| // Copyright 2015 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // backtrack is a regular expression search with submatch |
| // tracking for small regular expressions and texts. It allocates |
| // a bit vector with (length of input) * (length of prog) bits, |
| // to make sure it never explores the same (character position, instruction) |
| // state multiple times. This limits the search to run in time linear in |
| // the length of the test. |
| // |
| // backtrack is a fast replacement for the NFA code on small |
| // regexps when onepass cannot be used. |
| |
| package regexp |
| |
| import "regexp/syntax" |
| |
| // A job is an entry on the backtracker's job stack. It holds |
| // the instruction pc and the position in the input. |
| type job struct { |
| pc uint32 |
| arg int |
| pos int |
| } |
| |
| const ( |
| visitedBits = 32 |
| maxBacktrackProg = 500 // len(prog.Inst) <= max |
| maxBacktrackVector = 256 * 1024 // bit vector size <= max (bits) |
| ) |
| |
| // bitState holds state for the backtracker. |
| type bitState struct { |
| prog *syntax.Prog |
| |
| end int |
| cap []int |
| input input |
| jobs []job |
| visited []uint32 |
| } |
| |
| var notBacktrack *bitState = nil |
| |
| // maxBitStateLen returns the maximum length of a string to search with |
| // the backtracker using prog. |
| func maxBitStateLen(prog *syntax.Prog) int { |
| if !shouldBacktrack(prog) { |
| return 0 |
| } |
| return maxBacktrackVector / len(prog.Inst) |
| } |
| |
| // newBitState returns a new bitState for the given prog, |
| // or notBacktrack if the size of the prog exceeds the maximum size that |
| // the backtracker will be run for. |
| func newBitState(prog *syntax.Prog) *bitState { |
| if !shouldBacktrack(prog) { |
| return notBacktrack |
| } |
| return &bitState{ |
| prog: prog, |
| } |
| } |
| |
| // shouldBacktrack reports whether the program is too |
| // long for the backtracker to run. |
| func shouldBacktrack(prog *syntax.Prog) bool { |
| return len(prog.Inst) <= maxBacktrackProg |
| } |
| |
| // reset resets the state of the backtracker. |
| // end is the end position in the input. |
| // ncap is the number of captures. |
| func (b *bitState) reset(end int, ncap int) { |
| b.end = end |
| |
| if cap(b.jobs) == 0 { |
| b.jobs = make([]job, 0, 256) |
| } else { |
| b.jobs = b.jobs[:0] |
| } |
| |
| visitedSize := (len(b.prog.Inst)*(end+1) + visitedBits - 1) / visitedBits |
| if cap(b.visited) < visitedSize { |
| b.visited = make([]uint32, visitedSize, maxBacktrackVector/visitedBits) |
| } else { |
| b.visited = b.visited[:visitedSize] |
| for i := range b.visited { |
| b.visited[i] = 0 |
| } |
| } |
| |
| if cap(b.cap) < ncap { |
| b.cap = make([]int, ncap) |
| } else { |
| b.cap = b.cap[:ncap] |
| } |
| for i := range b.cap { |
| b.cap[i] = -1 |
| } |
| } |
| |
| // shouldVisit reports whether the combination of (pc, pos) has not |
| // been visited yet. |
| func (b *bitState) shouldVisit(pc uint32, pos int) bool { |
| n := uint(int(pc)*(b.end+1) + pos) |
| if b.visited[n/visitedBits]&(1<<(n&(visitedBits-1))) != 0 { |
| return false |
| } |
| b.visited[n/visitedBits] |= 1 << (n & (visitedBits - 1)) |
| return true |
| } |
| |
| // push pushes (pc, pos, arg) onto the job stack if it should be |
| // visited. |
| func (b *bitState) push(pc uint32, pos int, arg int) { |
| if b.prog.Inst[pc].Op == syntax.InstFail { |
| return |
| } |
| |
| // Only check shouldVisit when arg == 0. |
| // When arg > 0, we are continuing a previous visit. |
| if arg == 0 && !b.shouldVisit(pc, pos) { |
| return |
| } |
| |
| b.jobs = append(b.jobs, job{pc: pc, arg: arg, pos: pos}) |
| } |
| |
| // tryBacktrack runs a backtracking search starting at pos. |
| func (m *machine) tryBacktrack(b *bitState, i input, pc uint32, pos int) bool { |
| longest := m.re.longest |
| m.matched = false |
| |
| b.push(pc, pos, 0) |
| for len(b.jobs) > 0 { |
| l := len(b.jobs) - 1 |
| // Pop job off the stack. |
| pc := b.jobs[l].pc |
| pos := b.jobs[l].pos |
| arg := b.jobs[l].arg |
| b.jobs = b.jobs[:l] |
| |
| // Optimization: rather than push and pop, |
| // code that is going to Push and continue |
| // the loop simply updates ip, p, and arg |
| // and jumps to CheckAndLoop. We have to |
| // do the ShouldVisit check that Push |
| // would have, but we avoid the stack |
| // manipulation. |
| goto Skip |
| CheckAndLoop: |
| if !b.shouldVisit(pc, pos) { |
| continue |
| } |
| Skip: |
| |
| inst := b.prog.Inst[pc] |
| |
| switch inst.Op { |
| default: |
| panic("bad inst") |
| case syntax.InstFail: |
| panic("unexpected InstFail") |
| case syntax.InstAlt: |
| // Cannot just |
| // b.push(inst.Out, pos, 0) |
| // b.push(inst.Arg, pos, 0) |
| // If during the processing of inst.Out, we encounter |
| // inst.Arg via another path, we want to process it then. |
| // Pushing it here will inhibit that. Instead, re-push |
| // inst with arg==1 as a reminder to push inst.Arg out |
| // later. |
| switch arg { |
| case 0: |
| b.push(pc, pos, 1) |
| pc = inst.Out |
| goto CheckAndLoop |
| case 1: |
| // Finished inst.Out; try inst.Arg. |
| arg = 0 |
| pc = inst.Arg |
| goto CheckAndLoop |
| } |
| panic("bad arg in InstAlt") |
| |
| case syntax.InstAltMatch: |
| // One opcode consumes runes; the other leads to match. |
| switch b.prog.Inst[inst.Out].Op { |
| case syntax.InstRune, syntax.InstRune1, syntax.InstRuneAny, syntax.InstRuneAnyNotNL: |
| // inst.Arg is the match. |
| b.push(inst.Arg, pos, 0) |
| pc = inst.Arg |
| pos = b.end |
| goto CheckAndLoop |
| } |
| // inst.Out is the match - non-greedy |
| b.push(inst.Out, b.end, 0) |
| pc = inst.Out |
| goto CheckAndLoop |
| |
| case syntax.InstRune: |
| r, width := i.step(pos) |
| if !inst.MatchRune(r) { |
| continue |
| } |
| pos += width |
| pc = inst.Out |
| goto CheckAndLoop |
| |
| case syntax.InstRune1: |
| r, width := i.step(pos) |
| if r != inst.Rune[0] { |
| continue |
| } |
| pos += width |
| pc = inst.Out |
| goto CheckAndLoop |
| |
| case syntax.InstRuneAnyNotNL: |
| r, width := i.step(pos) |
| if r == '\n' || r == endOfText { |
| continue |
| } |
| pos += width |
| pc = inst.Out |
| goto CheckAndLoop |
| |
| case syntax.InstRuneAny: |
| r, width := i.step(pos) |
| if r == endOfText { |
| continue |
| } |
| pos += width |
| pc = inst.Out |
| goto CheckAndLoop |
| |
| case syntax.InstCapture: |
| switch arg { |
| case 0: |
| if 0 <= inst.Arg && inst.Arg < uint32(len(b.cap)) { |
| // Capture pos to register, but save old value. |
| b.push(pc, b.cap[inst.Arg], 1) // come back when we're done. |
| b.cap[inst.Arg] = pos |
| } |
| pc = inst.Out |
| goto CheckAndLoop |
| case 1: |
| // Finished inst.Out; restore the old value. |
| b.cap[inst.Arg] = pos |
| continue |
| |
| } |
| panic("bad arg in InstCapture") |
| continue |
| |
| case syntax.InstEmptyWidth: |
| if syntax.EmptyOp(inst.Arg)&^i.context(pos) != 0 { |
| continue |
| } |
| pc = inst.Out |
| goto CheckAndLoop |
| |
| case syntax.InstNop: |
| pc = inst.Out |
| goto CheckAndLoop |
| |
| case syntax.InstMatch: |
| // We found a match. If the caller doesn't care |
| // where the match is, no point going further. |
| if len(b.cap) == 0 { |
| m.matched = true |
| return m.matched |
| } |
| |
| // Record best match so far. |
| // Only need to check end point, because this entire |
| // call is only considering one start position. |
| if len(b.cap) > 1 { |
| b.cap[1] = pos |
| } |
| if !m.matched || (longest && pos > 0 && pos > m.matchcap[1]) { |
| copy(m.matchcap, b.cap) |
| } |
| m.matched = true |
| |
| // If going for first match, we're done. |
| if !longest { |
| return m.matched |
| } |
| |
| // If we used the entire text, no longer match is possible. |
| if pos == b.end { |
| return m.matched |
| } |
| |
| // Otherwise, continue on in hope of a longer match. |
| continue |
| } |
| panic("unreachable") |
| } |
| |
| return m.matched |
| } |
| |
| // backtrack runs a backtracking search of prog on the input starting at pos. |
| func (m *machine) backtrack(i input, pos int, end int, ncap int) bool { |
| if !i.canCheckPrefix() { |
| panic("backtrack called for a RuneReader") |
| } |
| |
| startCond := m.re.cond |
| if startCond == ^syntax.EmptyOp(0) { // impossible |
| return false |
| } |
| if startCond&syntax.EmptyBeginText != 0 && pos != 0 { |
| // Anchored match, past beginning of text. |
| return false |
| } |
| |
| b := m.b |
| b.reset(end, ncap) |
| |
| m.matchcap = m.matchcap[:ncap] |
| for i := range m.matchcap { |
| m.matchcap[i] = -1 |
| } |
| |
| // Anchored search must start at the beginning of the input |
| if startCond&syntax.EmptyBeginText != 0 { |
| if len(b.cap) > 0 { |
| b.cap[0] = pos |
| } |
| return m.tryBacktrack(b, i, uint32(m.p.Start), pos) |
| } |
| |
| // Unanchored search, starting from each possible text position. |
| // Notice that we have to try the empty string at the end of |
| // the text, so the loop condition is pos <= end, not pos < end. |
| // This looks like it's quadratic in the size of the text, |
| // but we are not clearing visited between calls to TrySearch, |
| // so no work is duplicated and it ends up still being linear. |
| width := -1 |
| for ; pos <= end && width != 0; pos += width { |
| if len(m.re.prefix) > 0 { |
| // Match requires literal prefix; fast search for it. |
| advance := i.index(m.re, pos) |
| if advance < 0 { |
| return false |
| } |
| pos += advance |
| } |
| |
| if len(b.cap) > 0 { |
| b.cap[0] = pos |
| } |
| if m.tryBacktrack(b, i, uint32(m.p.Start), pos) { |
| // Match must be leftmost; done. |
| return true |
| } |
| _, width = i.step(pos) |
| } |
| return false |
| } |