blob: 3d382473e129a2501b66838d9776a5493c78d196 [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Integer numbers
//
// Integers are normalized if the mantissa is normalized and the sign is
// false for mant == 0. Use MakeInt to create normalized Integers.
package bignum
import (
"fmt";
)
// TODO(gri) Complete the set of in-place operations.
// Integer represents a signed integer value of arbitrary precision.
//
type Integer struct {
sign bool;
mant Natural;
}
// MakeInt makes an integer given a sign and a mantissa.
// The number is positive (>= 0) if sign is false or the
// mantissa is zero; it is negative otherwise.
//
func MakeInt(sign bool, mant Natural) *Integer {
if mant.IsZero() {
sign = false // normalize
}
return &Integer{sign, mant};
}
// Int creates a small integer with value x.
//
func Int(x int64) *Integer {
var ux uint64;
if x < 0 {
// For the most negative x, -x == x, and
// the bit pattern has the correct value.
ux = uint64(-x)
} else {
ux = uint64(x)
}
return MakeInt(x < 0, Nat(ux));
}
// Value returns the value of x, if x fits into an int64;
// otherwise the result is undefined.
//
func (x *Integer) Value() int64 {
z := int64(x.mant.Value());
if x.sign {
z = -z
}
return z;
}
// Abs returns the absolute value of x.
//
func (x *Integer) Abs() Natural { return x.mant }
// Predicates
// IsEven returns true iff x is divisible by 2.
//
func (x *Integer) IsEven() bool { return x.mant.IsEven() }
// IsOdd returns true iff x is not divisible by 2.
//
func (x *Integer) IsOdd() bool { return x.mant.IsOdd() }
// IsZero returns true iff x == 0.
//
func (x *Integer) IsZero() bool { return x.mant.IsZero() }
// IsNeg returns true iff x < 0.
//
func (x *Integer) IsNeg() bool { return x.sign && !x.mant.IsZero() }
// IsPos returns true iff x >= 0.
//
func (x *Integer) IsPos() bool { return !x.sign && !x.mant.IsZero() }
// Operations
// Neg returns the negated value of x.
//
func (x *Integer) Neg() *Integer { return MakeInt(!x.sign, x.mant) }
// Iadd sets z to the sum x + y.
// z must exist and may be x or y.
//
func Iadd(z, x, y *Integer) {
if x.sign == y.sign {
// x + y == x + y
// (-x) + (-y) == -(x + y)
z.sign = x.sign;
Nadd(&z.mant, x.mant, y.mant);
} else {
// x + (-y) == x - y == -(y - x)
// (-x) + y == y - x == -(x - y)
if x.mant.Cmp(y.mant) >= 0 {
z.sign = x.sign;
Nsub(&z.mant, x.mant, y.mant);
} else {
z.sign = !x.sign;
Nsub(&z.mant, y.mant, x.mant);
}
}
}
// Add returns the sum x + y.
//
func (x *Integer) Add(y *Integer) *Integer {
var z Integer;
Iadd(&z, x, y);
return &z;
}
func Isub(z, x, y *Integer) {
if x.sign != y.sign {
// x - (-y) == x + y
// (-x) - y == -(x + y)
z.sign = x.sign;
Nadd(&z.mant, x.mant, y.mant);
} else {
// x - y == x - y == -(y - x)
// (-x) - (-y) == y - x == -(x - y)
if x.mant.Cmp(y.mant) >= 0 {
z.sign = x.sign;
Nsub(&z.mant, x.mant, y.mant);
} else {
z.sign = !x.sign;
Nsub(&z.mant, y.mant, x.mant);
}
}
}
// Sub returns the difference x - y.
//
func (x *Integer) Sub(y *Integer) *Integer {
var z Integer;
Isub(&z, x, y);
return &z;
}
// Nscale sets *z to the scaled value (*z) * d.
//
func Iscale(z *Integer, d int64) {
f := uint64(d);
if d < 0 {
f = uint64(-d)
}
z.sign = z.sign != (d < 0);
Nscale(&z.mant, f);
}
// Mul1 returns the product x * d.
//
func (x *Integer) Mul1(d int64) *Integer {
f := uint64(d);
if d < 0 {
f = uint64(-d)
}
return MakeInt(x.sign != (d < 0), x.mant.Mul1(f));
}
// Mul returns the product x * y.
//
func (x *Integer) Mul(y *Integer) *Integer {
// x * y == x * y
// x * (-y) == -(x * y)
// (-x) * y == -(x * y)
// (-x) * (-y) == x * y
return MakeInt(x.sign != y.sign, x.mant.Mul(y.mant))
}
// MulNat returns the product x * y, where y is a (unsigned) natural number.
//
func (x *Integer) MulNat(y Natural) *Integer {
// x * y == x * y
// (-x) * y == -(x * y)
return MakeInt(x.sign, x.mant.Mul(y))
}
// Quo returns the quotient q = x / y for y != 0.
// If y == 0, a division-by-zero run-time error occurs.
//
// Quo and Rem implement T-division and modulus (like C99):
//
// q = x.Quo(y) = trunc(x/y) (truncation towards zero)
// r = x.Rem(y) = x - y*q
//
// (Daan Leijen, ``Division and Modulus for Computer Scientists''.)
//
func (x *Integer) Quo(y *Integer) *Integer {
// x / y == x / y
// x / (-y) == -(x / y)
// (-x) / y == -(x / y)
// (-x) / (-y) == x / y
return MakeInt(x.sign != y.sign, x.mant.Div(y.mant))
}
// Rem returns the remainder r of the division x / y for y != 0,
// with r = x - y*x.Quo(y). Unless r is zero, its sign corresponds
// to the sign of x.
// If y == 0, a division-by-zero run-time error occurs.
//
func (x *Integer) Rem(y *Integer) *Integer {
// x % y == x % y
// x % (-y) == x % y
// (-x) % y == -(x % y)
// (-x) % (-y) == -(x % y)
return MakeInt(x.sign, x.mant.Mod(y.mant))
}
// QuoRem returns the pair (x.Quo(y), x.Rem(y)) for y != 0.
// If y == 0, a division-by-zero run-time error occurs.
//
func (x *Integer) QuoRem(y *Integer) (*Integer, *Integer) {
q, r := x.mant.DivMod(y.mant);
return MakeInt(x.sign != y.sign, q), MakeInt(x.sign, r);
}
// Div returns the quotient q = x / y for y != 0.
// If y == 0, a division-by-zero run-time error occurs.
//
// Div and Mod implement Euclidian division and modulus:
//
// q = x.Div(y)
// r = x.Mod(y) with: 0 <= r < |q| and: y = x*q + r
//
// (Raymond T. Boute, ``The Euclidian definition of the functions
// div and mod''. ACM Transactions on Programming Languages and
// Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992.
// ACM press.)
//
func (x *Integer) Div(y *Integer) *Integer {
q, r := x.QuoRem(y);
if r.IsNeg() {
if y.IsPos() {
q = q.Sub(Int(1))
} else {
q = q.Add(Int(1))
}
}
return q;
}
// Mod returns the modulus r of the division x / y for y != 0,
// with r = x - y*x.Div(y). r is always positive.
// If y == 0, a division-by-zero run-time error occurs.
//
func (x *Integer) Mod(y *Integer) *Integer {
r := x.Rem(y);
if r.IsNeg() {
if y.IsPos() {
r = r.Add(y)
} else {
r = r.Sub(y)
}
}
return r;
}
// DivMod returns the pair (x.Div(y), x.Mod(y)).
//
func (x *Integer) DivMod(y *Integer) (*Integer, *Integer) {
q, r := x.QuoRem(y);
if r.IsNeg() {
if y.IsPos() {
q = q.Sub(Int(1));
r = r.Add(y);
} else {
q = q.Add(Int(1));
r = r.Sub(y);
}
}
return q, r;
}
// Shl implements ``shift left'' x << s. It returns x * 2^s.
//
func (x *Integer) Shl(s uint) *Integer { return MakeInt(x.sign, x.mant.Shl(s)) }
// The bitwise operations on integers are defined on the 2's-complement
// representation of integers. From
//
// -x == ^x + 1 (1) 2's complement representation
//
// follows:
//
// -(x) == ^(x) + 1
// -(-x) == ^(-x) + 1
// x-1 == ^(-x)
// ^(x-1) == -x (2)
//
// Using (1) and (2), operations on negative integers of the form -x are
// converted to operations on negated positive integers of the form ~(x-1).
// Shr implements ``shift right'' x >> s. It returns x / 2^s.
//
func (x *Integer) Shr(s uint) *Integer {
if x.sign {
// (-x) >> s == ^(x-1) >> s == ^((x-1) >> s) == -(((x-1) >> s) + 1)
return MakeInt(true, x.mant.Sub(Nat(1)).Shr(s).Add(Nat(1)))
}
return MakeInt(false, x.mant.Shr(s));
}
// Not returns the ``bitwise not'' ^x for the 2's-complement representation of x.
func (x *Integer) Not() *Integer {
if x.sign {
// ^(-x) == ^(^(x-1)) == x-1
return MakeInt(false, x.mant.Sub(Nat(1)))
}
// ^x == -x-1 == -(x+1)
return MakeInt(true, x.mant.Add(Nat(1)));
}
// And returns the ``bitwise and'' x & y for the 2's-complement representation of x and y.
//
func (x *Integer) And(y *Integer) *Integer {
if x.sign == y.sign {
if x.sign {
// (-x) & (-y) == ^(x-1) & ^(y-1) == ^((x-1) | (y-1)) == -(((x-1) | (y-1)) + 1)
return MakeInt(true, x.mant.Sub(Nat(1)).Or(y.mant.Sub(Nat(1))).Add(Nat(1)))
}
// x & y == x & y
return MakeInt(false, x.mant.And(y.mant));
}
// x.sign != y.sign
if x.sign {
x, y = y, x // & is symmetric
}
// x & (-y) == x & ^(y-1) == x &^ (y-1)
return MakeInt(false, x.mant.AndNot(y.mant.Sub(Nat(1))));
}
// AndNot returns the ``bitwise clear'' x &^ y for the 2's-complement representation of x and y.
//
func (x *Integer) AndNot(y *Integer) *Integer {
if x.sign == y.sign {
if x.sign {
// (-x) &^ (-y) == ^(x-1) &^ ^(y-1) == ^(x-1) & (y-1) == (y-1) &^ (x-1)
return MakeInt(false, y.mant.Sub(Nat(1)).AndNot(x.mant.Sub(Nat(1))))
}
// x &^ y == x &^ y
return MakeInt(false, x.mant.AndNot(y.mant));
}
if x.sign {
// (-x) &^ y == ^(x-1) &^ y == ^(x-1) & ^y == ^((x-1) | y) == -(((x-1) | y) + 1)
return MakeInt(true, x.mant.Sub(Nat(1)).Or(y.mant).Add(Nat(1)))
}
// x &^ (-y) == x &^ ^(y-1) == x & (y-1)
return MakeInt(false, x.mant.And(y.mant.Sub(Nat(1))));
}
// Or returns the ``bitwise or'' x | y for the 2's-complement representation of x and y.
//
func (x *Integer) Or(y *Integer) *Integer {
if x.sign == y.sign {
if x.sign {
// (-x) | (-y) == ^(x-1) | ^(y-1) == ^((x-1) & (y-1)) == -(((x-1) & (y-1)) + 1)
return MakeInt(true, x.mant.Sub(Nat(1)).And(y.mant.Sub(Nat(1))).Add(Nat(1)))
}
// x | y == x | y
return MakeInt(false, x.mant.Or(y.mant));
}
// x.sign != y.sign
if x.sign {
x, y = y, x // | or symmetric
}
// x | (-y) == x | ^(y-1) == ^((y-1) &^ x) == -(^((y-1) &^ x) + 1)
return MakeInt(true, y.mant.Sub(Nat(1)).AndNot(x.mant).Add(Nat(1)));
}
// Xor returns the ``bitwise xor'' x | y for the 2's-complement representation of x and y.
//
func (x *Integer) Xor(y *Integer) *Integer {
if x.sign == y.sign {
if x.sign {
// (-x) ^ (-y) == ^(x-1) ^ ^(y-1) == (x-1) ^ (y-1)
return MakeInt(false, x.mant.Sub(Nat(1)).Xor(y.mant.Sub(Nat(1))))
}
// x ^ y == x ^ y
return MakeInt(false, x.mant.Xor(y.mant));
}
// x.sign != y.sign
if x.sign {
x, y = y, x // ^ is symmetric
}
// x ^ (-y) == x ^ ^(y-1) == ^(x ^ (y-1)) == -((x ^ (y-1)) + 1)
return MakeInt(true, x.mant.Xor(y.mant.Sub(Nat(1))).Add(Nat(1)));
}
// Cmp compares x and y. The result is an int value that is
//
// < 0 if x < y
// == 0 if x == y
// > 0 if x > y
//
func (x *Integer) Cmp(y *Integer) int {
// x cmp y == x cmp y
// x cmp (-y) == x
// (-x) cmp y == y
// (-x) cmp (-y) == -(x cmp y)
var r int;
switch {
case x.sign == y.sign:
r = x.mant.Cmp(y.mant);
if x.sign {
r = -r
}
case x.sign:
r = -1
case y.sign:
r = 1
}
return r;
}
// ToString converts x to a string for a given base, with 2 <= base <= 16.
//
func (x *Integer) ToString(base uint) string {
if x.mant.IsZero() {
return "0"
}
var s string;
if x.sign {
s = "-"
}
return s + x.mant.ToString(base);
}
// String converts x to its decimal string representation.
// x.String() is the same as x.ToString(10).
//
func (x *Integer) String() string { return x.ToString(10) }
// Format is a support routine for fmt.Formatter. It accepts
// the formats 'b' (binary), 'o' (octal), and 'x' (hexadecimal).
//
func (x *Integer) Format(h fmt.State, c int) { fmt.Fprintf(h, "%s", x.ToString(fmtbase(c))) }
// IntFromString returns the integer corresponding to the
// longest possible prefix of s representing an integer in a
// given conversion base, the actual conversion base used, and
// the prefix length. The syntax of integers follows the syntax
// of signed integer literals in Go.
//
// If the base argument is 0, the string prefix determines the actual
// conversion base. A prefix of ``0x'' or ``0X'' selects base 16; the
// ``0'' prefix selects base 8. Otherwise the selected base is 10.
//
func IntFromString(s string, base uint) (*Integer, uint, int) {
// skip sign, if any
i0 := 0;
if len(s) > 0 && (s[0] == '-' || s[0] == '+') {
i0 = 1
}
mant, base, slen := NatFromString(s[i0:], base);
return MakeInt(i0 > 0 && s[0] == '-', mant), base, i0 + slen;
}