holds two bytes (<code>0xc3</code> <code>0xa4</code>) representing |
| a literal <code>a</code>-dieresis, U+00E4, value <code>0xe4</code>. |
| </p> |
| <p> |
| Several backslash escapes allow arbitrary values to be represented |
| as ASCII text. There are four ways to represent the integer value |
| as a numeric constant: <code>\x</code> followed by exactly two hexadecimal |
| digits; <code>\u</code> followed by exactly four hexadecimal digits; |
| <code>\U</code> followed by exactly eight hexadecimal digits, and a |
| plain backslash <code>\</code> followed by exactly three octal digits. |
| In each case the value of the literal is the value represented by |
| the digits in the corresponding base. |
| </p> |
| <p> |
| Although these representations all result in an integer, they have |
| different valid ranges. Octal escapes must represent a value between |
| 0 and 255 inclusive. Hexadecimal escapes satisfy this condition |
| by construction. The escapes <code>\u</code> and <code>\U</code> |
| represent Unicode code points so within them some values are illegal, |
| in particular those above <code>0x10FFFF</code> and surrogate halves. |
| </p> |
| <p> |
| After a backslash, certain single-character escapes represent special values: |
| </p> |
| <pre class="grammar"> |
| \a U+0007 alert or bell |
| \b U+0008 backspace |
| \f U+000C form feed |
| \n U+000A line feed or newline |
| \r U+000D carriage return |
| \t U+0009 horizontal tab |
| \v U+000b vertical tab |
| \\ U+005c backslash |
| \' U+0027 single quote (valid escape only within character literals) |
| \" U+0022 double quote (valid escape only within string literals) |
| </pre> |
| <p> |
| All other sequences starting with a backslash are illegal inside character literals. |
| </p> |
| <pre class="ebnf"> |
| char_lit = "'" ( unicode_value | byte_value ) "'" . |
| unicode_value = unicode_char | little_u_value | big_u_value | escaped_char . |
| byte_value = octal_byte_value | hex_byte_value . |
| octal_byte_value = `\` octal_digit octal_digit octal_digit . |
| hex_byte_value = `\` "x" hex_digit hex_digit . |
| little_u_value = `\` "u" hex_digit hex_digit hex_digit hex_digit . |
| big_u_value = `\` "U" hex_digit hex_digit hex_digit hex_digit |
| hex_digit hex_digit hex_digit hex_digit . |
| escaped_char = `\` ( "a" | "b" | "f" | "n" | "r" | "t" | "v" | `\` | "'" | `"` ) . |
| </pre> |
| |
| <pre> |
| 'a' |
| 'ä' |
| '本' |
| '\t' |
| '\000' |
| '\007' |
| '\377' |
| '\x07' |
| '\xff' |
| '\u12e4' |
| '\U00101234' |
| </pre> |
| |
| |
| <h3 id="String_literals">String literals</h3> |
| |
| <p> |
| A string literal represents a <a href="#Constants">string constant</a> |
| obtained from concatenating a sequence of characters. There are two forms: |
| raw string literals and interpreted string literals. |
| </p> |
| <p> |
| Raw string literals are character sequences between back quotes |
| <code>``</code>. Within the quotes, any character is legal except |
| back quote. The value of a raw string literal is the |
| string composed of the uninterpreted characters between the quotes; |
| in particular, backslashes have no special meaning and the string may |
| span multiple lines. |
| </p> |
| <p> |
| Interpreted string literals are character sequences between double |
| quotes <code>""</code>. The text between the quotes, |
| which may not span multiple lines, forms the |
| value of the literal, with backslash escapes interpreted as they |
| are in character literals (except that <code>\'</code> is illegal and |
| <code>\"</code> is legal). The three-digit octal (<code>\</code><i>nnn</i>) |
| and two-digit hexadecimal (<code>\x</code><i>nn</i>) escapes represent individual |
| <i>bytes</i> of the resulting string; all other escapes represent |
| the (possibly multi-byte) UTF-8 encoding of individual <i>characters</i>. |
| Thus inside a string literal <code>\377</code> and <code>\xFF</code> represent |
| a single byte of value <code>0xFF</code>=255, while <code>ÿ</code>, |
| <code>\u00FF</code>, <code>\U000000FF</code> and <code>\xc3\xbf</code> represent |
| the two bytes <code>0xc3</code> <code>0xbf</code> of the UTF-8 encoding of character |
| U+00FF. |
| </p> |
| |
| <pre class="ebnf"> |
| string_lit = raw_string_lit | interpreted_string_lit . |
| raw_string_lit = "`" { unicode_char } "`" . |
| interpreted_string_lit = `"` { unicode_value | byte_value } `"` . |
| </pre> |
| |
| <pre> |
| `abc` // same as "abc" |
| `\n |
| \n` // same as "\\n\n\\n" |
| "\n" |
| "" |
| "Hello, world!\n" |
| "日本語" |
| "\u65e5本\U00008a9e" |
| "\xff\u00FF" |
| </pre> |
| |
| <p> |
| These examples all represent the same string: |
| </p> |
| |
| <pre> |
| "日本語" // UTF-8 input text |
| `日本語` // UTF-8 input text as a raw literal |
| "\u65e5\u672c\u8a9e" // The explicit Unicode code points |
| "\U000065e5\U0000672c\U00008a9e" // The explicit Unicode code points |
| "\xe6\x97\xa5\xe6\x9c\xac\xe8\xaa\x9e" // The explicit UTF-8 bytes |
| </pre> |
| |
| <p> |
| If the source code represents a character as two code points, such as |
| a combining form involving an accent and a letter, the result will be |
| an error if placed in a character literal (it is not a single code |
| point), and will appear as two code points if placed in a string |
| literal. |
| </p> |
| |
| |
| <h2 id="Constants">Constants</h2> |
| |
| <p>There are <i>boolean constants</i>, <i>integer constants</i>, |
| <i>floating-point constants</i>, <i>complex constants</i>, |
| and <i>string constants</i>. Integer, floating-point, |
| and complex constants are |
| collectively called <i>numeric constants</i>. |
| </p> |
| |
| <p> |
| A constant value is represented by an |
| <a href="#Integer_literals">integer</a>, |
| <a href="#Floating-point_literals">floating-point</a>, |
| <a href="#Imaginary_literals">imaginary</a>, |
| <a href="#Character_literals">character</a>, or |
| <a href="#String_literals">string</a> literal, |
| an identifier denoting a constant, |
| a <a href="#Constant_expressions">constant expression</a>, or |
| the result value of some built-in functions such as |
| <code>unsafe.Sizeof</code> applied to any value, |
| <code>cap</code> or <code>len</code> applied to |
| <a href="#Length_and_capacity">some expressions</a>, |
| <code>real</code> and <code>imag</code> applied to a complex constant |
| and <code>cmplx</code> applied to numeric constants. |
| The boolean truth values are represented by the predeclared constants |
| <code>true</code> and <code>false</code>. The predeclared identifier |
| <a href="#Iota">iota</a> denotes an integer constant. |
| </p> |
| |
| <p> |
| In general, complex constants are a form of |
| <a href="#Constant_expressions">constant expression</a> |
| and are discussed in that section. |
| </p> |
| |
| <p> |
| Numeric constants represent values of arbitrary precision and do not overflow. |
| </p> |
| |
| <p> |
| Constants may be <a href="#Types">typed</a> or untyped. |
| Literal constants, <code>true</code>, <code>false</code>, <code>iota</code>, |
| and certain <a href="#Constant_expressions">constant expressions</a> |
| containing only untyped constant operands are untyped. |
| </p> |
| |
| <p> |
| A constant may be given a type explicitly by a <a href="#Constant_declarations">constant declaration</a> |
| or <a href="#Conversions">conversion</a>, or implicitly when used in a |
| <a href="#Variable_declarations">variable declaration</a> or an |
| <a href="#Assignments">assignment</a> or as an |
| operand in an <a href="#Expressions">expression</a>. |
| It is an error if the constant value |
| cannot be accurately represented as a value of the respective type. |
| For instance, <code>3.0</code> can be given any integer or any |
| floating-point type, while <code>2147483648.0</code> (equal to <code>1<<31</code>) |
| can be given the types <code>float32</code>, <code>float64</code>, or <code>uint32</code> but |
| not <code>int32</code> or <code>string</code>. |
| </p> |
| |
| <p> |
| There are no constants denoting the IEEE-754 infinity and not-a-number values, |
| but the <a href="/pkg/math/"><code>math</code> package</a>'s |
| <a href="/pkg/math/#Inf">Inf</a>, |
| <a href="/pkg/math/#NaN">NaN</a>, |
| <a href="/pkg/math/#IsInf">IsInf</a>, and |
| <a href="/pkg/math/#IsNaN">IsNaN</a> |
| functions return and test for those values at run time. |
| </p> |
| |
| <p> |
| Implementation restriction: A compiler may implement numeric constants by choosing |
| an internal representation with at least twice as many bits as any machine type; |
| for floating-point values, both the mantissa and exponent must be twice as large. |
| </p> |
| |
| |
| <h2 id="Types">Types</h2> |
| |
| <p> |
| A type determines the set of values and operations specific to values of that |
| type. A type may be specified by a (possibly qualified) <i>type name</i> |
| (§<a href="#Qualified_identifier">Qualified identifier</a>, §<a href="#Type_declarations">Type declarations</a>) or a <i>type literal</i>, |
| which composes a new type from previously declared types. |
| </p> |
| |
| <pre class="ebnf"> |
| Type = TypeName | TypeLit | "(" Type ")" . |
| TypeName = QualifiedIdent. |
| TypeLit = ArrayType | StructType | PointerType | FunctionType | InterfaceType | |
| SliceType | MapType | ChannelType . |
| </pre> |
| |
| <p> |
| Named instances of the boolean, numeric, and string types are |
| <a href="#Predeclared_identifiers">predeclared</a>. |
| <i>Composite types</i>—array, struct, pointer, function, |
| interface, slice, map, and channel types—may be constructed using |
| type literals. |
| </p> |
| |
| <p> |
| Each type <code>T</code> has an <i>underlying type</i>: If <code>T</code> |
| is a predeclared type or a type literal, the corresponding underlying |
| type is <code>T</code> itself. Otherwise, <code>T</code>'s underlying type |
| is the underlying type of the type to which <code>T</code> refers in its |
| <a href="#Type_declarations">type declaration</a>. |
| </p> |
| |
| <pre> |
| type T1 string |
| type T2 T1 |
| type T3 []T1 |
| type T4 T3 |
| </pre> |
| |
| <p> |
| The underlying type of <code>string</code>, <code>T1</code>, and <code>T2</code> |
| is <code>string</code>. The underlying type of <code>[]T1</code>, <code>T3</code>, |
| and <code>T4</code> is <code>[]T1</code>. |
| </p> |
| |
| <p> |
| A type may have a <i>method set</i> associated with it |
| (§<a href="#Interface_types">Interface types</a>, §<a href="#Method_declarations">Method declarations</a>). |
| The method set of an <a href="#Interface_types">interface type</a> is its interface. |
| The method set of any other named type <code>T</code> |
| consists of all methods with receiver type <code>T</code>. |
| The method set of the corresponding pointer type <code>*T</code> |
| is the set of all methods with receiver <code>*T</code> or <code>T</code> |
| (that is, it also contains the method set of <code>T</code>). |
| Any other type has an empty method set. |
| In a method set, each method must have a unique name. |
| </p> |
| <p> |
| The <i>static type</i> (or just <i>type</i>) of a variable is the |
| type defined by its declaration. Variables of interface type |
| also have a distinct <i>dynamic type</i>, which |
| is the actual type of the value stored in the variable at run-time. |
| The dynamic type may vary during execution but is always |
| <a href="#Assignability">assignable</a> |
| to the static type of the interface variable. For non-interface |
| types, the dynamic type is always the static type. |
| </p> |
| |
| |
| <h3 id="Boolean_types">Boolean types</h3> |
| |
| A <i>boolean type</i> represents the set of Boolean truth values |
| denoted by the predeclared constants <code>true</code> |
| and <code>false</code>. The predeclared boolean type is <code>bool</code>. |
| |
| |
| <h3 id="Numeric_types">Numeric types</h3> |
| |
| <p> |
| A <i>numeric type</i> represents sets of integer or floating-point values. |
| The predeclared architecture-independent numeric types are: |
| </p> |
| |
| <pre class="grammar"> |
| uint8 the set of all unsigned 8-bit integers (0 to 255) |
| uint16 the set of all unsigned 16-bit integers (0 to 65535) |
| uint32 the set of all unsigned 32-bit integers (0 to 4294967295) |
| uint64 the set of all unsigned 64-bit integers (0 to 18446744073709551615) |
| |
| int8 the set of all signed 8-bit integers (-128 to 127) |
| int16 the set of all signed 16-bit integers (-32768 to 32767) |
| int32 the set of all signed 32-bit integers (-2147483648 to 2147483647) |
| int64 the set of all signed 64-bit integers (-9223372036854775808 to 9223372036854775807) |
| |
| float32 the set of all IEEE-754 32-bit floating-point numbers |
| float64 the set of all IEEE-754 64-bit floating-point numbers |
| |
| complex64 the set of all complex numbers with float32 real and imaginary parts |
| complex128 the set of all complex numbers with float64 real and imaginary parts |
| |
| byte familiar alias for uint8 |
| </pre> |
| |
| <p> |
| The value of an <i>n</i>-bit integer is <i>n</i> bits wide and represented using |
| <a href="http://en.wikipedia.org/wiki/Two's_complement">two's complement arithmetic</a>. |
| </p> |
| |
| <p> |
| There is also a set of predeclared numeric types with implementation-specific sizes: |
| </p> |
| |
| <pre class="grammar"> |
| uint either 32 or 64 bits |
| int either 32 or 64 bits |
| float either 32 or 64 bits |
| complex real and imaginary parts have type float |
| uintptr an unsigned integer large enough to store the uninterpreted bits of a pointer value |
| </pre> |
| |
| <p> |
| To avoid portability issues all numeric types are distinct except |
| <code>byte</code>, which is an alias for <code>uint8</code>. |
| Conversions |
| are required when different numeric types are mixed in an expression |
| or assignment. For instance, <code>int32</code> and <code>int</code> |
| are not the same type even though they may have the same size on a |
| particular architecture. |
| |
| |
| <h3 id="String_types">String types</h3> |
| |
| <p> |
| A <i>string type</i> represents the set of string values. |
| Strings behave like arrays of bytes but are immutable: once created, |
| it is impossible to change the contents of a string. |
| The predeclared string type is <code>string</code>. |
| |
| <p> |
| The elements of strings have type <code>byte</code> and may be |
| accessed using the usual <a href="#Indexes">indexing operations</a>. It is |
| illegal to take the address of such an element; if |
| <code>s[i]</code> is the <i>i</i>th byte of a |
| string, <code>&s[i]</code> is invalid. The length of string |
| <code>s</code> can be discovered using the built-in function |
| <code>len</code>. The length is a compile-time constant if <code>s</code> |
| is a string literal. |
| </p> |
| |
| |
| <h3 id="Array_types">Array types</h3> |
| |
| <p> |
| An array is a numbered sequence of elements of a single |
| type, called the element type. |
| The number of elements is called the length and is never |
| negative. |
| </p> |
| |
| <pre class="ebnf"> |
| ArrayType = "[" ArrayLength "]" ElementType . |
| ArrayLength = Expression . |
| ElementType = Type . |
| </pre> |
| |
| <p> |
| The length is part of the array's type and must be a |
| <a href="#Constant_expressions">constant expression</a> that evaluates to a non-negative |
| integer value. The length of array <code>a</code> can be discovered |
| using the built-in function <a href="#Length_and_capacity"><code>len(a)</code></a>. |
| The elements can be indexed by integer |
| indices 0 through the <code>len(a)-1</code> (§<a href="#Indexes">Indexes</a>). |
| Array types are always one-dimensional but may be composed to form |
| multi-dimensional types. |
| </p> |
| |
| <pre> |
| [32]byte |
| [2*N] struct { x, y int32 } |
| [1000]*float64 |
| [3][5]int |
| [2][2][2]float64 // same as [2]([2]([2]float64)) |
| </pre> |
| |
| <h3 id="Slice_types">Slice types</h3> |
| |
| <p> |
| A slice is a reference to a contiguous segment of an array and |
| contains a numbered sequence of elements from that array. A slice |
| type denotes the set of all slices of arrays of its element type. |
| The value of an uninitialized slice is <code>nil</code>. |
| </p> |
| |
| <pre class="ebnf"> |
| SliceType = "[" "]" ElementType . |
| </pre> |
| |
| <p> |
| Like arrays, slices are indexable and have a length. The length of a |
| slice <code>s</code> can be discovered by the built-in function |
| <a href="#Length_and_capacity"><code>len(s)</code></a>; unlike with arrays it may change during |
| execution. The elements can be addressed by integer indices 0 |
| through <code>len(s)-1</code> (§<a href="#Indexes">Indexes</a>). The slice index of a |
| given element may be less than the index of the same element in the |
| underlying array. |
| </p> |
| <p> |
| A slice, once initialized, is always associated with an underlying |
| array that holds its elements. A slice therefore shares storage |
| with its array and with other slices of the same array; by contrast, |
| distinct arrays always represent distinct storage. |
| </p> |
| <p> |
| The array underlying a slice may extend past the end of the slice. |
| The <i>capacity</i> is a measure of that extent: it is the sum of |
| the length of the slice and the length of the array beyond the slice; |
| a slice of length up to that capacity can be created by `slicing' a new |
| one from the original slice (§<a href="#Slices">Slices</a>). |
| The capacity of a slice <code>a</code> can be discovered using the |
| built-in function <a href="#Length_and_capacity"><code>cap(a)</code></a>. |
| </p> |
| |
| <p> |
| A new, initialized slice value for a given element type <code>T</code> is |
| made using the built-in function |
| <a href="#Making_slices_maps_and_channels"><code>make</code></a>, |
| which takes a slice type |
| and parameters specifying the length and optionally the capacity: |
| </p> |
| |
| <pre> |
| make([]T, length) |
| make([]T, length, capacity) |
| </pre> |
| |
| <p> |
| The <code>make()</code> call allocates a new, hidden array to which the returned |
| slice value refers. That is, executing |
| </p> |
| |
| <pre> |
| make([]T, length, capacity) |
| </pre> |
| |
| <p> |
| produces the same slice as allocating an array and slicing it, so these two examples |
| result in the same slice: |
| </p> |
| |
| <pre> |
| make([]int, 50, 100) |
| new([100]int)[0:50] |
| </pre> |
| |
| <p> |
| Like arrays, slices are always one-dimensional but may be composed to construct |
| higher-dimensional objects. |
| With arrays of arrays, the inner arrays are, by construction, always the same length; |
| however with slices of slices (or arrays of slices), the lengths may vary dynamically. |
| Moreover, the inner slices must be allocated individually (with <code>make</code>). |
| </p> |
| |
| <h3 id="Struct_types">Struct types</h3> |
| |
| <p> |
| A struct is a sequence of named elements, called fields, each of which has a |
| name and a type. Field names may be specified explicitly (IdentifierList) or |
| implicitly (AnonymousField). |
| Within a struct, non-<a href="#Blank_identifier">blank</a> field names must |
| be unique. |
| </p> |
| |
| <pre class="ebnf"> |
| StructType = "struct" "{" { FieldDecl ";" } "}" . |
| FieldDecl = (IdentifierList Type | AnonymousField) [ Tag ] . |
| AnonymousField = [ "*" ] TypeName . |
| Tag = string_lit . |
| </pre> |
| |
| <pre> |
| // An empty struct. |
| struct {} |
| |
| // A struct with 6 fields. |
| struct { |
| x, y int |
| u float |
| _ float // padding |
| A *[]int |
| F func() |
| } |
| </pre> |
| |
| <p> |
| A field declared with a type but no explicit field name is an <i>anonymous field</i>. |
| Such a field type must be specified as |
| a type name <code>T</code> or as a pointer to a type name <code>*T</code>, |
| and <code>T</code> itself may not be |
| a pointer type. The unqualified type name acts as the field name. |
| </p> |
| |
| <pre> |
| // A struct with four anonymous fields of type T1, *T2, P.T3 and *P.T4 |
| struct { |
| T1 // field name is T1 |
| *T2 // field name is T2 |
| P.T3 // field name is T3 |
| *P.T4 // field name is T4 |
| x, y int // field names are x and y |
| } |
| </pre> |
| |
| <p> |
| The following declaration is illegal because field names must be unique |
| in a struct type: |
| </p> |
| |
| <pre> |
| struct { |
| T // conflicts with anonymous field *T and *P.T |
| *T // conflicts with anonymous field T and *P.T |
| *P.T // conflicts with anonymous field T and *T |
| } |
| </pre> |
| |
| <p> |
| Fields and methods (§<a href="#Method_declarations">Method declarations</a>) of an anonymous field are |
| promoted to be ordinary fields and methods of the struct (§<a href="#Selectors">Selectors</a>). |
| The following rules apply for a struct type named <code>S</code> and |
| a type named <code>T</code>: |
| </p> |
| <ul> |
| <li>If <code>S</code> contains an anonymous field <code>T</code>, the |
| method set of <code>S</code> includes the method set of <code>T</code>. |
| </li> |
| |
| <li>If <code>S</code> contains an anonymous field <code>*T</code>, the |
| method set of <code>S</code> includes the method set of <code>*T</code> |
| (which itself includes the method set of <code>T</code>). |
| </li> |
| |
| <li>If <code>S</code> contains an anonymous field <code>T</code> or |
| <code>*T</code>, the method set of <code>*S</code> includes the |
| method set of <code>*T</code> (which itself includes the method |
| set of <code>T</code>). |
| </li> |
| </ul> |
| <p> |
| A field declaration may be followed by an optional string literal <i>tag</i>, |
| which becomes an attribute for all the fields in the corresponding |
| field declaration. The tags are made |
| visible through a <a href="#Package_unsafe">reflection interface</a> |
| but are otherwise ignored. |
| </p> |
| |
| <pre> |
| // A struct corresponding to the TimeStamp protocol buffer. |
| // The tag strings define the protocol buffer field numbers. |
| struct { |
| microsec uint64 "field 1" |
| serverIP6 uint64 "field 2" |
| process string "field 3" |
| } |
| </pre> |
| |
| <h3 id="Pointer_types">Pointer types</h3> |
| |
| <p> |
| A pointer type denotes the set of all pointers to variables of a given |
| type, called the <i>base type</i> of the pointer. |
| The value of an unitialized pointer is <code>nil</code>. |
| </p> |
| |
| <pre class="ebnf"> |
| PointerType = "*" BaseType . |
| BaseType = Type . |
| </pre> |
| |
| <pre> |
| *int |
| *map[string] *chan int |
| </pre> |
| |
| <h3 id="Function_types">Function types</h3> |
| |
| <p> |
| A function type denotes the set of all functions with the same parameter |
| and result types. The value of an unitialized variable of function type |
| is <code>nil</code>. |
| </p> |
| |
| <pre class="ebnf"> |
| FunctionType = "func" Signature . |
| Signature = Parameters [ Result ] . |
| Result = Parameters | Type . |
| Parameters = "(" [ ParameterList [ "," ] ] ")" . |
| ParameterList = ParameterDecl { "," ParameterDecl } . |
| ParameterDecl = [ IdentifierList ] [ "..." ] Type . |
| </pre> |
| |
| <p> |
| Within a list of parameters or results, the names (IdentifierList) |
| must either all be present or all be absent. If present, each name |
| stands for one item (parameter or result) of the specified type; if absent, each |
| type stands for one item of that type. Parameter and result |
| lists are always parenthesized except that if there is exactly |
| one unnamed result it may be written as an unparenthesized type. |
| </p> |
| <p> |
| If the function's last parameter has a type prefixed with <code>...</code>, |
| the function may be invoked with zero or more arguments for that parameter, |
| each of which must be <a href="#Assignability">assignable</a> |
| to the type that follows the <code>...</code>. |
| Such a function is called <i>variadic</i>. |
| |
| </p> |
| |
| <pre> |
| func() |
| func(x int) |
| func() int |
| func(prefix string, values ...int) |
| func(a, b int, z float) bool |
| func(a, b int, z float) (bool) |
| func(a, b int, z float, opt ...interface{}) (success bool) |
| func(int, int, float) (float, *[]int) |
| func(n int) func(p *T) |
| </pre> |
| |
| |
| <h3 id="Interface_types">Interface types</h3> |
| |
| <p> |
| An interface type specifies a <a href="#Types">method set</a> called its <i>interface</i>. |
| A variable of interface type can store a value of any type with a method set |
| that is any superset of the interface. Such a type is said to |
| <i>implement the interface</i>. |
| The value of an unitialized variable of interface type is <code>nil</code>. |
| </p> |
| |
| <pre class="ebnf"> |
| InterfaceType = "interface" "{" { MethodSpec ";" } "}" . |
| MethodSpec = MethodName Signature | InterfaceTypeName . |
| MethodName = identifier . |
| InterfaceTypeName = TypeName . |
| </pre> |
| |
| <p> |
| As with all method sets, in an interface type, each method must have a unique name. |
| </p> |
| |
| <pre> |
| // A simple File interface |
| interface { |
| Read(b Buffer) bool |
| Write(b Buffer) bool |
| Close() |
| } |
| </pre> |
| |
| <p> |
| More than one type may implement an interface. |
| For instance, if two types <code>S1</code> and <code>S2</code> |
| have the method set |
| </p> |
| |
| <pre> |
| func (p T) Read(b Buffer) bool { return ... } |
| func (p T) Write(b Buffer) bool { return ... } |
| func (p T) Close() { ... } |
| </pre> |
| |
| <p> |
| (where <code>T</code> stands for either <code>S1</code> or <code>S2</code>) |
| then the <code>File</code> interface is implemented by both <code>S1</code> and |
| <code>S2</code>, regardless of what other methods |
| <code>S1</code> and <code>S2</code> may have or share. |
| </p> |
| |
| <p> |
| A type implements any interface comprising any subset of its methods |
| and may therefore implement several distinct interfaces. For |
| instance, all types implement the <i>empty interface</i>: |
| </p> |
| |
| <pre> |
| interface{} |
| </pre> |
| |
| <p> |
| Similarly, consider this interface specification, |
| which appears within a <a href="#Type_declarations">type declaration</a> |
| to define an interface called <code>Lock</code>: |
| </p> |
| |
| <pre> |
| type Lock interface { |
| Lock() |
| Unlock() |
| } |
| </pre> |
| |
| <p> |
| If <code>S1</code> and <code>S2</code> also implement |
| </p> |
| |
| <pre> |
| func (p T) Lock() { ... } |
| func (p T) Unlock() { ... } |
| </pre> |
| |
| <p> |
| they implement the <code>Lock</code> interface as well |
| as the <code>File</code> interface. |
| </p> |
| <p> |
| An interface may contain an interface type name <code>T</code> |
| in place of a method specification. |
| The effect is equivalent to enumerating the methods of <code>T</code> explicitly |
| in the interface. |
| </p> |
| |
| <pre> |
| type ReadWrite interface { |
| Read(b Buffer) bool |
| Write(b Buffer) bool |
| } |
| |
| type File interface { |
| ReadWrite // same as enumerating the methods in ReadWrite |
| Lock // same as enumerating the methods in Lock |
| Close() |
| } |
| </pre> |
| |
| <h3 id="Map_types">Map types</h3> |
| |
| <p> |
| A map is an unordered group of elements of one type, called the |
| element type, indexed by a set of unique <i>keys</i> of another type, |
| called the key type. |
| The value of an uninitialized map is <code>nil</code>. |
| </p> |
| |
| <pre class="ebnf"> |
| MapType = "map" "[" KeyType "]" ElementType . |
| KeyType = Type . |
| </pre> |
| |
| <p> |
| The comparison operators <code>==</code> and <code>!=</code> |
| (§<a href="#Comparison_operators">Comparison operators</a>) must be fully defined |
| for operands of the key type; thus the key type must not be a struct, array or slice. |
| If the key type is an interface type, these |
| comparison operators must be defined for the dynamic key values; |
| failure will cause a <a href="#Run_time_panics">run-time panic</a>. |
| |
| </p> |
| |
| <pre> |
| map [string] int |
| map [*T] struct { x, y float } |
| map [string] interface {} |
| </pre> |
| |
| <p> |
| The number of map elements is called its length. |
| For a map <code>m</code>, it can be discovered using the |
| built-in function <a href="#Length_and_capacity"><code>len(m)</code></a> |
| and may change during execution. Values may be added and removed |
| during execution using special forms of <a href="#Assignments">assignment</a>. |
| </p> |
| <p> |
| A new, empty map value is made using the built-in |
| function <a href="#Making_slices_maps_and_channels"><code>make</code></a>, |
| which takes the map type and an optional capacity hint as arguments: |
| </p> |
| |
| <pre> |
| make(map[string] int) |
| make(map[string] int, 100) |
| </pre> |
| |
| <p> |
| The initial capacity does not bound its size: |
| maps grow to accommodate the number of items |
| stored in them. |
| </p> |
| |
| <h3 id="Channel_types">Channel types</h3> |
| |
| <p> |
| A channel provides a mechanism for two concurrently executing functions |
| to synchronize execution and communicate by passing a value of a |
| specified element type. |
| The value of an uninitialized channel is <code>nil</code>. |
| </p> |
| |
| <pre class="ebnf"> |
| ChannelType = ( "chan" [ "<-" ] | "<-" "chan" ) ElementType . |
| </pre> |
| |
| <p> |
| The <code><-</code> operator specifies the channel <i>direction</i>, |
| <i>send</i> or <i>receive</i>. If no direction is given, the channel is |
| <i>bi-directional</i>. |
| A channel may be constrained only to send or only to receive by |
| <a href="#Conversions">conversion</a> or <a href="#Assignments">assignment</a>. |
| </p> |
| |
| <pre> |
| chan T // can be used to send and receive values of type T |
| chan<- float // can only be used to send floats |
| <-chan int // can only be used to receive ints |
| </pre> |
| |
| <p> |
| The <code><-</code> operator associates with the leftmost <code>chan</code> |
| possible: |
| </p> |
| |
| <pre> |
| chan<- chan int // same as chan<- (chan int) |
| chan<- <-chan int // same as chan<- (<-chan int) |
| <-chan <-chan int // same as <-chan (<-chan int) |
| chan (<-chan int) |
| </pre> |
| |
| <p> |
| A new, initialized channel |
| value can be made using the built-in function |
| <a href="#Making_slices_maps_and_channels"><code>make</code></a>, |
| which takes the channel type and an optional capacity as arguments: |
| </p> |
| |
| <pre> |
| make(chan int, 100) |
| </pre> |
| |
| <p> |
| The capacity, in number of elements, sets the size of the buffer in the channel. If the |
| capacity is greater than zero, the channel is asynchronous: provided the |
| buffer is not full, sends can succeed without blocking. If the capacity is zero |
| or absent, the communication succeeds only when both a sender and receiver are ready. |
| </p> |
| |
| <p> |
| A channel may be closed and tested for closure with the built-in functions |
| <a href="#Close_and_closed"><code>close</code> and <code>closed</code></a>. |
| </p> |
| |
| <h2 id="Properties_of_types_and_values">Properties of types and values</h2> |
| |
| <h3 id="Type_identity">Type identity</h3> |
| |
| <p> |
| Two types are either <i>identical</i> or <i>different</i>. |
| </p> |
| |
| <p> |
| Two named types are identical if their type names originate in the same |
| type <a href="#Declarations_and_scope">declaration</a>. |
| A named and an unnamed type are always different. Two unnamed types are identical |
| if the corresponding type literals are identical, that is, if they have the same |
| literal structure and corresponding components have identical types. In detail: |
| </p> |
| |
| <ul> |
| <li>Two array types are identical if they have identical element types and |
| the same array length.</li> |
| |
| <li>Two slice types are identical if they have identical element types.</li> |
| |
| <li>Two struct types are identical if they have the same sequence of fields, |
| and if corresponding fields have the same names, and identical types, |
| and identical tags. |
| Two anonymous fields are considered to have the same name. Lower-case field |
| names from different packages are always different.</li> |
| |
| <li>Two pointer types are identical if they have identical base types.</li> |
| |
| <li>Two function types are identical if they have the same number of parameters |
| and result values, corresponding parameter and result types are |
| identical, and either both functions are variadic or neither is. |
| Parameter and result names are not required to match.</li> |
| |
| <li>Two interface types are identical if they have the same set of methods |
| with the same names and identical function types. Lower-case method names from |
| different packages are always different. The order of the methods is irrelevant.</li> |
| |
| <li>Two map types are identical if they have identical key and value types.</li> |
| |
| <li>Two channel types are identical if they have identical value types and |
| the same direction.</li> |
| </ul> |
| |
| <p> |
| Given the declarations |
| </p> |
| |
| <pre> |
| type ( |
| T0 []string |
| T1 []string |
| T2 struct { a, b int } |
| T3 struct { a, c int } |
| T4 func(int, float) *T0 |
| T5 func(x int, y float) *[]string |
| ) |
| </pre> |
| |
| <p> |
| these types are identical: |
| </p> |
| |
| <pre> |
| T0 and T0 |
| []int and []int |
| struct { a, b *T5 } and struct { a, b *T5 } |
| func(x int, y float) *[]string and func(int, float) (result *[]string) |
| </pre> |
| |
| <p> |
| <code>T0</code> and <code>T1</code> are different because they are named types |
| with distinct declarations; <code>func(int, float) *T0</code> and |
| <code>func(x int, y float) *[]string</code> are different because <code>T0</code> |
| is different from <code>[]string</code>. |
| </p> |
| |
| |
| <h3 id="Assignability">Assignability</h3> |
| |
| <p> |
| A value <code>x</code> is <i>assignable</i> to a variable of type <code>T</code> |
| ("<code>x</code> is assignable to <code>T</code>") in any of these cases: |
| </p> |
| |
| <ul> |
| <li> |
| <code>x</code>'s type is identical to <code>T</code>. |
| </li> |
| <li> |
| <code>x</code>'s type <code>V</code> or <code>T</code> have identical |
| <a href="#Types">underlying types</a> and <code>V</code> or <code>T</code> |
| is not a named type. |
| </li> |
| <li> |
| <code>T</code> is an interface type and |
| <code>x</code> <a href="#Interface_types">implements</a> <code>T</code>. |
| </li> |
| <li> |
| <code>x</code> is a bidirectional channel value, <code>T</code> is a channel type, |
| <code>x</code>'s type <code>V</code> and <code>T</code> have identical element types, |
| and <code>V</code> or <code>T</code> is not a named type. |
| </li> |
| <li> |
| <code>x</code> is the predeclared identifier <code>nil</code> and <code>T</code> |
| is a pointer, function, slice, map, channel, or interface type. |
| </li> |
| <li> |
| <code>x</code> is an untyped <a href="#Constants">constant</a> representable |
| by a value of type <code>T</code>. |
| </li> |
| </ul> |
| |
| <p> |
| If <code>T</code> is a struct type, either all fields of <code>T</code> |
| must be <a href="#Exported_identifiers">exported</a>, or the assignment must be in |
| the same package in which <code>T</code> is declared. |
| In other words, a struct value can be assigned to a struct variable only if |
| every field of the struct may be legally assigned individually by the program. |
| </p> |
| |
| <p> |
| Any value may be assigned to the <a href="#Blank_identifier">blank identifier</a>. |
| </p> |
| |
| |
| <h2 id="Blocks">Blocks</h2> |
| |
| <p> |
| A <i>block</i> is a sequence of declarations and statements within matching |
| brace brackets. |
| </p> |
| |
| <pre class="ebnf"> |
| Block = "{" { Statement ";" } "}" . |
| </pre> |
| |
| <p> |
| In addition to explicit blocks in the source code, there are implicit blocks: |
| </p> |
| |
| <ol> |
| <li>The <i>universe block</i> encompasses all Go source text.</li> |
| |
| <li>Each <a href="#Packages">package</a> has a <i>package block</i> containing all |
| Go source text for that package.</li> |
| |
| <li>Each file has a <i>file block</i> containing all Go source text |
| in that file.</li> |
| |
| <li>Each <code>if</code>, <code>for</code>, and <code>switch</code> |
| statement is considered to be in its own implicit block.</li> |
| |
| <li>Each clause in a <code>switch</code> or <code>select</code> statement |
| acts as an implicit block.</li> |
| </ol> |
| |
| <p> |
| Blocks nest and influence <a href="#Declarations_and_scope">scoping</a>. |
| </p> |
| |
| |
| <h2 id="Declarations_and_scope">Declarations and scope</h2> |
| |
| <p> |
| A declaration binds a non-<a href="#Blank_identifier">blank</a> |
| identifier to a constant, type, variable, function, or package. |
| Every identifier in a program must be declared. |
| No identifier may be declared twice in the same block, and |
| no identifier may be declared in both the file and package block. |
| </p> |
| |
| <pre class="ebnf"> |
| Declaration = ConstDecl | TypeDecl | VarDecl . |
| TopLevelDecl = Declaration | FunctionDecl | MethodDecl . |
| </pre> |
| |
| <p> |
| The <i>scope</i> of a declared identifier is the extent of source text in which |
| the identifier denotes the specified constant, type, variable, function, or package. |
| </p> |
| |
| <p> |
| Go is lexically scoped using blocks: |
| </p> |
| |
| <ol> |
| <li>The scope of a predeclared identifier is the universe block.</li> |
| |
| <li>The scope of an identifier denoting a constant, type, variable, |
| or function declared at top level (outside any function) is the |
| package block.</li> |
| |
| <li>The scope of an imported package identifier is the file block |
| of the file containing the import declaration.</li> |
| |
| <li>The scope of an identifier denoting a function parameter or |
| result variable is the function body.</li> |
| |
| <li>The scope of a constant or variable identifier declared |
| inside a function begins at the end of the ConstSpec or VarSpec |
| and ends at the end of the innermost containing block.</li> |
| |
| <li>The scope of a type identifier declared inside a function |
| begins at the identifier in the TypeSpec |
| and ends at the end of the innermost containing block.</li> |
| </ol> |
| |
| <p> |
| An identifier declared in a block may be redeclared in an inner block. |
| While the identifier of the inner declaration is in scope, it denotes |
| the entity declared by the inner declaration. |
| </p> |
| |
| <p> |
| The <a href="#Package_clause">package clause</a> is not a declaration; the package name |
| does not appear in any scope. Its purpose is to identify the files belonging |
| to the same <a href="#Packages">package</a> and to specify the default package name for import |
| declarations. |
| </p> |
| |
| |
| <h3 id="Label_scopes">Label scopes</h3> |
| |
| <p> |
| Labels are declared by <a href="#Labeled_statements">labeled statements</a> and are |
| used in the <code>break</code>, <code>continue</code>, and <code>goto</code> |
| statements (§<a href="#Break_statements">Break statements</a>, §<a href="#Continue_statements">Continue statements</a>, §<a href="#Goto_statements">Goto statements</a>). |
| In contrast to other identifiers, labels are not block scoped and do |
| not conflict with identifiers that are not labels. The scope of a label |
| is the body of the function in which it is declared and excludes |
| the body of any nested function. |
| </p> |
| |
| |
| <h3 id="Predeclared_identifiers">Predeclared identifiers</h3> |
| |
| <p> |
| The following identifiers are implicitly declared in the universe block: |
| </p> |
| <pre class="grammar"> |
| Basic types: |
| bool byte complex64 complex128 float32 float64 |
| int8 int16 int32 int64 string uint8 uint16 uint32 uint64 |
| |
| Architecture-specific convenience types: |
| complex float int uint uintptr |
| |
| Constants: |
| true false iota |
| |
| Zero value: |
| nil |
| |
| Functions: |
| cap close closed cmplx copy imag len make |
| new panic print println real |
| </pre> |
| |
| |
| <h3 id="Exported_identifiers">Exported identifiers</h3> |
| |
| <p> |
| An identifier may be <i>exported</i> to permit access to it from another package |
| using a <a href="#Qualified_identifiers">qualified identifier</a>. An identifier |
| is exported if both: |
| </p> |
| <ol> |
| <li>the first character of the identifier's name is a Unicode upper case letter (Unicode class "Lu"); and</li> |
| <li>the identifier is declared in the <a href="#Blocks">package block</a> or denotes a field or method of a type |
| declared in that block.</li> |
| </ol> |
| <p> |
| All other identifiers are not exported. |
| </p> |
| |
| |
| <h3 id="Blank_identifier">Blank identifier</h3> |
| |
| <p> |
| The <i>blank identifier</i>, represented by the underscore character <code>_</code>, may be used in a declaration like |
| any other identifier but the declaration does not introduce a new binding. |
| </p> |
| |
| |
| <h3 id="Constant_declarations">Constant declarations</h3> |
| |
| <p> |
| A constant declaration binds a list of identifiers (the names of |
| the constants) to the values of a list of <a href="#Constant_expressions">constant expressions</a>. |
| The number of identifiers must be equal |
| to the number of expressions, and the <i>n</i>th identifier on |
| the left is bound to the value of the <i>n</i>th expression on the |
| right. |
| </p> |
| |
| <pre class="ebnf"> |
| ConstDecl = "const" ( ConstSpec | "(" { ConstSpec ";" } ")" ) . |
| ConstSpec = IdentifierList [ [ Type ] "=" ExpressionList ] . |
| |
| IdentifierList = identifier { "," identifier } . |
| ExpressionList = Expression { "," Expression } . |
| </pre> |
| |
| <p> |
| If the type is present, all constants take the type specified, and |
| the expressions must be <a href="#Assignability">assignable</a> to that type. |
| If the type is omitted, the constants take the |
| individual types of the corresponding expressions. |
| If the expression values are untyped <a href="#Constants">constants</a>, |
| the declared constants remain untyped and the constant identifiers |
| denote the constant values. For instance, if the expression is a |
| floating-point literal, the constant identifier denotes a floating-point |
| constant, even if the literal's fractional part is zero. |
| </p> |
| |
| <pre> |
| const Pi float64 = 3.14159265358979323846 |
| const zero = 0.0 // untyped floating-point constant |
| const ( |
| size int64 = 1024 |
| eof = -1 // untyped integer constant |
| ) |
| const a, b, c = 3, 4, "foo" // a = 3, b = 4, c = "foo", untyped integer and string constants |
| const u, v float = 0, 3 // u = 0.0, v = 3.0 |
| </pre> |
| |
| <p> |
| Within a parenthesized <code>const</code> declaration list the |
| expression list may be omitted from any but the first declaration. |
| Such an empty list is equivalent to the textual substitution of the |
| first preceding non-empty expression list and its type if any. |
| Omitting the list of expressions is therefore equivalent to |
| repeating the previous list. The number of identifiers must be equal |
| to the number of expressions in the previous list. |
| Together with the <a href="#Iota"><code>iota</code> constant generator</a> |
| this mechanism permits light-weight declaration of sequential values: |
| </p> |
| |
| <pre> |
| const ( |
| Sunday = iota |
| Monday |
| Tuesday |
| Wednesday |
| Thursday |
| Friday |
| Partyday |
| numberOfDays // this constant is not exported |
| ) |
| </pre> |
| |
| |
| <h3 id="Iota">Iota</h3> |
| |
| <p> |
| Within a <a href="#Constant_declarations">constant declaration</a>, the predeclared identifier |
| <code>iota</code> represents successive untyped integer <a href="#Constants"> |
| constants</a>. It is reset to 0 whenever the reserved word <code>const</code> |
| appears in the source and increments after each <a href="#ConstSpec">ConstSpec</a>. |
| It can be used to construct a set of related constants: |
| </p> |
| |
| <pre> |
| const ( // iota is reset to 0 |
| c0 = iota // c0 == 0 |
| c1 = iota // c1 == 1 |
| c2 = iota // c2 == 2 |
| ) |
| |
| const ( |
| a = 1 << iota // a == 1 (iota has been reset) |
| b = 1 << iota // b == 2 |
| c = 1 << iota // c == 4 |
| ) |
| |
| const ( |
| u = iota * 42 // u == 0 (untyped integer constant) |
| v float = iota * 42 // v == 42.0 (float constant) |
| w = iota * 42 // w == 84 (untyped integer constant) |
| ) |
| |
| const x = iota // x == 0 (iota has been reset) |
| const y = iota // y == 0 (iota has been reset) |
| </pre> |
| |
| <p> |
| Within an ExpressionList, the value of each <code>iota</code> is the same because |
| it is only incremented after each ConstSpec: |
| </p> |
| |
| <pre> |
| const ( |
| bit0, mask0 = 1 << iota, 1 << iota - 1 // bit0 == 1, mask0 == 0 |
| bit1, mask1 // bit1 == 2, mask1 == 1 |
| _, _ // skips iota == 2 |
| bit3, mask3 // bit3 == 8, mask3 == 7 |
| ) |
| </pre> |
| |
| <p> |
| This last example exploits the implicit repetition of the |
| last non-empty expression list. |
| </p> |
| |
| |
| <h3 id="Type_declarations">Type declarations</h3> |
| |
| <p> |
| A type declaration binds an identifier, the <i>type name</i>, to a new type |
| that has the same <a href="#Types">underlying type</a> as |
| an existing type. The new type is <a href="#Type_identity">different</a> from |
| the existing type. |
| </p> |
| |
| <pre class="ebnf"> |
| TypeDecl = "type" ( TypeSpec | "(" { TypeSpec ";" } ")" ) . |
| TypeSpec = identifier Type . |
| </pre> |
| |
| <pre> |
| type IntArray [16]int |
| |
| type ( |
| Point struct { x, y float } |
| Polar Point |
| ) |
| |
| type TreeNode struct { |
| left, right *TreeNode |
| value *Comparable |
| } |
| |
| type Cipher interface { |
| BlockSize() int |
| Encrypt(src, dst []byte) |
| Decrypt(src, dst []byte) |
| } |
| </pre> |
| |
| <p> |
| The declared type does not inherit any <a href="#Method_declarations">methods</a> |
| bound to the existing type, but the <a href="#Types">method set</a> |
| of an interface type or of elements of a composite type remains unchanged: |
| </p> |
| |
| <pre> |
| // A Mutex is a data type with two methods Lock and Unlock. |
| type Mutex struct { /* Mutex fields */ } |
| func (m *Mutex) Lock() { /* Lock implementation */ } |
| func (m *Mutex) Unlock() { /* Unlock implementation */ } |
| |
| // NewMutex has the same composition as Mutex but its method set is empty. |
| type NewMutex Mutex |
| |
| // The method set of *PrintableMutex contains the methods |
| // Lock and Unlock bound to its anonymous field Mutex. |
| type PrintableMutex struct { |
| Mutex |
| } |
| |
| // MyCipher is an interface type that has the same method set as Cipher. |
| type MyCipher Cipher |
| </pre> |
| |
| <p> |
| A type declaration may be used to define a different boolean, numeric, or string |
| type and attach methods to it: |
| </p> |
| |
| <pre> |
| type TimeZone int |
| |
| const ( |
| EST TimeZone = -(5 + iota) |
| CST |
| MST |
| PST |
| ) |
| |
| func (tz TimeZone) String() string { |
| return fmt.Sprintf("GMT+%dh", tz) |
| } |
| </pre> |
| |
| |
| <h3 id="Variable_declarations">Variable declarations</h3> |
| |
| <p> |
| A variable declaration creates a variable, binds an identifier to it and |
| gives it a type and optionally an initial value. |
| </p> |
| <pre class="ebnf"> |
| VarDecl = "var" ( VarSpec | "(" { VarSpec ";" } ")" ) . |
| VarSpec = IdentifierList ( Type [ "=" ExpressionList ] | "=" ExpressionList ) . |
| </pre> |
| |
| <pre> |
| var i int |
| var U, V, W float |
| var k = 0 |
| var x, y float = -1, -2 |
| var ( |
| i int |
| u, v, s = 2.0, 3.0, "bar" |
| ) |
| var re, im = complexSqrt(-1) |
| var _, found = entries[name] // map lookup; only interested in "found" |
| </pre> |
| |
| <p> |
| If a list of expressions is given, the variables are initialized |
| by assigning the expressions to the variables (§<a href="#Assignments">Assignments</a>) |
| in order; all expressions must be consumed and all variables initialized from them. |
| Otherwise, each variable is initialized to its <a href="#The_zero_value">zero value</a>. |
| </p> |
| |
| <p> |
| If the type is present, each variable is given that type. |
| Otherwise, the types are deduced from the assignment |
| of the expression list. |
| </p> |
| |
| <p> |
| If the type is absent and the corresponding expression evaluates to an |
| untyped <a href="#Constants">constant</a>, the type of the declared variable |
| is <code>bool</code>, <code>int</code>, <code>float</code>, or <code>string</code> |
| respectively, depending on whether the value is a boolean, integer, |
| floating-point, or string constant: |
| </p> |
| |
| <pre> |
| var b = true // t has type bool |
| var i = 0 // i has type int |
| var f = 3.0 // f has type float |
| var s = "OMDB" // s has type string |
| </pre> |
| |
| <h3 id="Short_variable_declarations">Short variable declarations</h3> |
| |
| <p> |
| A <i>short variable declaration</i> uses the syntax: |
| </p> |
| |
| <pre class="ebnf"> |
| ShortVarDecl = IdentifierList ":=" ExpressionList . |
| </pre> |
| |
| <p> |
| It is a shorthand for a regular variable declaration with |
| initializer expressions but no types: |
| </p> |
| |
| <pre class="grammar"> |
| "var" IdentifierList = ExpressionList . |
| </pre> |
| |
| <pre> |
| i, j := 0, 10 |
| f := func() int { return 7 } |
| ch := make(chan int) |
| r, w := os.Pipe(fd) // os.Pipe() returns two values |
| _, y, _ := coord(p) // coord() returns three values; only interested in y coordinate |
| </pre> |
| |
| <p> |
| Unlike regular variable declarations, a short variable declaration may redeclare variables provided they |
| were originally declared in the same block with the same type, and at |
| least one of the non-<a href="#Blank_identifier">blank</a> variables is new. As a consequence, redeclaration |
| can only appear in a multi-variable short declaration. |
| Redeclaration does not introduce a new |
| variable; it just assigns a new value to the original. |
| </p> |
| |
| <pre> |
| field1, offset := nextField(str, 0) |
| field2, offset := nextField(str, offset) // redeclares offset |
| </pre> |
| |
| <p> |
| Short variable declarations may appear only inside functions. |
| In some contexts such as the initializers for <code>if</code>, |
| <code>for</code>, or <code>switch</code> statements, |
| they can be used to declare local temporary variables (§<a href="#Statements">Statements</a>). |
| </p> |
| |
| <h3 id="Function_declarations">Function declarations</h3> |
| |
| <p> |
| A function declaration binds an identifier to a function (§<a href="#Function_types">Function types</a>). |
| </p> |
| |
| <pre class="ebnf"> |
| FunctionDecl = "func" identifier Signature [ Body ] . |
| Body = Block. |
| </pre> |
| |
| <p> |
| A function declaration may omit the body. Such a declaration provides the |
| signature for a function implemented outside Go, such as an assembly routine. |
| </p> |
| |
| <pre> |
| func min(x int, y int) int { |
| if x < y { |
| return x |
| } |
| return y |
| } |
| |
| func flushICache(begin, end uintptr) // implemented externally |
| </pre> |
| |
| <h3 id="Method_declarations">Method declarations</h3> |
| |
| <p> |
| A method is a function with a <i>receiver</i>. |
| A method declaration binds an identifier to a method. |
| </p> |
| <pre class="ebnf"> |
| MethodDecl = "func" Receiver MethodName Signature [ Body ] . |
| Receiver = "(" [ identifier ] [ "*" ] BaseTypeName ")" . |
| BaseTypeName = identifier . |
| </pre> |
| |
| <p> |
| The receiver type must be of the form <code>T</code> or <code>*T</code> where |
| <code>T</code> is a type name. <code>T</code> is called the |
| <i>receiver base type</i> or just <i>base type</i>. |
| The base type must not be a pointer or interface type and must be |
| declared in the same package as the method. |
| The method is said to be <i>bound</i> to the base type |
| and is visible only within selectors for that type |
| (§<a href="#Type_declarations">Type declarations</a>, §<a href="#Selectors">Selectors</a>). |
| </p> |
| |
| <p> |
| Given type <code>Point</code>, the declarations |
| </p> |
| |
| <pre> |
| func (p *Point) Length() float { |
| return Math.sqrt(p.x * p.x + p.y * p.y) |
| } |
| |
| func (p *Point) Scale(factor float) { |
| p.x = p.x * factor |
| p.y = p.y * factor |
| } |
| </pre> |
| |
| <p> |
| bind the methods <code>Length</code> and <code>Scale</code>, |
| with receiver type <code>*Point</code>, |
| to the base type <code>Point</code>. |
| </p> |
| |
| <p> |
| If the receiver's value is not referenced inside the body of the method, |
| its identifier may be omitted in the declaration. The same applies in |
| general to parameters of functions and methods. |
| </p> |
| |
| <p> |
| The type of a method is the type of a function with the receiver as first |
| argument. For instance, the method <code>Scale</code> has type |
| </p> |
| |
| <pre> |
| (p *Point, factor float) |
| </pre> |
| |
| <p> |
| However, a function declared this way is not a method. |
| </p> |
| |
| |
| <h2 id="Expressions">Expressions</h2> |
| |
| <p> |
| An expression specifies the computation of a value by applying |
| operators and functions to operands. |
| </p> |
| |
| <h3 id="Operands">Operands</h3> |
| |
| <p> |
| Operands denote the elementary values in an expression. |
| </p> |
| |
| <pre class="ebnf"> |
| Operand = Literal | QualifiedIdent | MethodExpr | "(" Expression ")" . |
| Literal = BasicLit | CompositeLit | FunctionLit . |
| BasicLit = int_lit | float_lit | imaginary_lit | char_lit | string_lit . |
| </pre> |
| |
| |
| <h3 id="Qualified_identifiers">Qualified identifiers</h3> |
| |
| <p> |
| A qualified identifier is a non-<a href="#Blank_identifier">blank</a> identifier qualified by a package name prefix. |
| </p> |
| |
| <pre class="ebnf"> |
| QualifiedIdent = [ PackageName "." ] identifier . |
| </pre> |
| |
| <p> |
| A qualified identifier accesses an identifier in a separate package. |
| The identifier must be <a href="#Exported_identifiers">exported</a> by that |
| package, which means that it must begin with a Unicode upper case letter. |
| </p> |
| |
| <pre> |
| math.Sin |
| </pre> |
| |
| <!--- |
| <p> |
| <span class="alert">TODO: Unify this section with Selectors - it's the same syntax.</span> |
| </p> |
| ---> |
| |
| <h3 id="Composite_literals">Composite literals</h3> |
| |
| <p> |
| Composite literals construct values for structs, arrays, slices, and maps |
| and create a new value each time they are evaluated. |
| They consist of the type of the value |
| followed by a brace-bound list of composite elements. An element may be |
| a single expression or a key-value pair. |
| </p> |
| |
| <pre class="ebnf"> |
| CompositeLit = LiteralType "{" [ ElementList [ "," ] ] "}" . |
| LiteralType = StructType | ArrayType | "[" "..." "]" ElementType | |
| SliceType | MapType | TypeName | "(" LiteralType ")" . |
| ElementList = Element { "," Element } . |
| Element = [ Key ":" ] Value . |
| Key = FieldName | ElementIndex . |
| FieldName = identifier . |
| ElementIndex = Expression . |
| Value = Expression . |
| </pre> |
| |
| <p> |
| The LiteralType must be a struct, array, slice, or map type |
| (the grammar enforces this constraint except when the type is given |
| as a TypeName). |
| The types of the expressions must be <a href="#Assignability">assignable</a> |
| to the respective field, element, and key types of the LiteralType; |
| there is no additional conversion. |
| The key is interpreted as a field name for struct literals, |
| an index expression for array and slice literals, and a key for map literals. |
| For map literals, all elements must have a key. It is an error |
| to specify multiple elements with the same field name or |
| constant key value. |
| </p> |
| |
| <p> |
| For struct literals the following rules apply: |
| </p> |
| <ul> |
| <li>A key must be a field name declared in the LiteralType. |
| </li> |
| <li>A literal that does not contain any keys must |
| list an element for each struct field in the |
| order in which the fields are declared. |
| </li> |
| <li>If any element has a key, every element must have a key. |
| </li> |
| <li>A literal that contains keys does not need to |
| have an element for each struct field. Omitted fields |
| get the zero value for that field. |
| </li> |
| <li>A literal may omit the element list; such a literal evaluates |
| to the zero value for its type. |
| </li> |
| <li>It is an error to specify an element for a non-exported |
| field of a struct belonging to a different package. |
| </li> |
| </ul> |
| |
| <p> |
| Given the declarations |
| </p> |
| <pre> |
| type Point struct { x, y, z float } |
| type Line struct { p, q Point } |
| </pre> |
| |
| <p> |
| one may write |
| </p> |
| |
| <pre> |
| origin := Point{} // zero value for Point |
| line := Line{origin, Point{y: -4, z: 12.3}} // zero value for line.q.x |
| </pre> |
| |
| <p> |
| For array and slice literals the following rules apply: |
| </p> |
| <ul> |
| <li>Each element has an associated integer index marking |
| its position in the array. |
| </li> |
| <li>An element with a key uses the key as its index; the |
| key must be a constant integer expression. |
| </li> |
| <li>An element without a key uses the previous element's index plus one. |
| If the first element has no key, its index is zero. |
| </li> |
| </ul> |
| |
| <p> |
| Taking the address of a composite literal (§<a href="#Address_operators">Address operators</a>) |
| generates a unique pointer to an instance of the literal's value. |
| </p> |
| <pre> |
| var pointer *Point = &Point{y: 1000} |
| </pre> |
| |
| <p> |
| The length of an array literal is the length specified in the LiteralType. |
| If fewer elements than the length are provided in the literal, the missing |
| elements are set to the zero value for the array element type. |
| It is an error to provide elements with index values outside the index range |
| of the array. The notation <code>...</code> specifies an array length equal |
| to the maximum element index plus one. |
| </p> |
| |
| <pre> |
| buffer := [10]string{} // len(buffer) == 10 |
| intSet := [6]int{1, 2, 3, 5} // len(intSet) == 6 |
| days := [...]string{"Sat", "Sun"} // len(days) == 2 |
| </pre> |
| |
| <p> |
| A slice literal describes the entire underlying array literal. |
| Thus, the length and capacity of a slice literal are the maximum |
| element index plus one. A slice literal has the form |
| </p> |
| |
| <pre> |
| []T{x1, x2, ... xn} |
| </pre> |
| |
| <p> |
| and is a shortcut for a slice operation applied to an array literal: |
| </p> |
| |
| <pre> |
| [n]T{x1, x2, ... xn}[0 : n] |
| </pre> |
| |
| <p> |
| A parsing ambiguity arises when a composite literal using the |
| TypeName form of the LiteralType appears in the condition of an |
| "if", "for", or "switch" statement, because the braces surrounding |
| the expressions in the literal are confused with those introducing |
| a block of statements. To resolve the ambiguity in this rare case, |
| the composite literal must appear within |
| parentheses. |
| </p> |
| |
| <pre> |
| if x == (T{a,b,c}[i]) { ... } |
| if (x == T{a,b,c}[i]) { ... } |
| </pre> |
| |
| <p> |
| Examples of valid array, slice, and map literals: |
| </p> |
| |
| <pre> |
| // list of prime numbers |
| primes := []int{2, 3, 5, 7, 9, 11, 13, 17, 19, 991} |
| |
| // vowels[ch] is true if ch is a vowel |
| vowels := [128]bool{'a': true, 'e': true, 'i': true, 'o': true, 'u': true, 'y': true} |
| |
| // the array [10]float{-1, 0, 0, 0, -0.1, -0.1, 0, 0, 0, -1} |
| filter := [10]float{-1, 4: -0.1, -0.1, 9: -1} |
| |
| // frequencies in Hz for equal-tempered scale (A4 = 440Hz) |
| noteFrequency := map[string]float{ |
| "C0": 16.35, "D0": 18.35, "E0": 20.60, "F0": 21.83, |
| "G0": 24.50, "A0": 27.50, "B0": 30.87, |
| } |
| </pre> |
| |
| |
| <h3 id="Function_literals">Function literals</h3> |
| |
| <p> |
| A function literal represents an anonymous function. |
| It consists of a specification of the function type and a function body. |
| </p> |
| |
| <pre class="ebnf"> |
| FunctionLit = FunctionType Body . |
| </pre> |
| |
| <pre> |
| func(a, b int, z float) bool { return a*b < int(z) } |
| </pre> |
| |
| <p> |
| A function literal can be assigned to a variable or invoked directly. |
| </p> |
| |
| <pre> |
| f := func(x, y int) int { return x + y } |
| func(ch chan int) { ch <- ACK } (reply_chan) |
| </pre> |
| |
| <p> |
| Function literals are <i>closures</i>: they may refer to variables |
| defined in a surrounding function. Those variables are then shared between |
| the surrounding function and the function literal, and they survive as long |
| as they are accessible. |
| </p> |
| |
| |
| <h3 id="Primary_expressions">Primary expressions</h3> |
| |
| <p> |
| Primary expressions are the operands for unary and binary expressions. |
| </p> |
| |
| <pre class="ebnf"> |
| PrimaryExpr = |
| Operand | |
| Conversion | |
| BuiltinCall | |
| PrimaryExpr Selector | |
| PrimaryExpr Index | |
| PrimaryExpr Slice | |
| PrimaryExpr TypeAssertion | |
| PrimaryExpr Call . |
| |
| Selector = "." identifier . |
| Index = "[" Expression "]" . |
| Slice = "[" Expression ":" [ Expression ] "]" . |
| TypeAssertion = "." "(" Type ")" . |
| Call = "(" [ ExpressionList [ "," ] ] ")" . |
| </pre> |
| |
| |
| <pre> |
| x |
| 2 |
| (s + ".txt") |
| f(3.1415, true) |
| Point{1, 2} |
| m["foo"] |
| s[i : j + 1] |
| obj.color |
| Math.sin |
| f.p[i].x() |
| </pre> |
| |
| |
| <h3 id="Selectors">Selectors</h3> |
| |
| <p> |
| A primary expression of the form |
| </p> |
| |
| <pre> |
| x.f |
| </pre> |
| |
| <p> |
| denotes the field or method <code>f</code> of the value denoted by <code>x</code> |
| (or of <code>*x</code> if |
| <code>x</code> is of pointer type). The identifier <code>f</code> |
| is called the (field or method) |
| <i>selector</i>; it must not be the <a href="#Blank_identifier">blank identifier</a>. |
| The type of the expression is the type of <code>f</code>. |
| </p> |
| <p> |
| A selector <code>f</code> may denote a field or method <code>f</code> of |
| a type <code>T</code>, or it may refer |
| to a field or method <code>f</code> of a nested anonymous field of |
| <code>T</code>. |
| The number of anonymous fields traversed |
| to reach <code>f</code> is called its <i>depth</i> in <code>T</code>. |
| The depth of a field or method <code>f</code> |
| declared in <code>T</code> is zero. |
| The depth of a field or method <code>f</code> declared in |
| an anonymous field <code>A</code> in <code>T</code> is the |
| depth of <code>f</code> in <code>A</code> plus one. |
| </p> |
| <p> |
| The following rules apply to selectors: |
| </p> |
| <ol> |
| <li> |
| For a value <code>x</code> of type <code>T</code> or <code>*T</code> |
| where <code>T</code> is not an interface type, |
| <code>x.f</code> denotes the field or method at the shallowest depth |
| in <code>T</code> where there |
| is such an <code>f</code>. |
| If there is not exactly one <code>f</code> with shallowest depth, the selector |
| expression is illegal. |
| </li> |
| <li> |
| For a variable <code>x</code> of type <code>I</code> or <code>*I</code> |
| where <code>I</code> is an interface type, |
| <code>x.f</code> denotes the actual method with name <code>f</code> of the value assigned |
| to <code>x</code> if there is such a method. |
| If no value or <code>nil</code> was assigned to <code>x</code>, <code>x.f</code> is illegal. |
| </li> |
| <li> |
| In all other cases, <code>x.f</code> is illegal. |
| </li> |
| </ol> |
| <p> |
| Selectors automatically dereference pointers. |
| If <code>x</code> is of pointer type, <code>x.y</code> |
| is shorthand for <code>(*x).y</code>; if <code>y</code> |
| is also of pointer type, <code>x.y.z</code> is shorthand |
| for <code>(*(*x).y).z</code>, and so on. |
| If <code>*x</code> is of pointer type, dereferencing |
| must be explicit; |
| only one level of automatic dereferencing is provided. |
| For an <code>x</code> of type <code>T</code> containing an |
| anonymous field declared as <code>*A</code>, |
| <code>x.f</code> is a shortcut for <code>(*x.A).f</code>. |
| </p> |
| <p> |
| For example, given the declarations: |
| </p> |
| |
| <pre> |
| type T0 struct { |
| x int |
| } |
| |
| func (recv *T0) M0() |
| |
| type T1 struct { |
| y int |
| } |
| |
| func (recv T1) M1() |
| |
| type T2 struct { |
| z int |
| T1 |
| *T0 |
| } |
| |
| func (recv *T2) M2() |
| |
| var p *T2 // with p != nil and p.T1 != nil |
| </pre> |
| |
| <p> |
| one may write: |
| </p> |
| |
| <pre> |
| p.z // (*p).z |
| p.y // ((*p).T1).y |
| p.x // (*(*p).T0).x |
| |
| p.M2 // (*p).M2 |
| p.M1 // ((*p).T1).M1 |
| p.M0 // ((*p).T0).M0 |
| </pre> |
| |
| |
| <!--- |
| <span class="alert"> |
| TODO: Specify what happens to receivers. |
| </span> |
| ---> |
| |
| |
| <h3 id="Indexes">Indexes</h3> |
| |
| <p> |
| A primary expression of the form |
| </p> |
| |
| <pre> |
| a[x] |
| </pre> |
| |
| <p> |
| denotes the element of the array, slice, string or map <code>a</code> indexed by <code>x</code>. |
| The value <code>x</code> is called the |
| <i>index</i> or <i>map key</i>, respectively. The following |
| rules apply: |
| </p> |
| |
| <p> |
| For <code>a</code> of type <code>A</code> or <code>*A</code> |
| where <code>A</code> is an <a href="#Array_types">array type</a>, |
| or for <code>a</code> of type <code>S</code> where <code>S</code> is a <a href="#Slice_types">slice type</a>: |
| </p> |
| <ul> |
| <li><code>x</code> must be an integer value and <code>0 <= x < len(a)</code></li> |
| <li><code>a[x]</code> is the array element at index <code>x</code> and the type of |
| <code>a[x]</code> is the element type of <code>A</code></li> |
| <li>if the index <code>x</code> is out of range, |
| a <a href="#Run_time_panics">run-time panic</a> occurs</li> |
| </ul> |
| |
| <p> |
| For <code>a</code> of type <code>T</code> |
| where <code>T</code> is a <a href="#String_types">string type</a>: |
| </p> |
| <ul> |
| <li><code>x</code> must be an integer value and <code>0 <= x < len(a)</code></li> |
| <li><code>a[x]</code> is the byte at index <code>x</code> and the type of |
| <code>a[x]</code> is <code>byte</code></li> |
| <li><code>a[x]</code> may not be assigned to</li> |
| <li>if the index <code>x</code> is out of range, |
| a <a href="#Run_time_panics">run-time panic</a> occurs</li> |
| </ul> |
| |
| <p> |
| For <code>a</code> of type <code>M</code> |
| where <code>M</code> is a <a href="#Map_types">map type</a>: |
| </p> |
| <ul> |
| <li><code>x</code>'s type must be |
| <a href="#Assignability">assignable</a> |
| to the key type of <code>M</code></li> |
| <li>if the map contains an entry with key <code>x</code>, |
| <code>a[x]</code> is the map value with key <code>x</code> |
| and the type of <code>a[x]</code> is the value type of <code>M</code></li> |
| <li>if the map does not contain such an entry, |
| <code>a[x]</code> is the <a href="#The_zero_value">zero value</a> |
| for the value type of <code>M</code></li> |
| </ul> |
| |
| <p> |
| Otherwise <code>a[x]</code> is illegal. |
| </p> |
| |
| <p> |
| An index expression on a map <code>a</code> of type <code>map[K]V</code> |
| may be used in an assignment or initialization of the special form |
| </p> |
| |
| <pre> |
| v, ok = a[x] |
| v, ok := a[x] |
| var v, ok = a[x] |
| </pre> |
| |
| <p> |
| where the result of the index expression is a pair of values with types |
| <code>(V, bool)</code>. In this form, the value of <code>ok</code> is |
| <code>true</code> if the key <code>x</code> is present in the map, and |
| <code>false</code> otherwise. The value of <code>v</code> is the value |
| <code>a[x]</code> as in the single-result form. |
| </p> |
| |
| <p> |
| Similarly, if an assignment to a map has the special form |
| </p> |
| |
| <pre> |
| a[x] = v, ok |
| </pre> |
| |
| <p> |
| and boolean <code>ok</code> has the value <code>false</code>, |
| the entry for key <code>x</code> is deleted from the map; if |
| <code>ok</code> is <code>true</code>, the construct acts like |
| a regular assignment to an element of the map. |
| </p> |
| |
| |
| <h3 id="Slices">Slices</h3> |
| |
| <p> |
| For a string, array, or slice <code>a</code>, the primary expression |
| </p> |
| |
| <pre> |
| a[lo : hi] |
| </pre> |
| |
| <p> |
| constructs a substring or slice. The index expressions <code>lo</code> and |
| <code>hi</code> select which elements appear in the result. The result has |
| indexes starting at 0 and length equal to |
| <code>hi</code> - <code>lo</code>. |
| After slicing the array <code>a</code> |
| </p> |
| |
| <pre> |
| a := [5]int{1, 2, 3, 4, 5} |
| s := a[1:4] |
| </pre> |
| |
| <p> |
| the slice <code>s</code> has type <code>[]int</code>, length 3, capacity 4, and elements |
| </p> |
| |
| <pre> |
| s[0] == 2 |
| s[1] == 3 |
| s[2] == 4 |
| </pre> |
| |
| <p> |
| For convenience, the <code>hi</code> expression may be omitted; the notation |
| <code>a[lo :]</code> is shorthand for <code>a[lo : len(a)]</code>. |
| For arrays or strings, the indexes |
| <code>lo</code> and <code>hi</code> must satisfy |
| 0 <= <code>lo</code> <= <code>hi</code> <= length; |
| for slices, the upper bound is the capacity rather than the length. |
| </p> |
| |
| <p> |
| If the sliced operand is a string or slice, the result of the slice operation |
| is a string or slice of the same type. |
| If the sliced operand is an array, the result of the slice operation is a slice |
| with the same element type as the array. |
| </p> |
| |
| |
| <h3 id="Type_assertions">Type assertions</h3> |
| |
| <p> |
| For an expression <code>x</code> of <a href="#Interface_types">interface type</a> |
| and a type <code>T</code>, the primary expression |
| </p> |
| |
| <pre> |
| x.(T) |
| </pre> |
| |
| <p> |
| asserts that <code>x</code> is not <code>nil</code> |
| and that the value stored in <code>x</code> is of type <code>T</code>. |
| The notation <code>x.(T)</code> is called a <i>type assertion</i>. |
| </p> |
| <p> |
| More precisely, if <code>T</code> is not an interface type, <code>x.(T)</code> asserts |
| that the dynamic type of <code>x</code> is <a href="#Type_identity">identical</a> |
| to the type <code>T</code>. |
| If <code>T</code> is an interface type, <code>x.(T)</code> asserts that the dynamic type |
| of <code>x</code> implements the interface <code>T</code> (§<a href="#Interface_types">Interface types</a>). |
| </p> |
| <p> |
| If the type assertion holds, the value of the expression is the value |
| stored in <code>x</code> and its type is <code>T</code>. If the type assertion is false, |
| a <a href="#Run_time_panics">run-time panic</a> occurs. |
| In other words, even though the dynamic type of <code>x</code> |
| is known only at run-time, the type of <code>x.(T)</code> is |
| known to be <code>T</code> in a correct program. |
| </p> |
| <p> |
| If a type assertion is used in an assignment or initialization of the form |
| </p> |
| |
| <pre> |
| v, ok = x.(T) |
| v, ok := x.(T) |
| var v, ok = x.(T) |
| </pre> |
| |
| <p> |
| the result of the assertion is a pair of values with types <code>(T, bool)</code>. |
| If the assertion holds, the expression returns the pair <code>(x.(T), true)</code>; |
| otherwise, the expression returns <code>(Z, false)</code> where <code>Z</code> |
| is the <a href="#The_zero_value">zero value</a> for type <code>T</code>. |
| No run-time panic occurs in this case. |
| The type assertion in this construct thus acts like a function call |
| returning a value and a boolean indicating success. (§<a href="#Assignments">Assignments</a>) |
| </p> |
| |
| |
| <h3 id="Calls">Calls</h3> |
| |
| <p> |
| Given an expression <code>f</code> of function type |
| <code>F</code>, |
| </p> |
| |
| <pre> |
| f(a1, a2, ... an) |
| </pre> |
| |
| <p> |
| calls <code>f</code> with arguments <code>a1, a2, ... an</code>. |
| Except for one special case, arguments must be single-valued expressions |
| <a href="#Assignability">assignable</a> to the parameter types of |
| <code>F</code> and are evaluated before the function is called. |
| The type of the expression is the result type |
| of <code>F</code>. |
| A method invocation is similar but the method itself |
| is specified as a selector upon a value of the receiver type for |
| the method. |
| </p> |
| |
| <pre> |
| math.Atan2(x, y) // function call |
| var pt *Point |
| pt.Scale(3.5) // method call with receiver pt |
| </pre> |
| |
| <p> |
| As a special case, if the return parameters of a function or method |
| <code>g</code> are equal in number and individually |
| assignable to the parameters of another function or method |
| <code>f</code>, then the call <code>f(g(<i>parameters_of_g</i>))</code> |
| will invoke <code>f</code> after binding the return values of |
| <code>g</code> to the parameters of <code>f</code> in order. The call |
| of <code>f</code> must contain no parameters other than the call of <code>g</code>. |
| If <code>f</code> has a final <code>...</code> parameter, it is |
| assigned the return values of <code>g</code> that remain after |
| assignment of regular parameters. |
| </p> |
| |
| <pre> |
| func Split(s string, pos int) (string, string) { |
| return s[0:pos], s[pos:] |
| } |
| |
| func Join(s, t string) string { |
| return s + t |
| } |
| |
| if Join(Split(value, len(value)/2)) != value { |
| log.Crash("test fails") |
| } |
| </pre> |
| |
| <p> |
| A method call <code>x.m()</code> is valid if the method set of |
| (the type of) <code>x</code> contains <code>m</code> and the |
| argument list can be assigned to the parameter list of <code>m</code>. |
| If <code>x</code> is <a href="#Address_operators">addressable</a> and <code>&x</code>'s method |
| set contains <code>m</code>, <code>x.m()</code> is shorthand |
| for <code>(&x).m()</code>: |
| </p> |
| |
| <pre> |
| var p Point |
| p.Scale(3.5) |
| </pre> |
| |
| <p> |
| There is no distinct method type and there are no method literals. |
| </p> |
| |
| <h3 id="Passing_arguments_to_..._parameters">Passing arguments to <code>...</code> parameters</h3> |
| |
| <p> |
| If <code>f</code> is variadic with final parameter type <code>...T</code>, |
| then within the function the argument is equivalent to a parameter of type |
| <code>[]T</code>. At each call of <code>f</code>, the argument |
| passed to the final parameter is |
| a new slice of type <code>[]T</code> whose successive elements are |
| the actual arguments. The length of the slice is therefore the |
| number of arguments bound to the final parameter and |
| may differ for each call site. |
| </p> |
| |
| <p> |
| Given the function and call |
| </p> |
| <pre> |
| func Greeting(prefix string, who ... string) |
| Greeting("hello:", "Joe", "Anna", "Eileen") |
| </pre> |
| |
| <p> |
| Within <code>Greeting</code>, <code>who</code> will have value |
| <code>[]string{"Joe", "Anna", "Eileen")</code> |
| </p> |
| |
| |
| <p> |
| As a special case, if a function passes its own <code>...</code> parameter |
| as the <code>...</code> argument in a call to another function with |
| a <code>...</code> parameter of <a href="#Type_identity">identical type</a>, |
| the parameter is passed directly. In short, a formal <code>...</code> |
| parameter is passed unchanged as an actual <code>...</code> parameter provided the |
| types match. |
| </p> |
| |
| <h3 id="Operators">Operators</h3> |
| |
| <p> |
| Operators combine operands into expressions. |
| </p> |
| |
| <pre class="ebnf"> |
| Expression = UnaryExpr | Expression binary_op UnaryExpr . |
| UnaryExpr = PrimaryExpr | unary_op UnaryExpr . |
| |
| binary_op = log_op | com_op | rel_op | add_op | mul_op . |
| log_op = "||" | "&&" . |
| com_op = "<-" . |
| rel_op = "==" | "!=" | "<" | "<=" | ">" | ">=" . |
| add_op = "+" | "-" | "|" | "^" . |
| mul_op = "*" | "/" | "%" | "<<" | ">>" | "&" | "&^" . |
| |
| unary_op = "+" | "-" | "!" | "^" | "*" | "&" | "<-" . |
| </pre> |
| |
| <p> |
| Comparisons are discussed <a href="#Comparison_operators">elsewhere</a>. |
| For other binary operators, the operand types must be <a href="#Type_identity">identical</a> |
| unless the operation involves channels, shifts, or untyped <a href="#Constants">constants</a>. |
| For operations involving constants only, see the section on |
| <a href="#Constant_expressions">constant expressions</a>. |
| </p> |
| |
| <p> |
| In a channel send, the first operand is always a channel and the second |
| must be a value <a href="#Assignability">assignable</a> |
| to the channel's element type. |
| </p> |
| |
| <p> |
| Except for shift operations, |
| if one operand is an untyped <a href="#Constants">constant</a> |
| and the other operand is not, the constant is <a href="#Conversions">converted</a> |
| to the type of the other operand. |
| </p> |
| |
| <p> |
| The right operand in a shift operation must have unsigned integer type |
| or be an untyped constant that can be converted to unsigned integer type. |
| </p> |
| |
| <p> |
| If the left operand of a non-constant shift operation is an untyped constant, |
| the type of constant is what it would be if the shift operation were replaced by |
| the left operand alone. |
| </p> |
| |
| <pre> |
| var s uint = 33 |
| var i = 1<<s // 1 has type int |
| var j = int32(1<<s) // 1 has type int32; j == 0 |
| var u = uint64(1<<s) // 1 has type uint64; u == 1<<33 |
| var f = float(1<<s) // illegal: 1 has type float, cannot shift |
| var g = float(1<<33) // legal; 1<<33 is a constant shift operation; g == 1<<33 |
| </pre> |
| |
| <h3 id="Operator_precedence">Operator precedence</h3> |
| <p> |
| Unary operators have the highest precedence. |
| As the <code>++</code> and <code>--</code> operators form |
| statements, not expressions, they fall |
| outside the operator hierarchy. |
| As a consequence, statement <code>*p++</code> is the same as <code>(*p)++</code>. |
| <p> |
| There are six precedence levels for binary operators. |
| Multiplication operators bind strongest, followed by addition |
| operators, comparison operators, <code><-</code> (channel send), |
| <code>&&</code> (logical and), and finally <code>||</code> (logical or): |
| </p> |
| |
| <pre class="grammar"> |
| Precedence Operator |
| 6 * / % << >> & &^ |
| 5 + - | ^ |
| 4 == != < <= > >= |
| 3 <- |
| 2 && |
| 1 || |
| </pre> |
| |
| <p> |
| Binary operators of the same precedence associate from left to right. |
| For instance, <code>x / y * z</code> is the same as <code>(x / y) * z</code>. |
| </p> |
| |
| <pre> |
| +x |
| 23 + 3*x[i] |
| x <= f() |
| ^a >> b |
| f() || g() |
| x == y+1 && <-chan_ptr > 0 |
| </pre> |
| |
| |
| <h3 id="Arithmetic_operators">Arithmetic operators</h3> |
| <p> |
| Arithmetic operators apply to numeric values and yield a result of the same |
| type as the first operand. The four standard arithmetic operators (<code>+</code>, |
| <code>-</code>, <code>*</code>, <code>/</code>) apply to integer, |
| floating-point, and complex types; <code>+</code> also applies |
| to strings. All other arithmetic operators apply to integers only. |
| </p> |
| |
| <pre class="grammar"> |
| + sum integers, floats, complex values, strings |
| - difference integers, floats, complex values |
| * product integers, floats, complex values |
| / quotient integers, floats, complex values |
| % remainder integers |
| |
| & bitwise and integers |
| | bitwise or integers |
| ^ bitwise xor integers |
| &^ bit clear (and not) integers |
| |
| << left shift integer << unsigned integer |
| >> right shift integer >> unsigned integer |
| </pre> |
| |
| <p> |
| Strings can be concatenated using the <code>+</code> operator |
| or the <code>+=</code> assignment operator: |
| </p> |
| |
| <pre> |
| s := "hi" + string(c) |
| s += " and good bye" |
| </pre> |
| |
| <p> |
| String addition creates a new string by concatenating the operands. |
| </p> |
| <p> |
| For integer values, <code>/</code> and <code>%</code> satisfy the following relationship: |
| </p> |
| |
| <pre> |
| (a / b) * b + a % b == a |
| </pre> |
| |
| <p> |
| with <code>(a / b)</code> truncated towards zero. |
| </p> |
| |
| <pre> |
| x y x / y x % y |
| 5 3 1 2 |
| -5 3 -1 -2 |
| 5 -3 -1 2 |
| -5 -3 1 -2 |
| </pre> |
| |
| <p> |
| If the divisor is zero, a <a href="#Run_time_panics">run-time panic</a> occurs. |
| If the dividend is positive and the divisor is a constant power of 2, |
| the division may be replaced by a right shift, and computing the remainder may |
| be replaced by a bitwise "and" operation: |
| </p> |
| |
| <pre> |
| x x / 4 x % 4 x >> 2 x & 3 |
| 11 2 3 2 3 |
| -11 -2 -3 -3 1 |
| </pre> |
| |
| <p> |
| The shift operators shift the left operand by the shift count specified by the |
| right operand. They implement arithmetic shifts if the left operand is a signed |
| integer and logical shifts if it is an unsigned integer. The shift count must |
| be an unsigned integer. There is no upper limit on the shift count. Shifts behave |
| as if the left operand is shifted <code>n</code> times by 1 for a shift |
| count of <code>n</code>. |
| As a result, <code>x << 1</code> is the same as <code>x*2</code> |
| and <code>x >> 1</code> is the same as |
| <code>x/2</code> but truncated towards negative infinity. |
| </p> |
| |
| <p> |
| For integer operands, the unary operators |
| <code>+</code>, <code>-</code>, and <code>^</code> are defined as |
| follows: |
| </p> |
| |
| <pre class="grammar"> |
| +x is 0 + x |
| -x negation is 0 - x |
| ^x bitwise complement is m ^ x with m = "all bits set to 1" for unsigned x |
| and m = -1 for signed x |
| </pre> |
| |
| <p> |
| For floating-point numbers, |
| <code>+x</code> is the same as <code>x</code>, |
| while <code>-x</code> is the negation of <code>x</code>. |
| The result of a floating-point division by zero is not specified beyond the |
| IEEE-754 standard; whether a <a href="#Run_time_panics">run-time panic</a> |
| occurs is implementation-specific. |
| </p> |
| |
| <h3 id="Integer_overflow">Integer overflow</h3> |
| |
| <p> |
| For unsigned integer values, the operations <code>+</code>, |
| <code>-</code>, <code>*</code>, and <code><<</code> are |
| computed modulo 2<sup><i>n</i></sup>, where <i>n</i> is the bit width of |
| the unsigned integer's type |
| (§<a href="#Numeric_types">Numeric types</a>). Loosely speaking, these unsigned integer operations |
| discard high bits upon overflow, and programs may rely on ``wrap around''. |
| </p> |
| <p> |
| For signed integers, the operations <code>+</code>, |
| <code>-</code>, <code>*</code>, and <code><<</code> may legally |
| overflow and the resulting value exists and is deterministically defined |
| by the signed integer representation, the operation, and its operands. |
| No exception is raised as a result of overflow. A |
| compiler may not optimize code under the assumption that overflow does |
| not occur. For instance, it may not assume that <code>x < x + 1</code> is always true. |
| </p> |
| |
| |
| <h3 id="Comparison_operators">Comparison operators</h3> |
| |
| <p> |
| Comparison operators compare two operands and yield a value of type <code>bool</code>. |
| </p> |
| |
| <pre class="grammar"> |
| == equal |
| != not equal |
| < less |
| <= less or equal |
| > greater |
| >= greater or equal |
| </pre> |
| |
| <p> |
| The operands must be <i>comparable</i>; that is, the first operand |
| must be <a href="#Assignability">assignable</a> |
| to the type of the second operand, or vice versa. |
| </p> |
| <p> |
| The operators <code>==</code> and <code>!=</code> apply |
| to operands of all types except arrays and structs. |
| All other comparison operators apply only to integer, floating-point |
| and string values. The result of a comparison is defined as follows: |
| </p> |
| |
| <ul> |
| <li> |
| Integer values are compared in the usual way. |
| </li> |
| <li> |
| Floating point values are compared as defined by the IEEE-754 |
| standard. |
| </li> |
| <li> |
| Two complex values <code>u</code>, <code>v</code> are |
| equal if both <code>real(u) == real(v)</code> and |
| <code>imag(u) == imag(v)</code>. |
| </li> |
| <li> |
| String values are compared byte-wise (lexically). |
| </li> |
| <li> |
| Boolean values are are equal if they are either both |
| <code>true</code> or both <code>false</code>. |
| </li> |
| <li> |
| Pointer values are equal if they point to the same location |
| or if both are <code>nil</code>. |
| </li> |
| <li> |
| Function values are equal if they refer to the same function |
| or if both are <code>nil</code>. |
| </li> |
| <li> |
| A slice value may only be compared to <code>nil</code>. |
| </li> |
| <li> |
| Channel and map values are equal if they were created by the same call to <code>make</code> |
| (§<a href="#Making_slices_maps_and_channels">Making slices, maps, and channels</a>) |
| or if both are <code>nil</code>. |
| </li> |
| <li> |
| Interface values are equal if they have <a href="#Type_identity">identical</a> dynamic types and |
| equal dynamic values or if both are <code>nil</code>. |
| </li> |
| <li> |
| An interface value <code>x</code> is equal to a non-interface value |
| <code>y</code> if the dynamic type of <code>x</code> is identical to |
| the static type of <code>y</code> and the dynamic value of <code>x</code> |
| is equal to <code>y</code>. |
| </li> |
| <li> |
| A pointer, function, slice, channel, map, or interface value is equal |
| to <code>nil</code> if it has been assigned the explicit value |
| <code>nil</code>, if it is uninitialized, or if it has been assigned |
| another value equal to <code>nil</code>. |
| </li> |
| </ul> |
| |
| |
| <h3 id="Logical_operators">Logical operators</h3> |
| |
| <p> |
| Logical operators apply to <a href="#Boolean_types">boolean</a> values |
| and yield a result of the same type as the operands. |
| The right operand is evaluated conditionally. |
| </p> |
| |
| <pre class="grammar"> |
| && conditional and p && q is "if p then q else false" |
| || conditional or p || q is "if p then true else q" |
| ! not !p is "not p" |
| </pre> |
| |
| |
| <h3 id="Address_operators">Address operators</h3> |
| |
| <p> |
| The address-of operator <code>&</code> generates the address of its operand, |
| which must be <i>addressable</i>, |
| that is, either a variable, pointer indirection, or slice indexing |
| operation; |
| or a field selector of an addressable struct operand; |
| or an array indexing operation of an addressable array. |
| Given an operand of pointer type, the pointer indirection |
| operator <code>*</code> retrieves the value pointed |
| to by the operand. |
| </p> |
| |
| <pre> |
| &x |
| &a[f(2)] |
| *p |
| *pf(x) |
| </pre> |
| |
| <h3 id="Communication_operators">Communication operators</h3> |
| |
| <p> |
| The term <i>channel</i> means "value of <a href="#Channel_types">channel type</a>". |
| </p> |
| <p> |
| The send operation uses the binary operator "<-", which operates on |
| a channel and a value (expression): |
| </p> |
| |
| <pre> |
| ch <- 3 |
| </pre> |
| |
| <p> |
| The send operation sends the value on the channel. Both the channel |
| and the expression are evaluated before communication begins. |
| Communication blocks until the send can proceed, at which point the |
| value is transmitted on the channel. |
| A send on an unbuffered channel can proceed if a receiver is ready. |
| A send on a buffered channel can proceed if there is room in the buffer. |
| </p> |
| <p> |
| If the send operation appears in an expression context, the value |
| of the expression is a boolean and the operation is non-blocking. |
| The value of the boolean reports true if the communication succeeded, |
| false if it did not. (The channel and |
| the expression to be sent are evaluated regardless.) |
| These two examples are equivalent: |
| </p> |
| |
| <pre> |
| ok := ch <- 3 |
| if ok { print("sent") } else { print("not sent") } |
| |
| if ch <- 3 { print("sent") } else { print("not sent") } |
| </pre> |
| |
| <p> |
| In other words, if the program tests the value of a send operation, |
| the send is non-blocking and the value of the expression is the |
| success of the operation. If the program does not test the value, |
| the operation blocks until it succeeds. |
| </p> |
| <p> |
| The receive operation uses the prefix unary operator "<-". |
| The value of the expression is the value received, whose type |
| is the element type of the channel. |
| </p> |
| |
| <pre> |
| <-ch |
| </pre> |
| |
| <p> |
| The expression blocks until a value is available, which then can |
| be assigned to a variable or used like any other expression. |
| If the receive expression does not save the value, the value is |
| discarded. |
| </p> |
| |
| <pre> |
| v1 := <-ch |
| v2 = <-ch |
| f(<-ch) |
| <-strobe // wait until clock pulse |
| </pre> |
| |
| <p> |
| If a receive expression is used in an assignment or initialization of the form |
| </p> |
| |
| <pre> |
| x, ok = <-ch |
| x, ok := <-ch |
| var x, ok = <-ch |
| </pre> |
| |
| <p> |
| the receive operation becomes non-blocking. |
| If the operation can proceed, the boolean variable |
| <code>ok</code> will be set to <code>true</code> |
| and the value stored in <code>x</code>; otherwise |
| <code>ok</code> is set |
| to <code>false</code> and <code>x</code> is set to the |
| zero value for its type (§<a href="#The_zero_value">The zero value</a>). |
| </p> |
| |
| <p> |
| Except in a communications clause of a <a href="#Select_statements">select statement</a>, |
| sending or receiving from a <code>nil</code> channel causes a |
| <a href="#Run_time_panics">run-time panic</a>. |
| </p> |
| |
| <!--- |
| <p> |
| <span class="alert">TODO: Probably in a separate section, communication semantics |
| need to be presented regarding send, receive, select, and goroutines.</span> |
| </p> |
| ---> |
| |
| <h3 id="Method_expressions">Method expressions</h3> |
| |
| <p> |
| If <code>M</code> is in the method set of type <code>T</code>, |
| <code>T.M</code> is a function that is callable as a regular function |
| with the same arguments as <code>M</code> prefixed by an additional |
| argument that is the receiver of the method. |
| </p> |
| |
| <pre class="ebnf"> |
| MethodExpr = ReceiverType "." MethodName . |
| ReceiverType = TypeName | "(" "*" TypeName ")" . |
| </pre> |
| |
| <p> |
| Consider a struct type <code>T</code> with two methods, |
| <code>Mv</code>, whose receiver is of type <code>T</code>, and |
| <code>Mp</code>, whose receiver is of type <code>*T</code>. |
| </p> |
| |
| <pre> |
| type T struct { |
| a int |
| } |
| func (tv T) Mv(a int) int { return 0 } // value receiver |
| func (tp *T) Mp(f float) float { return 1 } // pointer receiver |
| var t T |
| </pre> |
| |
| <p> |
| The expression |
| </p> |
| |
| <pre> |
| T.Mv |
| </pre> |
| |
| <p> |
| yields a function equivalent to <code>Mv</code> but |
| with an explicit receiver as its first argument; it has signature |
| </p> |
| |
| <pre> |
| func(tv T, a int) int |
| </pre> |
| |
| <p> |
| That function may be called normally with an explicit receiver, so |
| these three invocations are equivalent: |
| </p> |
| |
| <pre> |
| t.Mv(7) |
| T.Mv(t, 7) |
| f := T.Mv; f(t, 7) |
| </pre> |
| |
| <p> |
| Similarly, the expression |
| </p> |
| |
| <pre> |
| (*T).Mp |
| </pre> |
| |
| <p> |
| yields a function value representing <code>Mp</code> with signature |
| </p> |
| |
| <pre> |
| func(tp *T, f float) float |
| </pre> |
| |
| <p> |
| For a method with a value receiver, one can derive a function |
| with an explicit pointer receiver, so |
| </p> |
| |
| <pre> |
| (*T).Mv |
| </pre> |
| |
| <p> |
| yields a function value representing <code>Mv</code> with signature |
| </p> |
| |
| <pre> |
| func(tv *T, a int) int |
| </pre> |
| |
| <p> |
| Such a function indirects through the receiver to create a value |
| to pass as the receiver to the underlying method; |
| the method does not overwrite the value whose address is passed in |
| the function call. |
| </p> |
| |
| <p> |
| The final case, a value-receiver function for a pointer-receiver method, |
| is illegal because pointer-receiver methods are not in the method set |
| of the value type. |
| </p> |
| |
| <p> |
| Function values derived from methods are called with function call syntax; |
| the receiver is provided as the first argument to the call. |
| That is, given <code>f := T.Mv</code>, <code>f</code> is invoked |
| as <code>f(t, 7)</code> not <code>t.f(7)</code>. |
| To construct a function that binds the receiver, use a |
| <a href="#Function_literals">closure</a>. |
| </p> |
| |
| <p> |
| It is legal to derive a function value from a method of an interface type. |
| The resulting function takes an explicit receiver of that interface type. |
| </p> |
| |
| <h3 id="Conversions">Conversions</h3> |
| |
| <p> |
| Conversions are expressions of the form <code>T(x)</code> |
| where <code>T</code> is a type and <code>x</code> is an expression |
| that can be converted to type <code>T</code>. |
| </p> |
| |
| <pre class="ebnf"> |
| Conversion = Type "(" Expression ")" . |
| </pre> |
| |
| <p> |
| If the type starts with an operator it must be parenthesized: |
| </p> |
| |
| <pre> |
| *Point(p) // same as *(Point(p)) |
| (*Point)(p) // p is converted to (*Point) |
| <-chan int(c) // same as <-(chan int(c)) |
| (<-chan int)(c) // c is converted to (<-chan int) |
| </pre> |
| |
| <p> |
| A value <code>x</code> can be converted to type <code>T</code> in any |
| of these cases: |
| </p> |
| |
| <ul> |
| <li> |
| <code>x</code> is <a href="#Assignability">assignable</a> |
| to <code>T</code>. |
| </li> |
| <li> |
| <code>x</code>'s type and <code>T</code> have identical |
| <a href="#Types">underlying types</a>. |
| </li> |
| <li> |
| <code>x</code>'s type and <code>T</code> are unnamed pointer types |
| and their pointer base types have identical underlying types. |
| </li> |
| <li> |
| <code>x</code>'s type and <code>T</code> are both integer or floating |
| point types. |
| </li> |
| <li> |
| <code>x</code>'s type and <code>T</code> are both complex types. |
| </li> |
| <li> |
| <code>x</code> is an integer or has type <code>[]byte</code> or |
| <code>[]int</code> and <code>T</code> is a string type. |
| </li> |
| <li> |
| <code>x</code> is a string and <code>T</code> is <code>[]byte</code> or |
| <code>[]int</code>. |
| </li> |
| </ul> |
| |
| <p> |
| Specific rules apply to conversions between numeric types or to and from |
| a string type. |
| These conversions may change the representation of <code>x</code> |
| and incur a run-time cost. |
| All other conversions only change the type but not the representation |
| of <code>x</code>. |
| </p> |
| |
| <h4>Conversions between numeric types</h4> |
| <ol> |
| <li> |
| When converting between integer types, if the value is a signed integer, it is |
| sign extended to implicit infinite precision; otherwise it is zero extended. |
| It is then truncated to fit in the result type's size. |
| For example, if <code>v := uint16(0x10F0)</code>, then <code>uint32(int8(v)) == 0xFFFFFFF0</code>. |
| The conversion always yields a valid value; there is no indication of overflow. |
| </li> |
| <li> |
| When converting a floating-point number to an integer, the fraction is discarded |
| (truncation towards zero). |
| </li> |
| <li> |
| When converting an integer or floating-point number to a floating-point type, |
| or a complex number to another complex type, the result value is rounded |
| to the precision specified by the destination type. |
| For instance, the value of a variable <code>x</code> of type <code>float32</code> |
| may be stored using additional precision beyond that of an IEEE-754 32-bit number, |
| but float32(x) represents the result of rounding <code>x</code>'s value to |
| 32-bit precision. Similarly, <code>x + 0.1</code> may use more than 32 bits |
| of precision, but <code>float32(x + 0.1)</code> does not. |
| </li> |
| </ol> |
| |
| <p> |
| In all conversions involving floating-point or complex values, |
| if the result type cannot represent the value the conversion |
| succeeds but the result value is |
| implementation-dependent. |
| </p> |
| |
| <h4>Conversions to and from a string type</h4> |
| |
| <ol> |
| <li> |
| Converting a signed or unsigned integer value to a string type yields a |
| string containing the UTF-8 representation of the integer. Values outside |
| the range of valid Unicode code points are converted to <code>"\uFFFD"</code>. |
| |
| <pre> |
| string('a') // "a" |
| string(-1) // "\ufffd" == "\xef\xbf\xbd " |
| string(0xf8) // "\u00f8" == "ø" == "\xc3\xb8" |
| type MyString string |
| MyString(0x65e5) // "\u65e5" == "日" == "\xe6\x97\xa5" |
| </pre> |
| </li> |
| |
| <li> |
| Converting a value of type <code>[]byte</code> (or |
| the equivalent <code>[]uint8</code>) to a string type yields a |
| string whose successive bytes are the elements of the slice. If |
| the slice value is <code>nil</code>, the result is the empty string. |
| |
| <pre> |
| string([]byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'}) // "hellø" |
| </pre> |
| </li> |
| |
| <li> |
| Converting a value of type <code>[]int</code> to a string type yields |
| a string that is the concatenation of the individual integers |
| converted to strings. If the slice value is <code>nil</code>, the |
| result is the empty string. |
| <pre> |
| string([]int{0x767d, 0x9d6c, 0x7fd4}) // "\u767d\u9d6c\u7fd4" == "白鵬翔" |
| </pre> |
| </li> |
| |
| <li> |
| Converting a value of a string type to <code>[]byte</code> (or <code>[]uint8</code>) |
| yields a slice whose successive elements are the bytes of the string. |
| If the string is empty, the result is <code>[]byte(nil)</code>. |
| |
| <pre> |
| []byte("hellø") // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'} |
| </pre> |
| </li> |
| |
| <li> |
| Converting a value of a string type to <code>[]int</code> yields a |
| slice containing the individual Unicode code points of the string. |
| If the string is empty, the result is <code>[]int(nil)</code>. |
| <pre> |
| []int(MyString("白鵬翔")) // []int{0x767d, 0x9d6c, 0x7fd4} |
| </pre> |
| </li> |
| </ol> |
| |
| <p> |
| There is no linguistic mechanism to convert between pointers and integers. |
| The package <a href="#Package_unsafe"><code>unsafe</code></a> |
| implements this functionality under |
| restricted circumstances. |
| </p> |
| |
| <h3 id="Constant_expressions">Constant expressions</h3> |
| |
| <p> |
| Constant expressions may contain only <a href="#Constants">constant</a> |
| operands and are evaluated at compile-time. |
| </p> |
| |
| <p> |
| Untyped boolean, numeric, and string constants may be used as operands |
| wherever it is legal to use an operand of boolean, numeric, or string type, |
| respectively. Except for shift operations, if the operands of a binary operation |
| are an untyped integer constant and an untyped floating-point constant, |
| the integer constant is converted to an untyped floating-point constant |
| (relevant for <code>/</code> and <code>%</code>). |
| Similarly, |
| untyped integer or floating-point constants may be used as operands |
| wherever it is legal to use an operand of complex type; |
| the integer or floating point constant is converted to a |
| complex constant with a zero imaginary part. |
| </p> |
| |
| <p> |
| Applying an operator to untyped constants results in an untyped |
| constant of the same kind (that is, a boolean, integer, floating-point, |
| complex, or string constant), except for |
| <a href="#Comparison_operators">comparison operators</a>, which result in |
| a constant of type <code>bool</code>. |
| </p> |
| |
| <p> |
| Imaginary literals are untyped complex constants (with zero real part) |
| and may be combined in binary |
| operations with untyped integer and floating-point constants; the |
| result is an untyped complex constant. |
| Complex constants are always constructed from |
| constant expressions involving imaginary |
| literals or constants derived from them, or calls of the built-in function |
| <a href="#Complex_numbers"><code>cmplx</code></a>. |
| </p> |
| |
| <pre> |
| const Σ = 1 - 0.707i |
| const Δ = Σ + 2.0e-4 - 1/1i |
| const Φ = iota * 1i |
| const iΓ = cmplx(0, Γ) |
| </pre> |
| |
| <p> |
| Constant expressions are always evaluated exactly; intermediate values and the |
| constants themselves may require precision significantly larger than supported |
| by any predeclared type in the language. The following are legal declarations: |
| </p> |
| |
| <pre> |
| const Huge = 1 << 100 |
| const Four int8 = Huge >> 98 |
| </pre> |
| |
| <p> |
| The values of <i>typed</i> constants must always be accurately representable as values |
| of the constant type. The following constant expressions are illegal: |
| </p> |
| |
| <pre> |
| uint(-1) // -1 cannot be represented as a uint |
| int(3.14) // 3.14 cannot be represented as an int |
| int64(Huge) // 1<<100 cannot be represented as an int64 |
| Four * 300 // 300 cannot be represented as an int8 |
| Four * 100 // 400 cannot be represented as an int8 |
| </pre> |
| |
| <p> |
| The mask used by the unary bitwise complement operator <code>^</code> matches |
| the rule for non-constants: the mask is all 1s for unsigned constants |
| and -1 for signed and untyped constants. |
| </p> |
| |
| <pre> |
| ^1 // untyped integer constant, equal to -2 |
| uint8(^1) // error, same as uint8(-2), out of range |
| ^uint8(1) // typed uint8 constant, same as 0xFF ^ uint8(1) = uint8(0xFE) |
| int8(^1) // same as int8(-2) |
| ^int8(1) // same as -1 ^ int8(1) = -2 |
| </pre> |
| |
| <!--- |
| <p> |
| <span class="alert"> |
| TODO: perhaps ^ should be disallowed on non-uints instead of assuming twos complement. |
| Also it may be possible to make typed constants more like variables, at the cost of fewer |
| overflow etc. errors being caught. |
| </span> |
| </p> |
| ---> |
| |
| <h3 id="Order_of_evaluation">Order of evaluation</h3> |
| |
| <p> |
| When evaluating the elements of an assignment or expression, |
| all function calls, method calls and |
| communication operations are evaluated in lexical left-to-right |
| order. |
| </p> |
| |
| <p> |
| For example, in the assignment |
| </p> |
| <pre> |
| y[f()], ok = g(h(), i() + x[j()], <-c), k() |
| </pre> |
| <p> |
| the function calls and communication happen in the order |
| <code>f()</code>, <code>h()</code>, <code>i()</code>, <code>j()</code>, |
| <code><-c</code>, <code>g()</code>, and <code>k()</code>. |
| However, the order of those events compared to the evaluation |
| and indexing of <code>x</code> and the evaluation |
| of <code>y</code> is not specified. |
| </p> |
| |
| <p> |
| Floating-point operations within a single expression are evaluated according to |
| the associativity of the operators. Explicit parentheses affect the evaluation |
| by overriding the default associativity. |
| In the expression <code>x + (y + z)</code> the addition <code>y + z</code> |
| is performed before adding <code>x</code>. |
| </p> |
| |
| <h2 id="Statements">Statements</h2> |
| |
| <p> |
| Statements control execution. |
| </p> |
| |
| <pre class="ebnf"> |
| Statement = |
| Declaration | LabeledStmt | SimpleStmt | |
| GoStmt | ReturnStmt | BreakStmt | ContinueStmt | GotoStmt | |
| FallthroughStmt | Block | IfStmt | SwitchStmt | SelectStmt | ForStmt | |
| DeferStmt . |
| |
| SimpleStmt = EmptyStmt | ExpressionStmt | IncDecStmt | Assignment | ShortVarDecl . |
| </pre> |
| |
| |
| <h3 id="Empty_statements">Empty statements</h3> |
| |
| <p> |
| The empty statement does nothing. |
| </p> |
| |
| <pre class="ebnf"> |
| EmptyStmt = . |
| </pre> |
| |
| |
| <h3 id="Labeled_statements">Labeled statements</h3> |
| |
| <p> |
| A labeled statement may be the target of a <code>goto</code>, |
| <code>break</code> or <code>continue</code> statement. |
| </p> |
| |
| <pre class="ebnf"> |
| LabeledStmt = Label ":" Statement . |
| Label = identifier . |
| </pre> |
| |
| <pre> |
| Error: log.Crash("error encountered") |
| </pre> |
| |
| |
| <h3 id="Expression_statements">Expression statements</h3> |
| |
| <p> |
| Function calls, method calls, and channel operations |
| can appear in statement context. |
| </p> |
| |
| |
| <pre class="ebnf"> |
| ExpressionStmt = Expression . |
| </pre> |
| |
| <pre> |
| f(x+y) |
| <-ch |
| </pre> |
| |
| |
| <h3 id="IncDec_statements">IncDec statements</h3> |
| |
| <p> |
| The "++" and "--" statements increment or decrement their operands |
| by the untyped <a href="#Constants">constant</a> <code>1</code>. |
| As with an assignment, the operand must be a variable, pointer indirection, |
| field selector or index expression. |
| </p> |
| |
| <pre class="ebnf"> |
| IncDecStmt = Expression ( "++" | "--" ) . |
| </pre> |
| |
| <p> |
| The following <a href="#Assignments">assignment statements</a> are semantically |
| equivalent: |
| </p> |
| |
| <pre class="grammar"> |
| IncDec statement Assignment |
| x++ x += 1 |
| x-- x -= 1 |
| </pre> |
| |
| <h3 id="Assignments">Assignments</h3> |
| |
| <pre class="ebnf"> |
| Assignment = ExpressionList assign_op ExpressionList . |
| |
| assign_op = [ add_op | mul_op ] "=" . |
| </pre> |
| |
| <p> |
| Each left-hand side operand must be <a href="#Address_operators">addressable</a>, |
| a map index expression, |
| or the <a href="#Blank_identifier">blank identifier</a>. |
| </p> |
| |
| <pre> |
| x = 1 |
| *p = f() |
| a[i] = 23 |
| k = <-ch |
| </pre> |
| |
| <p> |
| An <i>assignment operation</i> <code>x</code> <i>op</i><code>=</code> |
| <code>y</code> where <i>op</i> is a binary arithmetic operation is equivalent |
| to <code>x</code> <code>=</code> <code>x</code> <i>op</i> |
| <code>y</code> but evaluates <code>x</code> |
| only once. The <i>op</i><code>=</code> construct is a single token. |
| In assignment operations, both the left- and right-hand expression lists |
| must contain exactly one single-valued expression. |
| </p> |
| |
| <pre> |
| a[i] <<= 2 |
| i &^= 1<<n |
| </pre> |
| |
| <p> |
| A tuple assignment assigns the individual elements of a multi-valued |
| operation to a list of variables. There are two forms. In the |
| first, the right hand operand is a single multi-valued expression |
| such as a function evaluation or <a href="#Channel_types">channel</a> or |
| <a href="#Map_types">map</a> operation or a <a href="#Type_assertions">type assertion</a>. |
| The number of operands on the left |
| hand side must match the number of values. For instance, if |
| <code>f</code> is a function returning two values, |
| </p> |
| |
| <pre> |
| x, y = f() |
| </pre> |
| |
| <p> |
| assigns the first value to <code>x</code> and the second to <code>y</code>. |
| The <a href="#Blank_identifier">blank identifier</a> provides a |
| way to ignore values returned by a multi-valued expression: |
| </p> |
| |
| <pre> |
| x, _ = f() // ignore second value returned by f() |
| </pre> |
| |
| <p> |
| In the second form, the number of operands on the left must equal the number |
| of expressions on the right, each of which must be single-valued, and the |
| <i>n</i>th expression on the right is assigned to the <i>n</i>th |
| operand on the left. |
| The expressions on the right are evaluated before assigning to |
| any of the operands on the left, but otherwise the evaluation |
| order is unspecified beyond <a href="#Order_of_evaluation">the usual rules</a>. |
| </p> |
| |
| <pre> |
| a, b = b, a // exchange a and b |
| </pre> |
| |
| <p> |
| In assignments, each value must be |
| <a href="#Assignability">assignable</a> to the type of the |
| operand to which it is assigned. If an untyped <a href="#Constants">constant</a> |
| is assigned to a variable of interface type, the constant is <a href="#Conversions">converted</a> |
| to type <code>bool</code>, <code>int</code>, <code>float</code>, |
| <code>complex</code> or <code>string</code> |
| respectively, depending on whether the value is a boolean, integer, floating-point, |
| complex, or string constant. |
| </p> |
| |
| |
| <h3 id="If_statements">If statements</h3> |
| |
| <p> |
| "If" statements specify the conditional execution of two branches |
| according to the value of a boolean expression. If the expression |
| evaluates to true, the "if" branch is executed, otherwise, if |
| present, the "else" branch is executed. A missing condition |
| is equivalent to <code>true</code>. |
| </p> |
| |
| <pre class="ebnf"> |
| IfStmt = "if" [ SimpleStmt ";" ] [ Expression ] Block [ "else" Statement ] . |
| </pre> |
| |
| <pre> |
| if x > 0 { |
| return true; |
| } |
| </pre> |
| |
| <p> |
| The expression may be preceded by a simple statement, which |
| executes before the expression is evaluated. |
| </p> |
| |
| <pre> |
| if x := f(); x < y { |
| return x |
| } else if x > z { |
| return z |
| } else { |
| return y |
| } |
| </pre> |
| |
| |
| <h3 id="Switch_statements">Switch statements</h3> |
| |
| <p> |
| "Switch" statements provide multi-way execution. |
| An expression or type specifier is compared to the "cases" |
| inside the "switch" to determine which branch |
| to execute. |
| </p> |
| |
| <pre class="ebnf"> |
| SwitchStmt = ExprSwitchStmt | TypeSwitchStmt . |
| </pre> |
| |
| <p> |
| There are two forms: expression switches and type switches. |
| In an expression switch, the cases contain expressions that are compared |
| against the value of the switch expression. |
| In a type switch, the cases contain types that are compared against the |
| type of a specially annotated switch expression. |
| </p> |
| |
| <h4 id="Expression_switches">Expression switches</h4> |
| |
| <p> |
| In an expression switch, |
| the switch expression is evaluated and |
| the case expressions, which need not be constants, |
| are evaluated left-to-right and top-to-bottom; the first one that equals the |
| switch expression |
| triggers execution of the statements of the associated case; |
| the other cases are skipped. |
| If no case matches and there is a "default" case, |
| its statements are executed. |
| There can be at most one default case and it may appear anywhere in the |
| "switch" statement. |
| A missing switch expression is equivalent to |
| the expression <code>true</code>. |
| </p> |
| |
| <pre class="ebnf"> |
| ExprSwitchStmt = "switch" [ SimpleStmt ";" ] [ Expression ] "{" { ExprCaseClause } "}" . |
| ExprCaseClause = ExprSwitchCase ":" { Statement ";" } . |
| ExprSwitchCase = "case" ExpressionList | "default" . |
| </pre> |
| |
| <p> |
| In a case or default clause, |
| the last statement only may be a "fallthrough" statement |
| (§<a href="#Fallthrough_statements">Fallthrough statement</a>) to |
| indicate that control should flow from the end of this clause to |
| the first statement of the next clause. |
| Otherwise control flows to the end of the "switch" statement. |
| </p> |
| |
| <p> |
| The expression may be preceded by a simple statement, which |
| executes before the expression is evaluated. |
| </p> |
| |
| <pre> |
| switch tag { |
| default: s3() |
| case 0, 1, 2, 3: s1() |
| case 4, 5, 6, 7: s2() |
| } |
| |
| switch x := f(); { // missing switch expression means "true" |
| case x < 0: return -x |
| default: return x |
| } |
| |
| switch { |
| case x < y: f1() |
| case x < z: f2() |
| case x == 4: f3() |
| } |
| </pre> |
| |
| <h4 id="Type_switches">Type switches</h4> |
| |
| <p> |
| A type switch compares types rather than values. It is otherwise similar |
| to an expression switch. It is marked by a special switch expression that |
| has the form of a <a href="#Type_assertions">type assertion</a> |
| using the reserved word <code>type</code> rather than an actual type. |
| Cases then match literal types against the dynamic type of the expression |
| in the type assertion. |
| </p> |
| |
| <pre class="ebnf"> |
| TypeSwitchStmt = "switch" [ SimpleStmt ";" ] TypeSwitchGuard "{" { TypeCaseClause } "}" . |
| TypeSwitchGuard = [ identifier ":=" ] PrimaryExpr "." "(" "type" ")" . |
| TypeCaseClause = TypeSwitchCase ":" { Statement ";" } . |
| TypeSwitchCase = "case" TypeList | "default" . |
| TypeList = Type { "," Type } . |
| </pre> |
| |
| <p> |
| The TypeSwitchGuard may include a |
| <a href="#Short_variable_declarations">short variable declaration</a>. |
| When that form is used, the variable is declared in each clause. |
| In clauses with a case listing exactly one type, the variable |
| has that type; otherwise, the variable has the type of the expression |
| in the TypeSwitchGuard. |
| </p> |
| |
| <p> |
| The type in a case may be <code>nil</code> |
| (§<a href="#Predeclared_identifiers">Predeclared identifiers</a>); |
| that case is used when the expression in the TypeSwitchGuard |
| is a <code>nil</code> interface value. |
| </p> |
| |
| <p> |
| Given an expression <code>x</code> of type <code>interface{}</code>, |
| the following type switch: |
| </p> |
| |
| <pre> |
| switch i := x.(type) { |
| case nil: |
| printString("x is nil") |
| case int: |
| printInt(i) // i is an int |
| case float: |
| printFloat(i) // i is a float |
| case func(int) float: |
| printFunction(i) // i is a function |
| case bool, string: |
| printString("type is bool or string") // i is an interface{} |
| default: |
| printString("don't know the type") |
| } |
| </pre> |
| |
| <p> |
| could be rewritten: |
| </p> |
| |
| <pre> |
| v := x // x is evaluated exactly once |
| if v == nil { |
| printString("x is nil") |
| } else if i, is_int := v.(int); is_int { |
| printInt(i) // i is an int |
| } else if i, is_float := v.(float); is_float { |
| printFloat(i) // i is a float |
| } else if i, is_func := v.(func(int) float); is_func { |
| printFunction(i) // i is a function |
| } else { |
| i1, is_bool := v.(bool) |
| i2, is_string := v.(string) |
| if is_bool || is_string { |
| i := v |
| printString("type is bool or string") // i is an interface{} |
| } else { |
| i := v |
| printString("don't know the type") // i is an interface{} |
| } |
| } |
| </pre> |
| |
| <p> |
| The type switch guard may be preceded by a simple statement, which |
| executes before the guard is evaluated. |
| </p> |
| |
| <p> |
| The "fallthrough" statement is not permitted in a type switch. |
| </p> |
| |
| <h3 id="For_statements">For statements</h3> |
| |
| <p> |
| A "for" statement specifies repeated execution of a block. The iteration is |
| controlled by a condition, a "for" clause, or a "range" clause. |
| </p> |
| |
| <pre class="ebnf"> |
| ForStmt = "for" [ Condition | ForClause | RangeClause ] Block . |
| Condition = Expression . |
| </pre> |
| |
| <p> |
| In its simplest form, a "for" statement specifies the repeated execution of |
| a block as long as a boolean condition evaluates to true. |
| The condition is evaluated before each iteration. |
| If the condition is absent, it is equivalent to <code>true</code>. |
| </p> |
| |
| <pre> |
| for a < b { |
| a *= 2 |
| } |
| </pre> |
| |
| <p> |
| A "for" statement with a ForClause is also controlled by its condition, but |
| additionally it may specify an <i>init</i> |
| and a <i>post</i> statement, such as an assignment, |
| an increment or decrement statement. The init statement may be a |
| <a href="#Short_variable_declarations">short variable declaration</a>, but the post statement must not. |
| </p> |
| |
| <pre class="ebnf"> |
| ForClause = [ InitStmt ] ";" [ Condition ] ";" [ PostStmt ] . |
| InitStmt = SimpleStmt . |
| PostStmt = SimpleStmt . |
| </pre> |
| |
| <pre> |
| for i := 0; i < 10; i++ { |
| f(i) |
| } |
| </pre> |
| |
| <p> |
| If non-empty, the init statement is executed once before evaluating the |
| condition for the first iteration; |
| the post statement is executed after each execution of the block (and |
| only if the block was executed). |
| Any element of the ForClause may be empty but the |
| <a href="#Semicolons">semicolons</a> are |
| required unless there is only a condition. |
| If the condition is absent, it is equivalent to <code>true</code>. |
| </p> |
| |
| <pre> |
| for cond { S() } is the same as for ; cond ; { S() } |
| for { S() } is the same as for true { S() } |
| </pre> |
| |
| <p> |
| A "for" statement with a "range" clause |
| iterates through all entries of an array, slice, string or map, |
| or values received on a channel. |
| For each entry it first assigns the current index or key to an iteration |
| variable - or the current (index, element) or (key, value) pair to a pair |
| of iteration variables - and then executes the block. |
| </p> |
| |
| <pre class="ebnf"> |
| RangeClause = ExpressionList ( "=" | ":=" ) "range" Expression . |
| </pre> |
| |
| <p> |
| The type of the right-hand expression in the "range" clause must be an |
| array, slice, string or map, or a pointer to an array; |
| or it may be a channel. |
| Except for channels, |
| the identifier list must contain one or two expressions |
| (as in assignments, these must be a |
| variable, pointer indirection, field selector, or index expression) |
| denoting the |
| iteration variables. On each iteration, |
| the first variable is set to the string, array or slice index or |
| map key, and the second variable, if present, is set to the corresponding |
| string or array element or map value. |
| The types of the array or slice index (always <code>int</code>) |
| and element, or of the map key and value respectively, |
| must be <a href="#Assignability">assignable</a> to |
| the type of the iteration variables. The expression on the right hand |
| side is evaluated once before beginning the loop. At each iteration |
| of the loop, the values produced by the range clause are assigned to |
| the left hand side as in an <a href="#Assignments">assignment |
| statement</a>. Function calls on the left hand side will be evaluated |
| exactly once per iteration. |
| </p> |
| <p> |
| For a value of a string type, the "range" clause iterates over the Unicode code points |
| in the string. On successive iterations, the index variable will be the |
| index of the first byte of successive UTF-8-encoded code points in the string, and |
| the second variable, of type <code>int</code>, will be the value of |
| the corresponding code point. If the iteration encounters an invalid |
| UTF-8 sequence, the second variable will be <code>0xFFFD</code>, |
| the Unicode replacement character, and the next iteration will advance |
| a single byte in the string. |
| </p> |
| <p> |
| For channels, the identifier list must contain one identifier. |
| The iteration receives values sent on the channel until the channel is closed; |
| it does not process the zero value sent before the channel is closed. |
| </p> |
| <p> |
| The iteration variables may be declared by the "range" clause (":="), in which |
| case their scope ends at the end of the "for" statement (§<a href="#Declarations_and">Declarations and</a> |
| scope rules). In this case their types are set to |
| <code>int</code> and the array element type, or the map key and value types, respectively. |
| If the iteration variables are declared outside the "for" statement, |
| after execution their values will be those of the last iteration. |
| </p> |
| |
| <pre> |
| var a [10]string |
| m := map[string]int{"mon":0, "tue":1, "wed":2, "thu":3, "fri":4, "sat":5, "sun":6} |
| |
| for i, s := range a { |
| // type of i is int |
| // type of s is string |
| // s == a[i] |
| g(i, s) |
| } |
| |
| var key string |
| var val interface {} // value type of m is assignable to val |
| for key, val = range m { |
| h(key, val) |
| } |
| // key == last map key encountered in iteration |
| // val == map[key] |
| </pre> |
| |
| <p> |
| If map entries that have not yet been processed are deleted during iteration, |
| they will not be processed. If map entries are inserted during iteration, the |
| behavior is implementation-dependent, but each entry will be processed at most once. |
| </p> |
| |
| <h3 id="Go_statements">Go statements</h3> |
| |
| <p> |
| A "go" statement starts the execution of a function or method call |
| as an independent concurrent thread of control, or <i>goroutine</i>, |
| within the same address space. |
| </p> |
| |
| <pre class="ebnf"> |
| GoStmt = "go" Expression . |
| </pre> |
| |
| <p> |
| The expression must be a call, and |
| unlike with a regular call, program execution does not wait |
| for the invoked function to complete. |
| </p> |
| |
| <pre> |
| go Server() |
| go func(ch chan<- bool) { for { sleep(10); ch <- true; }} (c) |
| </pre> |
| |
| |
| <h3 id="Select_statements">Select statements</h3> |
| |
| <p> |
| A "select" statement chooses which of a set of possible communications |
| will proceed. It looks similar to a "switch" statement but with the |
| cases all referring to communication operations. |
| </p> |
| |
| <pre class="ebnf"> |
| SelectStmt = "select" "{" { CommClause } "}" . |
| CommClause = CommCase ":" { Statement ";" } . |
| CommCase = "case" ( SendExpr | RecvExpr) | "default" . |
| SendExpr = Expression "<-" Expression . |
| RecvExpr = [ Expression ( "=" | ":=" ) ] "<-" Expression . |
| </pre> |
| |
| <p> |
| For all the send and receive expressions in the "select" |
| statement, the channel expressions are evaluated in top-to-bottom order, along with |
| any expressions that appear on the right hand side of send expressions. |
| A channel pointer may be <code>nil</code>, |
| which is equivalent to that case not |
| being present in the select statement |
| except, if a send, its expression is still evaluated. |
| If any of the resulting operations can proceed, one of those is |
| chosen and the corresponding communication and statements are |
| evaluated. Otherwise, if there is a default case, that executes; |
| if there is no default case, the statement blocks until one of the communications can |
| complete. |
| If there are no cases with non-<code>nil</code> channels, |
| the statement blocks forever. |
| Even if the statement blocks, |
| the channel and send expressions are evaluated only once, |
| upon entering the select statement. |
| </p> |
| <p> |
| Since all the channels and send expressions are evaluated, any side |
| effects in that evaluation will occur for all the communications |
| in the "select" statement. |
| </p> |
| <p> |
| If multiple cases can proceed, a pseudo-random fair choice is made to decide |
| which single communication will execute. |
| <p> |
| The receive case may declare a new variable using a |
| <a href="#Short_variable_declarations">short variable declaration</a>. |
| </p> |
| |
| <pre> |
| var c, c1, c2 chan int |
| var i1, i2 int |
| select { |
| case i1 = <-c1: |
| print("received ", i1, " from c1\n") |
| case c2 <- i2: |
| print("sent ", i2, " to c2\n") |
| default: |
| print("no communication\n") |
| } |
| |
| for { // send random sequence of bits to c |
| select { |
| case c <- 0: // note: no statement, no fallthrough, no folding of cases |
| case c <- 1: |
| } |
| } |
| |
| select { } // block forever |
| </pre> |
| |
| |
| <h3 id="Return_statements">Return statements</h3> |
| |
| <p> |
| A "return" statement terminates execution of the containing function |
| and optionally provides a result value or values to the caller. |
| </p> |
| |
| <pre class="ebnf"> |
| ReturnStmt = "return" [ ExpressionList ] . |
| </pre> |
| |
| <p> |
| In a function without a result type, a "return" statement must not |
| specify any result values. |
| </p> |
| <pre> |
| func no_result() { |
| return |
| } |
| </pre> |
| |
| <p> |
| There are three ways to return values from a function with a result |
| type: |
| </p> |
| |
| <ol> |
| <li>The return value or values may be explicitly listed |
| in the "return" statement. Each expression must be single-valued |
| and <a href="#Assignability">assignable</a> |
| to the corresponding element of the function's result type. |
| <pre> |
| func simple_f() int { |
| return 2 |
| } |
| |
| func complex_f1() (re float, im float) { |
| return -7.0, -4.0 |
| } |
| </pre> |
| </li> |
| <li>The expression list in the "return" statement may be a single |
| call to a multi-valued function. The effect is as if each value |
| returned from that function were assigned to a temporary |
| variable with the type of the respective value, followed by a |
| "return" statement listing these variables, at which point the |
| rules of the previous case apply. |
| <pre> |
| func complex_f2() (re float, im float) { |
| return complex_f1() |
| } |
| </pre> |
| </li> |
| <li>The expression list may be empty if the functions's result |
| type specifies names for its result parameters (§<a href="#Function_Types">Function Types</a>). |
| The result parameters act as ordinary local variables |
| and the function may assign values to them as necessary. |
| The "return" statement returns the values of these variables. |
| <pre> |
| func complex_f3() (re float, im float) { |
| re = 7.0 |
| im = 4.0 |
| return |
| } |
| </pre> |
| </li> |
| </ol> |
| |
| <p> |
| Regardless of how they are declared, all the result values are initialized to the zero values for their type (§<a href="#The_zero_value">The zero value</a>) upon entry to the function. |
| </p> |
| |
| <!--- |
| <p> |
| <span class="alert"> |
| TODO: Define when return is required.<br /> |
| TODO: Language about result parameters needs to go into a section on |
| function/method invocation<br /> |
| </span> |
| </p> |
| ---> |
| |
| <h3 id="Break_statements">Break statements</h3> |
| |
| <p> |
| A "break" statement terminates execution of the innermost |
| "for", "switch" or "select" statement. |
| </p> |
| |
| <pre class="ebnf"> |
| BreakStmt = "break" [ Label ] . |
| </pre> |
| |
| <p> |
| If there is a label, it must be that of an enclosing |
| "for", "switch" or "select" statement, and that is the one whose execution |
| terminates |
| (§<a href="#For_statements">For statements</a>, §<a href="#Switch_statements">Switch statements</a>, §<a href="#Select_statements">Select statements</a>). |
| </p> |
| |
| <pre> |
| L: for i < n { |
| switch i { |
| case 5: break L |
| } |
| } |
| </pre> |
| |
| <h3 id="Continue_statements">Continue statements</h3> |
| |
| <p> |
| A "continue" statement begins the next iteration of the |
| innermost "for" loop at its post statement (§<a href="#For_statements">For statements</a>). |
| </p> |
| |
| <pre class="ebnf"> |
| ContinueStmt = "continue" [ Label ] . |
| </pre> |
| |
| <p> |
| If there is a label, it must be that of an enclosing |
| "for" statement, and that is the one whose execution |
| advances |
| (§<a href="#For_statements">For statements</a>). |
| </p> |
| |
| <h3 id="Goto_statements">Goto statements</h3> |
| |
| <p> |
| A "goto" statement transfers control to the statement with the corresponding label. |
| </p> |
| |
| <pre class="ebnf"> |
| GotoStmt = "goto" Label . |
| </pre> |
| |
| <pre> |
| goto Error |
| </pre> |
| |
| <p> |
| Executing the "goto" statement must not cause any variables to come into |
| scope that were not already in scope at the point of the goto. For |
| instance, this example: |
| </p> |
| |
| <pre> |
| goto L // BAD |
| v := 3 |
| L: |
| </pre> |
| |
| <p> |
| is erroneous because the jump to label <code>L</code> skips |
| the creation of <code>v</code>. |
| <!--- |
| (<span class="alert">TODO: Eliminate in favor of used and not set errors?</span>) |
| ---> |
| </p> |
| |
| <h3 id="Fallthrough_statements">Fallthrough statements</h3> |
| |
| <p> |
| A "fallthrough" statement transfers control to the first statement of the |
| next case clause in a expression "switch" statement (§<a href="#Expression_switches">Expression switches</a>). It may |
| be used only as the final non-empty statement in a case or default clause in an |
| expression "switch" statement. |
| </p> |
| |
| <pre class="ebnf"> |
| FallthroughStmt = "fallthrough" . |
| </pre> |
| |
| |
| <h3 id="Defer_statements">Defer statements</h3> |
| |
| <p> |
| A "defer" statement invokes a function whose execution is deferred to the moment |
| the surrounding function returns. |
| </p> |
| |
| <pre class="ebnf"> |
| DeferStmt = "defer" Expression . |
| </pre> |
| |
| <p> |
| The expression must be a function or method call. |
| Each time the "defer" statement |
| executes, the parameters to the function call are evaluated and saved anew but the |
| function is not invoked. |
| Deferred function calls are executed in LIFO order |
| immediately before the surrounding function returns, |
| after the return values, if any, have been evaluated, but before they |
| are returned to the caller. For instance, if the deferred function is |
| a <a href="#Function_literals">function literal</a> and the surrounding |
| function has <a href="#Function_types">named result parameters</a> that |
| are in scope within the literal, the deferred function may access and modify |
| the result parameters before they are returned. |
| </p> |
| |
| <pre> |
| lock(l) |
| defer unlock(l) // unlocking happens before surrounding function returns |
| |
| // prints 3 2 1 0 before surrounding function returns |
| for i := 0; i <= 3; i++ { |
| defer fmt.Print(i) |
| } |
| |
| // f returns 1 |
| func f() (result int) { |
| defer func() { |
| result++ |
| }() |
| return 0 |
| } |
| </pre> |
| |
| <h2 id="Built-in_functions">Built-in functions</h2> |
| |
| <p> |
| Built-in functions are |
| <a href="#Predeclared_identifiers">predeclared</a>. |
| They are called like any other function but some of them |
| accept a type instead of an expression as the first argument. |
| </p> |
| |
| <p> |
| The built-in functions do not have standard Go types, |
| so they can only appear in <a href="#Calls">call expressions</a>; |
| they cannot be used as function values. |
| </p> |
| |
| <pre class="ebnf"> |
| BuiltinCall = identifier "(" [ BuiltinArgs ] ")" . |
| BuiltinArgs = Type [ "," ExpressionList ] | ExpressionList . |
| </pre> |
| |
| <h3 id="Close_and_closed">Close and closed</h3> |
| |
| <p> |
| For a channel <code>c</code>, the built-in function <code>close(c)</code> |
| marks the channel as unable to accept more values through a send operation; |
| values sent to a closed channed are ignored. |
| After calling <code>close</code>, and after any previously |
| sent values have been received, receive operations will return |
| the zero value for the channel's type without blocking. |
| After at least one such zero value has been |
| received, <code>closed(c)</code> returns true. |
| </p> |
| |
| |
| <h3 id="Length_and_capacity">Length and capacity</h3> |
| |
| <p> |
| The built-in functions <code>len</code> and <code>cap</code> take arguments |
| of various types and return a result of type <code>int</code>. |
| The implementation guarantees that the result always fits into an <code>int</code>. |
| </p> |
| |
| <pre class="grammar"> |
| Call Argument type Result |
| |
| len(s) string type string length in bytes |
| [n]T, *[n]T array length (== n) |
| []T slice length |
| map[K]T map length (number of defined keys) |
| chan T number of elements queued in channel buffer |
| |
| cap(s) [n]T, *[n]T array length (== n) |
| []T slice capacity |
| chan T channel buffer capacity |
| </pre> |
| |
| <p> |
| The capacity of a slice is the number of elements for which there is |
| space allocated in the underlying array. |
| At any time the following relationship holds: |
| </p> |
| |
| <pre> |
| 0 <= len(s) <= cap(s) |
| </pre> |
| |
| <p> |
| The length and capacity of a <code>nil</code> slice, map, or channel are 0. |
| </p> |
| |
| <p> |
| The expression |
| <code>len(s)</code> is a |
| <a href="#Constants">constant</a> if <code>s</code> is a string constant. |
| The expressions |
| <code>len(s)</code> and |
| <code>cap(s)</code> are |
| constants if <code>s</code> is an (optionally parenthesized) |
| identifier or |
| <a href="#Qualified_identifiers">qualified identifier</a> |
| denoting an array or pointer to array. |
| Otherwise invocations of <code>len</code> and <code>cap</code> are not |
| constant. |
| </p> |
| |
| <h3 id="Allocation">Allocation</h3> |
| |
| <p> |
| The built-in function <code>new</code> takes a type <code>T</code> and |
| returns a value of type <code>*T</code>. |
| The memory is initialized as described in the section on initial values |
| (§<a href="#The_zero_value">The zero value</a>). |
| </p> |
| |
| <pre class="grammar"> |
| new(T) |
| </pre> |
| |
| <p> |
| For instance |
| </p> |
| |
| <pre> |
| type S struct { a int; b float } |
| new(S) |
| </pre> |
| |
| <p> |
| dynamically allocates memory for a variable of type <code>S</code>, |
| initializes it (<code>a=0</code>, <code>b=0.0</code>), |
| and returns a value of type <code>*S</code> containing the address |
| of the memory. |
| </p> |
| |
| <h3 id="Making_slices_maps_and_channels">Making slices, maps and channels</h3> |
| |
| <p> |
| Slices, maps and channels are reference types that do not require the |
| extra indirection of an allocation with <code>new</code>. |
| The built-in function <code>make</code> takes a type <code>T</code>, |
| which must be a slice, map or channel type, |
| optionally followed by a type-specific list of expressions. |
| It returns a value of type <code>T</code> (not <code>*T</code>). |
| The memory is initialized as described in the section on initial values |
| (§<a href="#The_zero_value">The zero value</a>). |
| </p> |
| |
| <pre class="grammar"> |
| Call Type T Result |
| |
| make(T, n) slice slice of type T with length n and capacity n |
| make(T, n, m) slice slice of type T with length n and capacity m |
| |
| make(T) map map of type T |
| make(T, n) map map of type T with initial space for n elements |
| |
| make(T) channel synchronous channel of type T |
| make(T, n) channel asynchronous channel of type T, buffer size n |
| </pre> |
| |
| |
| <p> |
| The arguments <code>n</code> and <code>m</code> must be of integer type. |
| A <a href="#Run_time_panics">run-time panic</a> occurs if <code>n</code> |
| is negative or larger than <code>m</code>, or if <code>n</code> or |
| <code>m</code> cannot be represented by an <code>int</code>. |
| </p> |
| |
| <pre> |
| s := make([]int, 10, 100) // slice with len(s) == 10, cap(s) == 100 |
| s := make([]int, 10) // slice with len(s) == cap(s) == 10 |
| c := make(chan int, 10) // channel with a buffer size of 10 |
| m := make(map[string] int, 100) // map with initial space for 100 elements |
| </pre> |
| |
| |
| <h3 id="Copying_slices">Copying slices</h3> |
| |
| <p> |
| The built-in function <code>copy</code> copies slice elements from |
| a source <code>src</code> to a destination <code>dst</code> and returns the |
| number of elements copied. Source and destination may overlap. |
| Both arguments must have <a href="#Type_identity">identical</a> element type <code>T</code> and must be |
| <a href="#Assignability">assignable</a> to a slice |
| of type <code>[]T</code>. The number of arguments copied is the minimum of |
| <code>len(src)</code> and <code>len(dst)</code>. |
| </p> |
| |
| <pre class="grammar"> |
| copy(dst, src []T) int |
| </pre> |
| |
| <p> |
| Examples: |
| </p> |
| |
| <pre> |
| var a = [...]int{0, 1, 2, 3, 4, 5, 6, 7} |
| var s = make([]int, 6) |
| n1 := copy(s, a[0:]) // n1 == 6, s == []int{0, 1, 2, 3, 4, 5} |
| n2 := copy(s, s[2:]) // n2 == 4, s == []int{2, 3, 4, 5, 4, 5} |
| </pre> |
| |
| <h3 id="Complex_numbers">Assembling and disassembling complex numbers</h3> |
| |
| <p> |
| Three functions assemble and disassemble complex numbers. |
| The built-in function <code>cmplx</code> constructs a complex |
| value from a floating-point real and imaginary part, while |
| <code>real</code> and <code>imag</code> |
| extract the real and imaginary parts of a complex value. |
| </p> |
| |
| <pre class="grammar"> |
| cmplx(realPart, imaginaryPart floatT) complexT |
| real(complexT) floatT |
| imag(complexT) floatT |
| </pre> |
| |
| <p> |
| The type of the arguments and return value correspond. |
| For <code>cmplx</code>, the two arguments must be of the same |
| floating-point type and the return type is the complex type |
| with the corresponding floating-point constituents: |
| <code>complex</code> for <code>float</code>, |
| <code>complex64</code> for <code>float32</code>, |
| <code>complex128</code> for <code>float64</code>. |
| The <code>real</code> and <code>imag</code> functions |
| together form the inverse, so for a complex value <code>z</code>, |
| <code>z</code> <code>==</code> <code>cmplx(real(z),</code> <code>imag(z))</code>. |
| </p> |
| |
| <p> |
| If the operands of these functions are all constants, the return |
| value is a constant. |
| </p> |
| |
| <pre> |
| var a = cmplx(2, -2) // has type complex |
| var b = cmplx(1.0, -1.4) // has type complex |
| x := float32(math.Cos(math.Pi/2)) |
| var c64 = cmplx(5, -x) // has type complex64 |
| var im = imag(b) // has type float |
| var rl = real(c64) // type float32 |
| </pre> |
| |
| <h3 id="Handling_panics">Handling panics</h3> |
| |
| <p> Two built-in functions, <code>panic</code> and <code>recover</code>, |
| assist in reporting and handling <a href="#Run_time_panics">run-time panics</a> |
| and program-defined error conditions. |
| </p> |
| |
| <pre class="grammar"> |
| func panic(interface{}) |
| func recover() interface{} |
| </pre> |
| |
| <p> |
| <span class="alert">TODO: Most of this text could move to the respective |
| comments in <code>runtime.go</code> once the functions are implemented. |
| They are here, at least for now, for reference and discussion. |
| </span> |
| </p> |
| |
| <p> |
| When a function <code>F</code> calls <code>panic</code>, normal |
| execution of <code>F</code> stops immediately. Any functions whose |
| execution was <a href="#Defer_statements">deferred</a> by the |
| invocation of <code>F</code> are run in the usual way, and then |
| <code>F</code> returns to its caller. To the caller, <code>F</code> |
| then behaves like a call to <code>panic</code>, terminating its own |
| execution and running deferred functions. This continues until all |
| functions in the goroutine have ceased execution, in reverse order. |
| At that point, the program is |
| terminated and the error condition is reported, including the value of |
| the argument to <code>panic</code>. This termination sequence is |
| called <i>panicking</i>. |
| </p> |
| |
| <p> |
| The <code>recover</code> function allows a program to manage behavior |
| of a panicking goroutine. Executing a <code>recover</code> call |
| inside a deferred function (but not any function called by it) stops |
| the panicking sequence by restoring normal execution, and retrieves |
| the error value passed to the call of <code>panic</code>. If |
| <code>recover</code> is called outside the deferred function it will |
| not stop a panicking sequence. In this case, and when the goroutine |
| is not panicking, <code>recover</code> returns <code>nil</code>. |
| </p> |
| |
| <p> |
| If the function defined here, |
| </p> |
| |
| <pre> |
| func f(hideErrors bool) { |
| defer func() { |
| if x := recover(); x != nil { |
| println("panicking with value", x) |
| if !hideErrors { |
| panic(x) // go back to panicking |
| } |
| } |
| println("function returns normally") // executes only when hideErrors==true |
| }() |
| println("before") |
| p() |
| println("after") // never executes |
| } |
| |
| func p() { |
| panic(3) |
| } |
| </pre> |
| |
| <p> |
| is called with <code>hideErrors=true</code>, it prints |
| </p> |
| |
| <pre> |
| before |
| panicking with value 3 |
| function returns normally |
| </pre> |
| |
| <p> |
| and resumes normal execution in the function that called <code>f</code>. Otherwise, it prints |
| </p> |
| |
| <pre> |
| before |
| panicking with value 3 |
| </pre> |
| |
| <p> |
| and, absent further <code>recover</code> calls, terminates the program. |
| </p> |
| |
| <p> |
| Since deferred functions run before assigning the return values to the caller |
| of the deferring function, a deferred invocation of a function literal may modify the |
| invoking function's return values in the event of a panic. This permits a function to protect its |
| caller from panics that occur in functions it calls. |
| </p> |
| |
| <pre> |
| func IsPrintable(s string) (ok bool) { |
| ok = true |
| defer func() { |
| if recover() != nil { |
| println("input is not printable") |
| ok = false |
| } |
| // Panicking has stopped; execution will resume normally in caller. |
| // The return value will be true normally, false if a panic occurred. |
| } |
| panicIfNotPrintable(s) // will panic if validations fails. |
| } |
| </pre> |
| |
| <!--- |
| <p> |
| A deferred function that calls <code>recover</code> will see the |
| argument passed to <code>panic</code>. However, functions called |
| <i>from</i> the deferred function run normally, without behaving as |
| though they are panicking. This allows deferred code to run normally |
| in case recovery is necessary and guarantees that functions that manage |
| their own panics will not fail incorrectly. The function |
| </p> |
| |
| <pre> |
| func g() { |
| s := ReadString() |
| defer func() { |
| if IsPrintable(s) { |
| println("finished processing", s) |
| } else { |
| println("finished processing unprintable string") |
| } |
| }() |
| Analyze(s) |
| } |
| </pre> |
| |
| <p> |
| will not cause <code>IsPrintable</code> to print <code>"input is not printable"</code> |
| due to a <code>panic</code> triggered by the call to <code>Analyze</code>. |
| </p> |
| --> |
| |
| <h3 id="Bootstrapping">Bootstrapping</h3> |
| |
| <p> |
| Current implementations provide several built-in functions useful during |
| bootstrapping. These functions are documented for completeness but are not |
| guaranteed to stay in the language. They do not return a result. |
| </p> |
| |
| <pre class="grammar"> |
| Function Behavior |
| |
| print prints all arguments; formatting of arguments is implementation-specific |
| println like print but prints spaces between arguments and a newline at the end |
| </pre> |
| |
| |
| <h2 id="Packages">Packages</h2> |
| |
| <p> |
| Go programs are constructed by linking together <i>packages</i>. |
| A package in turn is constructed from one or more source files |
| that together declare constants, types, variables and functions |
| belonging to the package and which are accessible in all files |
| of the same package. Those elements may be |
| <a href="#Exported_identifiers">exported</a> and used in another package. |
| </p> |
| |
| <h3 id="Source_file_organization">Source file organization</h3> |
| |
| <p> |
| Each source file consists of a package clause defining the package |
| to which it belongs, followed by a possibly empty set of import |
| declarations that declare packages whose contents it wishes to use, |
| followed by a possibly empty set of declarations of functions, |
| types, variables, and constants. |
| </p> |
| |
| <pre class="ebnf"> |
| SourceFile = PackageClause ";" { ImportDecl ";" } { TopLevelDecl ";" } . |
| </pre> |
| |
| <h3 id="Package_clause">Package clause</h3> |
| |
| <p> |
| A package clause begins each source file and defines the package |
| to which the file belongs. |
| </p> |
| |
| <pre class="ebnf"> |
| PackageClause = "package" PackageName . |
| PackageName = identifier . |
| </pre> |
| |
| <p> |
| The PackageName must not be the <a href="#Blank_identifier">blank identifier</a>. |
| </p> |
| |
| <pre> |
| package math |
| </pre> |
| |
| <p> |
| A set of files sharing the same PackageName form the implementation of a package. |
| An implementation may require that all source files for a package inhabit the same directory. |
| </p> |
| |
| <h3 id="Import_declarations">Import declarations</h3> |
| |
| <p> |
| An import declaration states that the source file containing the |
| declaration uses identifiers |
| <a href="#Exported_identifiers">exported</a> by the <i>imported</i> |
| package and enables access to them. The import names an |
| identifier (PackageName) to be used for access and an ImportPath |
| that specifies the package to be imported. |
| </p> |
| |
| <pre class="ebnf"> |
| ImportDecl = "import" ( ImportSpec | "(" { ImportSpec ";" } ")" ) . |
| ImportSpec = [ "." | PackageName ] ImportPath . |
| ImportPath = string_lit . |
| </pre> |
| |
| <p> |
| The PackageName is used in <a href="#Qualified_identifiers">qualified identifiers</a> |
| to access the exported identifiers of the package within the importing source file. |
| It is declared in the <a href="#Blocks">file block</a>. |
| If the PackageName is omitted, it defaults to the identifier specified in the |
| <a href="#Package_clauses">package clause</a> of the imported package. |
| If an explicit period (<code>.</code>) appears instead of a name, all the |
| package's exported identifiers will be declared in the current file's |
| file block and can be accessed without a qualifier. |
| </p> |
| |
| <p> |
| The interpretation of the ImportPath is implementation-dependent but |
| it is typically a substring of the full file name of the compiled |
| package and may be relative to a repository of installed packages. |
| </p> |
| |
| <p> |
| Assume we have compiled a package containing the package clause |
| <code>package math</code>, which exports function <code>Sin</code>, and |
| installed the compiled package in the file identified by |
| <code>"lib/math"</code>. |
| This table illustrates how <code>Sin</code> may be accessed in files |
| that import the package after the |
| various types of import declaration. |
| </p> |
| |
| <pre class="grammar"> |
| Import declaration Local name of Sin |
| |
| import "lib/math" math.Sin |
| import M "lib/math" M.Sin |
| import . "lib/math" Sin |
| </pre> |
| |
| <p> |
| An import declaration declares a dependency relation between |
| the importing and imported package. |
| It is illegal for a package to import itself or to import a package without |
| referring to any of its exported identifiers. To import a package solely for |
| its side-effects (initialization), use the <a href="#Blank_identifier">blank</a> |
| identifier as explicit package name: |
| </p> |
| |
| <pre> |
| import _ "lib/math" |
| </pre> |
| |
| |
| <h3 id="An_example_package">An example package</h3> |
| |
| <p> |
| Here is a complete Go package that implements a concurrent prime sieve. |
| </p> |
| |
| <pre> |
| package main |
| |
| import "fmt" |
| |
| // Send the sequence 2, 3, 4, ... to channel 'ch'. |
| func generate(ch chan<- int) { |
| for i := 2; ; i++ { |
| ch <- i // Send 'i' to channel 'ch'. |
| } |
| } |
| |
| // Copy the values from channel 'src' to channel 'dst', |
| // removing those divisible by 'prime'. |
| func filter(src <-chan int, dst chan<- int, prime int) { |
| for i := range src { // Loop over values received from 'src'. |
| if i%prime != 0 { |
| dst <- i // Send 'i' to channel 'dst'. |
| } |
| } |
| } |
| |
| // The prime sieve: Daisy-chain filter processes together. |
| func sieve() { |
| ch := make(chan int) // Create a new channel. |
| go generate(ch) // Start generate() as a subprocess. |
| for { |
| prime := <-ch |
| fmt.Print(prime, "\n") |
| ch1 := make(chan int) |
| go filter(ch, ch1, prime) |
| ch = ch1 |
| } |
| } |
| |
| func main() { |
| sieve() |
| } |
| </pre> |
| |
| <h2 id="Program_initialization_and_execution">Program initialization and execution</h2> |
| |
| <h3 id="The_zero_value">The zero value</h3> |
| <p> |
| When memory is allocated to store a value, either through a declaration |
| or <code>make()</code> or <code>new()</code> call, |
| and no explicit initialization is provided, the memory is |
| given a default initialization. Each element of such a value is |
| set to the <i>zero value</i> for its type: <code>false</code> for booleans, |
| <code>0</code> for integers, <code>0.0</code> for floats, <code>""</code> |
| for strings, and <code>nil</code> for pointers, functions, interfaces, slices, channels, and maps. |
| This initialization is done recursively, so for instance each element of an |
| array of structs will have its fields zeroed if no value is specified. |
| </p> |
| <p> |
| These two simple declarations are equivalent: |
| </p> |
| |
| <pre> |
| var i int |
| var i int = 0 |
| </pre> |
| |
| <p> |
| After |
| </p> |
| |
| <pre> |
| type T struct { i int; f float; next *T } |
| t := new(T) |
| </pre> |
| |
| <p> |
| the following holds: |
| </p> |
| |
| <pre> |
| t.i == 0 |
| t.f == 0.0 |
| t.next == nil |
| </pre> |
| |
| <p> |
| The same would also be true after |
| </p> |
| |
| <pre> |
| var t T |
| </pre> |
| |
| <h3 id="Program_execution">Program execution</h3> |
| <p> |
| A package with no imports is initialized by assigning initial values to |
| all its package-level variables |
| and then calling any |
| package-level function with the name and signature of |
| </p> |
| <pre> |
| func init() |
| </pre> |
| <p> |
| defined in its source. |
| A package may contain multiple |
| <code>init()</code> functions, even |
| within a single source file; they execute |
| in unspecified order. |
| </p> |
| <p> |
| Within a package, package-level variables are initialized, |
| and constant values are determined, in |
| data-dependent order: if the initializer of <code>A</code> |
| depends on the value of <code>B</code>, <code>A</code> |
| will be set after <code>B</code>. |
| It is an error if such dependencies form a cycle. |
| Dependency analysis is done lexically: <code>A</code> |
| depends on <code>B</code> if the value of <code>A</code> |
| contains a mention of <code>B</code>, contains a value |
| whose initializer |
| mentions <code>B</code>, or mentions a function that |
| mentions <code>B</code>, recursively. |
| If two items are not interdependent, they will be initialized |
| in the order they appear in the source. |
| Since the dependency analysis is done per package, it can produce |
| unspecified results if <code>A</code>'s initializer calls a function defined |
| in another package that refers to <code>B</code>. |
| </p> |
| <p> |
| Initialization code may contain "go" statements, but the functions |
| they invoke do not begin execution until initialization of the entire |
| program is complete. Therefore, all initialization code is run in a single |
| goroutine. |
| </p> |
| <p> |
| An <code>init()</code> function cannot be referred to from anywhere |
| in a program. In particular, <code>init()</code> cannot be called explicitly, |
| nor can a pointer to <code>init</code> be assigned to a function variable. |
| </p> |
| <p> |
| If a package has imports, the imported packages are initialized |
| before initializing the package itself. If multiple packages import |
| a package <code>P</code>, <code>P</code> will be initialized only once. |
| </p> |
| <p> |
| The importing of packages, by construction, guarantees that there can |
| be no cyclic dependencies in initialization. |
| </p> |
| <p> |
| A complete program, possibly created by linking multiple packages, |
| must have one package called <code>main</code>, with a function |
| </p> |
| |
| <pre> |
| func main() { ... } |
| </pre> |
| |
| <p> |
| defined. |
| The function <code>main.main()</code> takes no arguments and returns no value. |
| </p> |
| <p> |
| Program execution begins by initializing the <code>main</code> package and then |
| invoking <code>main.main()</code>. |
| </p> |
| <p> |
| When <code>main.main()</code> returns, the program exits. It does not wait for |
| other (non-<code>main</code>) goroutines to complete. |
| </p> |
| <p> |
| Implementation restriction: The compiler assumes package <code>main</code> |
| is not imported by any other package. |
| </p> |
| |
| <h2 id="Run_time_panics">Run-time panics</h2> |
| |
| <p> |
| Execution errors such as attempting to index an array out |
| of bounds trigger a <i>run-time panic</i> equivalent to a call of |
| the built-in function <a href="#Handling_panics"><code>panic</code></a> |
| with a value of the implementation-defined interface type <code>runtime.Error</code>. |
| That type defines at least the method |
| <code>String() string</code>. The exact error values that |
| represent distinct run-time error conditions are unspecified, |
| at least for now. |
| </p> |
| |
| <pre> |
| package runtime |
| |
| type Error interface { |
| String() string |
| // and perhaps others |
| } |
| </pre> |
| |
| <h2 id="System_considerations">System considerations</h2> |
| |
| <h3 id="Package_unsafe">Package <code>unsafe</code></h3> |
| |
| <p> |
| The built-in package <code>unsafe</code>, known to the compiler, |
| provides facilities for low-level programming including operations |
| that violate the type system. A package using <code>unsafe</code> |
| must be vetted manually for type safety. The package provides the |
| following interface: |
| </p> |
| |
| <pre class="grammar"> |
| package unsafe |
| |
| type ArbitraryType int // shorthand for an arbitrary Go type; it is not a real type |
| type Pointer *ArbitraryType |
| |
| func Alignof(variable ArbitraryType) int |
| func Offsetof(selector ArbitraryType) int |
| func Sizeof(variable ArbitraryType) int |
| |
| func Reflect(val interface {}) (typ runtime.Type, addr uintptr) |
| func Typeof(val interface {}) reflect.Type |
| func Unreflect(typ runtime.Type, addr uintptr) interface{} |
| </pre> |
| |
| <p> |
| Any pointer or value of type <code>uintptr</code> can be converted into |
| a <code>Pointer</code> and vice versa. |
| </p> |
| <p> |
| The function <code>Sizeof</code> takes an expression denoting a |
| variable of any type and returns the size of the variable in bytes. |
| </p> |
| <p> |
| The function <code>Offsetof</code> takes a selector (§<a href="#Selectors">Selectors</a>) denoting a struct |
| field of any type and returns the field offset in bytes relative to the |
| struct's address. |
| For a struct <code>s</code> with field <code>f</code>: |
| </p> |
| |
| <pre> |
| uintptr(unsafe.Pointer(&s)) + uintptr(unsafe.Offsetof(s.f)) == uintptr(unsafe.Pointer(&s.f)) |
| </pre> |
| |
| <p> |
| Computer architectures may require memory addresses to be <i>aligned</i>; |
| that is, for addresses of a variable to be a multiple of a factor, |
| the variable's type's <i>alignment</i>. The function <code>Alignof</code> |
| takes an expression denoting a variable of any type and returns the |
| alignment of the (type of the) variable in bytes. For a variable |
| <code>x</code>: |
| </p> |
| |
| <pre> |
| uintptr(unsafe.Pointer(&x)) % uintptr(unsafe.Alignof(x)) == 0 |
| </pre> |
| |
| <p> |
| Calls to <code>Alignof</code>, <code>Offsetof</code>, and |
| <code>Sizeof</code> are compile-time constant expressions of type <code>int</code>. |
| </p> |
| <p> |
| The functions <code>unsafe.Typeof</code>, |
| <code>unsafe.Reflect</code>, |
| and <code>unsafe.Unreflect</code> allow access at run time to the dynamic |
| types and values stored in interfaces. |
| <code>Typeof</code> returns a representation of |
| <code>val</code>'s |
| dynamic type as a <code>runtime.Type</code>. |
| <code>Reflect</code> allocates a copy of |
| <code>val</code>'s dynamic |
| value and returns both the type and the address of the copy. |
| <code>Unreflect</code> inverts <code>Reflect</code>, |
| creating an |
| interface value from a type and address. |
| The <a href="/pkg/reflect/"><code>reflect</code> package</a> built on these primitives |
| provides a safe, more convenient way to inspect interface values. |
| </p> |
| |
| |
| <h3 id="Size_and_alignment_guarantees">Size and alignment guarantees</h3> |
| |
| <p> |
| For the numeric types (§<a href="#Numeric_types">Numeric types</a>), the following sizes are guaranteed: |
| </p> |
| |
| <pre class="grammar"> |
| type size in bytes |
| |
| byte, uint8, int8 1 |
| uint16, int16 2 |
| uint32, int32, float32 4 |
| uint64, int64, float64 8 |
| </pre> |
| |
| <p> |
| The following minimal alignment properties are guaranteed: |
| </p> |
| <ol> |
| <li>For a variable <code>x</code> of any type: <code>1 <= unsafe.Alignof(x) <= unsafe.Maxalign</code>. |
| </li> |
| |
| <li>For a variable <code>x</code> of numeric type: <code>unsafe.Alignof(x)</code> is the smaller |
| of <code>unsafe.Sizeof(x)</code> and <code>unsafe.Maxalign</code>, but at least 1. |
| </li> |
| |
| <li>For a variable <code>x</code> of struct type: <code>unsafe.Alignof(x)</code> is the largest of |
| all the values <code>unsafe.Alignof(x.f)</code> for each field <code>f</code> of x, but at least 1. |
| </li> |
| |
| <li>For a variable <code>x</code> of array type: <code>unsafe.Alignof(x)</code> is the same as |
| <code>unsafe.Alignof(x[0])</code>, but at least 1. |
| </li> |
| </ol> |
| |
| <h2 id="Implementation_differences"><span class="alert">Implementation differences - TODO</span></h2> |
| <ul> |
| <li><span class="alert">Implementation does not honor the restriction on goto statements and targets (no intervening declarations).</span></li> |
| <li><span class="alert">Method expressions are partially implemented.</span></li> |
| <li><span class="alert">Gccgo: allows only one init() function per source file.</span></li> |
| <li><span class="alert">Gccgo: Deferred functions cannot access the surrounding function's result parameters.</span></li> |
| <li><span class="alert">Gccgo: Function results are not addressable.</span></li> |
| <li><span class="alert">Gccgo: Recover is not implemented.</span></li> |
| <li><span class="alert">Gccgo: The implemented version of panic differs from its specification.</span></li> |
| </ul> |