| // Copyright 2009 The Go Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style | 
 | // license that can be found in the LICENSE file. | 
 |  | 
 | // Binary to decimal floating point conversion. | 
 | // Algorithm: | 
 | //   1) store mantissa in multiprecision decimal | 
 | //   2) shift decimal by exponent | 
 | //   3) read digits out & format | 
 |  | 
 | package strconv | 
 |  | 
 | import "math" | 
 |  | 
 | // TODO: move elsewhere? | 
 | type floatInfo struct { | 
 | 	mantbits uint | 
 | 	expbits  uint | 
 | 	bias     int | 
 | } | 
 |  | 
 | var float32info = floatInfo{23, 8, -127} | 
 | var float64info = floatInfo{52, 11, -1023} | 
 |  | 
 | // FormatFloat converts the floating-point number f to a string, | 
 | // according to the format fmt and precision prec. It rounds the | 
 | // result assuming that the original was obtained from a floating-point | 
 | // value of bitSize bits (32 for float32, 64 for float64). | 
 | // | 
 | // The format fmt is one of | 
 | // 'b' (-ddddp±ddd, a binary exponent), | 
 | // 'e' (-d.dddde±dd, a decimal exponent), | 
 | // 'E' (-d.ddddE±dd, a decimal exponent), | 
 | // 'f' (-ddd.dddd, no exponent), | 
 | // 'g' ('e' for large exponents, 'f' otherwise), | 
 | // 'G' ('E' for large exponents, 'f' otherwise), | 
 | // 'x' (-0xd.ddddp±ddd, a hexadecimal fraction and binary exponent), or | 
 | // 'X' (-0Xd.ddddP±ddd, a hexadecimal fraction and binary exponent). | 
 | // | 
 | // The precision prec controls the number of digits (excluding the exponent) | 
 | // printed by the 'e', 'E', 'f', 'g', 'G', 'x', and 'X' formats. | 
 | // For 'e', 'E', 'f', 'x', and 'X', it is the number of digits after the decimal point. | 
 | // For 'g' and 'G' it is the maximum number of significant digits (trailing | 
 | // zeros are removed). | 
 | // The special precision -1 uses the smallest number of digits | 
 | // necessary such that ParseFloat will return f exactly. | 
 | func FormatFloat(f float64, fmt byte, prec, bitSize int) string { | 
 | 	return string(genericFtoa(make([]byte, 0, max(prec+4, 24)), f, fmt, prec, bitSize)) | 
 | } | 
 |  | 
 | // AppendFloat appends the string form of the floating-point number f, | 
 | // as generated by FormatFloat, to dst and returns the extended buffer. | 
 | func AppendFloat(dst []byte, f float64, fmt byte, prec, bitSize int) []byte { | 
 | 	return genericFtoa(dst, f, fmt, prec, bitSize) | 
 | } | 
 |  | 
 | func genericFtoa(dst []byte, val float64, fmt byte, prec, bitSize int) []byte { | 
 | 	var bits uint64 | 
 | 	var flt *floatInfo | 
 | 	switch bitSize { | 
 | 	case 32: | 
 | 		bits = uint64(math.Float32bits(float32(val))) | 
 | 		flt = &float32info | 
 | 	case 64: | 
 | 		bits = math.Float64bits(val) | 
 | 		flt = &float64info | 
 | 	default: | 
 | 		panic("strconv: illegal AppendFloat/FormatFloat bitSize") | 
 | 	} | 
 |  | 
 | 	neg := bits>>(flt.expbits+flt.mantbits) != 0 | 
 | 	exp := int(bits>>flt.mantbits) & (1<<flt.expbits - 1) | 
 | 	mant := bits & (uint64(1)<<flt.mantbits - 1) | 
 |  | 
 | 	switch exp { | 
 | 	case 1<<flt.expbits - 1: | 
 | 		// Inf, NaN | 
 | 		var s string | 
 | 		switch { | 
 | 		case mant != 0: | 
 | 			s = "NaN" | 
 | 		case neg: | 
 | 			s = "-Inf" | 
 | 		default: | 
 | 			s = "+Inf" | 
 | 		} | 
 | 		return append(dst, s...) | 
 |  | 
 | 	case 0: | 
 | 		// denormalized | 
 | 		exp++ | 
 |  | 
 | 	default: | 
 | 		// add implicit top bit | 
 | 		mant |= uint64(1) << flt.mantbits | 
 | 	} | 
 | 	exp += flt.bias | 
 |  | 
 | 	// Pick off easy binary, hex formats. | 
 | 	if fmt == 'b' { | 
 | 		return fmtB(dst, neg, mant, exp, flt) | 
 | 	} | 
 | 	if fmt == 'x' || fmt == 'X' { | 
 | 		return fmtX(dst, prec, fmt, neg, mant, exp, flt) | 
 | 	} | 
 |  | 
 | 	if !optimize { | 
 | 		return bigFtoa(dst, prec, fmt, neg, mant, exp, flt) | 
 | 	} | 
 |  | 
 | 	var digs decimalSlice | 
 | 	ok := false | 
 | 	// Negative precision means "only as much as needed to be exact." | 
 | 	shortest := prec < 0 | 
 | 	if shortest { | 
 | 		// Use Ryu algorithm. | 
 | 		var buf [32]byte | 
 | 		digs.d = buf[:] | 
 | 		ryuFtoaShortest(&digs, mant, exp-int(flt.mantbits), flt) | 
 | 		ok = true | 
 | 		// Precision for shortest representation mode. | 
 | 		switch fmt { | 
 | 		case 'e', 'E': | 
 | 			prec = max(digs.nd-1, 0) | 
 | 		case 'f': | 
 | 			prec = max(digs.nd-digs.dp, 0) | 
 | 		case 'g', 'G': | 
 | 			prec = digs.nd | 
 | 		} | 
 | 	} else if fmt != 'f' { | 
 | 		// Fixed number of digits. | 
 | 		digits := prec | 
 | 		switch fmt { | 
 | 		case 'e', 'E': | 
 | 			digits++ | 
 | 		case 'g', 'G': | 
 | 			if prec == 0 { | 
 | 				prec = 1 | 
 | 			} | 
 | 			digits = prec | 
 | 		default: | 
 | 			// Invalid mode. | 
 | 			digits = 1 | 
 | 		} | 
 | 		var buf [24]byte | 
 | 		if bitSize == 32 && digits <= 9 { | 
 | 			digs.d = buf[:] | 
 | 			ryuFtoaFixed32(&digs, uint32(mant), exp-int(flt.mantbits), digits) | 
 | 			ok = true | 
 | 		} else if digits <= 18 { | 
 | 			digs.d = buf[:] | 
 | 			ryuFtoaFixed64(&digs, mant, exp-int(flt.mantbits), digits) | 
 | 			ok = true | 
 | 		} | 
 | 	} | 
 | 	if !ok { | 
 | 		return bigFtoa(dst, prec, fmt, neg, mant, exp, flt) | 
 | 	} | 
 | 	return formatDigits(dst, shortest, neg, digs, prec, fmt) | 
 | } | 
 |  | 
 | // bigFtoa uses multiprecision computations to format a float. | 
 | func bigFtoa(dst []byte, prec int, fmt byte, neg bool, mant uint64, exp int, flt *floatInfo) []byte { | 
 | 	d := new(decimal) | 
 | 	d.Assign(mant) | 
 | 	d.Shift(exp - int(flt.mantbits)) | 
 | 	var digs decimalSlice | 
 | 	shortest := prec < 0 | 
 | 	if shortest { | 
 | 		roundShortest(d, mant, exp, flt) | 
 | 		digs = decimalSlice{d: d.d[:], nd: d.nd, dp: d.dp} | 
 | 		// Precision for shortest representation mode. | 
 | 		switch fmt { | 
 | 		case 'e', 'E': | 
 | 			prec = digs.nd - 1 | 
 | 		case 'f': | 
 | 			prec = max(digs.nd-digs.dp, 0) | 
 | 		case 'g', 'G': | 
 | 			prec = digs.nd | 
 | 		} | 
 | 	} else { | 
 | 		// Round appropriately. | 
 | 		switch fmt { | 
 | 		case 'e', 'E': | 
 | 			d.Round(prec + 1) | 
 | 		case 'f': | 
 | 			d.Round(d.dp + prec) | 
 | 		case 'g', 'G': | 
 | 			if prec == 0 { | 
 | 				prec = 1 | 
 | 			} | 
 | 			d.Round(prec) | 
 | 		} | 
 | 		digs = decimalSlice{d: d.d[:], nd: d.nd, dp: d.dp} | 
 | 	} | 
 | 	return formatDigits(dst, shortest, neg, digs, prec, fmt) | 
 | } | 
 |  | 
 | func formatDigits(dst []byte, shortest bool, neg bool, digs decimalSlice, prec int, fmt byte) []byte { | 
 | 	switch fmt { | 
 | 	case 'e', 'E': | 
 | 		return fmtE(dst, neg, digs, prec, fmt) | 
 | 	case 'f': | 
 | 		return fmtF(dst, neg, digs, prec) | 
 | 	case 'g', 'G': | 
 | 		// trailing fractional zeros in 'e' form will be trimmed. | 
 | 		eprec := prec | 
 | 		if eprec > digs.nd && digs.nd >= digs.dp { | 
 | 			eprec = digs.nd | 
 | 		} | 
 | 		// %e is used if the exponent from the conversion | 
 | 		// is less than -4 or greater than or equal to the precision. | 
 | 		// if precision was the shortest possible, use precision 6 for this decision. | 
 | 		if shortest { | 
 | 			eprec = 6 | 
 | 		} | 
 | 		exp := digs.dp - 1 | 
 | 		if exp < -4 || exp >= eprec { | 
 | 			if prec > digs.nd { | 
 | 				prec = digs.nd | 
 | 			} | 
 | 			return fmtE(dst, neg, digs, prec-1, fmt+'e'-'g') | 
 | 		} | 
 | 		if prec > digs.dp { | 
 | 			prec = digs.nd | 
 | 		} | 
 | 		return fmtF(dst, neg, digs, max(prec-digs.dp, 0)) | 
 | 	} | 
 |  | 
 | 	// unknown format | 
 | 	return append(dst, '%', fmt) | 
 | } | 
 |  | 
 | // roundShortest rounds d (= mant * 2^exp) to the shortest number of digits | 
 | // that will let the original floating point value be precisely reconstructed. | 
 | func roundShortest(d *decimal, mant uint64, exp int, flt *floatInfo) { | 
 | 	// If mantissa is zero, the number is zero; stop now. | 
 | 	if mant == 0 { | 
 | 		d.nd = 0 | 
 | 		return | 
 | 	} | 
 |  | 
 | 	// Compute upper and lower such that any decimal number | 
 | 	// between upper and lower (possibly inclusive) | 
 | 	// will round to the original floating point number. | 
 |  | 
 | 	// We may see at once that the number is already shortest. | 
 | 	// | 
 | 	// Suppose d is not denormal, so that 2^exp <= d < 10^dp. | 
 | 	// The closest shorter number is at least 10^(dp-nd) away. | 
 | 	// The lower/upper bounds computed below are at distance | 
 | 	// at most 2^(exp-mantbits). | 
 | 	// | 
 | 	// So the number is already shortest if 10^(dp-nd) > 2^(exp-mantbits), | 
 | 	// or equivalently log2(10)*(dp-nd) > exp-mantbits. | 
 | 	// It is true if 332/100*(dp-nd) >= exp-mantbits (log2(10) > 3.32). | 
 | 	minexp := flt.bias + 1 // minimum possible exponent | 
 | 	if exp > minexp && 332*(d.dp-d.nd) >= 100*(exp-int(flt.mantbits)) { | 
 | 		// The number is already shortest. | 
 | 		return | 
 | 	} | 
 |  | 
 | 	// d = mant << (exp - mantbits) | 
 | 	// Next highest floating point number is mant+1 << exp-mantbits. | 
 | 	// Our upper bound is halfway between, mant*2+1 << exp-mantbits-1. | 
 | 	upper := new(decimal) | 
 | 	upper.Assign(mant*2 + 1) | 
 | 	upper.Shift(exp - int(flt.mantbits) - 1) | 
 |  | 
 | 	// d = mant << (exp - mantbits) | 
 | 	// Next lowest floating point number is mant-1 << exp-mantbits, | 
 | 	// unless mant-1 drops the significant bit and exp is not the minimum exp, | 
 | 	// in which case the next lowest is mant*2-1 << exp-mantbits-1. | 
 | 	// Either way, call it mantlo << explo-mantbits. | 
 | 	// Our lower bound is halfway between, mantlo*2+1 << explo-mantbits-1. | 
 | 	var mantlo uint64 | 
 | 	var explo int | 
 | 	if mant > 1<<flt.mantbits || exp == minexp { | 
 | 		mantlo = mant - 1 | 
 | 		explo = exp | 
 | 	} else { | 
 | 		mantlo = mant*2 - 1 | 
 | 		explo = exp - 1 | 
 | 	} | 
 | 	lower := new(decimal) | 
 | 	lower.Assign(mantlo*2 + 1) | 
 | 	lower.Shift(explo - int(flt.mantbits) - 1) | 
 |  | 
 | 	// The upper and lower bounds are possible outputs only if | 
 | 	// the original mantissa is even, so that IEEE round-to-even | 
 | 	// would round to the original mantissa and not the neighbors. | 
 | 	inclusive := mant%2 == 0 | 
 |  | 
 | 	// As we walk the digits we want to know whether rounding up would fall | 
 | 	// within the upper bound. This is tracked by upperdelta: | 
 | 	// | 
 | 	// If upperdelta == 0, the digits of d and upper are the same so far. | 
 | 	// | 
 | 	// If upperdelta == 1, we saw a difference of 1 between d and upper on a | 
 | 	// previous digit and subsequently only 9s for d and 0s for upper. | 
 | 	// (Thus rounding up may fall outside the bound, if it is exclusive.) | 
 | 	// | 
 | 	// If upperdelta == 2, then the difference is greater than 1 | 
 | 	// and we know that rounding up falls within the bound. | 
 | 	var upperdelta uint8 | 
 |  | 
 | 	// Now we can figure out the minimum number of digits required. | 
 | 	// Walk along until d has distinguished itself from upper and lower. | 
 | 	for ui := 0; ; ui++ { | 
 | 		// lower, d, and upper may have the decimal points at different | 
 | 		// places. In this case upper is the longest, so we iterate from | 
 | 		// ui==0 and start li and mi at (possibly) -1. | 
 | 		mi := ui - upper.dp + d.dp | 
 | 		if mi >= d.nd { | 
 | 			break | 
 | 		} | 
 | 		li := ui - upper.dp + lower.dp | 
 | 		l := byte('0') // lower digit | 
 | 		if li >= 0 && li < lower.nd { | 
 | 			l = lower.d[li] | 
 | 		} | 
 | 		m := byte('0') // middle digit | 
 | 		if mi >= 0 { | 
 | 			m = d.d[mi] | 
 | 		} | 
 | 		u := byte('0') // upper digit | 
 | 		if ui < upper.nd { | 
 | 			u = upper.d[ui] | 
 | 		} | 
 |  | 
 | 		// Okay to round down (truncate) if lower has a different digit | 
 | 		// or if lower is inclusive and is exactly the result of rounding | 
 | 		// down (i.e., and we have reached the final digit of lower). | 
 | 		okdown := l != m || inclusive && li+1 == lower.nd | 
 |  | 
 | 		switch { | 
 | 		case upperdelta == 0 && m+1 < u: | 
 | 			// Example: | 
 | 			// m = 12345xxx | 
 | 			// u = 12347xxx | 
 | 			upperdelta = 2 | 
 | 		case upperdelta == 0 && m != u: | 
 | 			// Example: | 
 | 			// m = 12345xxx | 
 | 			// u = 12346xxx | 
 | 			upperdelta = 1 | 
 | 		case upperdelta == 1 && (m != '9' || u != '0'): | 
 | 			// Example: | 
 | 			// m = 1234598x | 
 | 			// u = 1234600x | 
 | 			upperdelta = 2 | 
 | 		} | 
 | 		// Okay to round up if upper has a different digit and either upper | 
 | 		// is inclusive or upper is bigger than the result of rounding up. | 
 | 		okup := upperdelta > 0 && (inclusive || upperdelta > 1 || ui+1 < upper.nd) | 
 |  | 
 | 		// If it's okay to do either, then round to the nearest one. | 
 | 		// If it's okay to do only one, do it. | 
 | 		switch { | 
 | 		case okdown && okup: | 
 | 			d.Round(mi + 1) | 
 | 			return | 
 | 		case okdown: | 
 | 			d.RoundDown(mi + 1) | 
 | 			return | 
 | 		case okup: | 
 | 			d.RoundUp(mi + 1) | 
 | 			return | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | type decimalSlice struct { | 
 | 	d      []byte | 
 | 	nd, dp int | 
 | 	neg    bool | 
 | } | 
 |  | 
 | // %e: -d.ddddde±dd | 
 | func fmtE(dst []byte, neg bool, d decimalSlice, prec int, fmt byte) []byte { | 
 | 	// sign | 
 | 	if neg { | 
 | 		dst = append(dst, '-') | 
 | 	} | 
 |  | 
 | 	// first digit | 
 | 	ch := byte('0') | 
 | 	if d.nd != 0 { | 
 | 		ch = d.d[0] | 
 | 	} | 
 | 	dst = append(dst, ch) | 
 |  | 
 | 	// .moredigits | 
 | 	if prec > 0 { | 
 | 		dst = append(dst, '.') | 
 | 		i := 1 | 
 | 		m := min(d.nd, prec+1) | 
 | 		if i < m { | 
 | 			dst = append(dst, d.d[i:m]...) | 
 | 			i = m | 
 | 		} | 
 | 		for ; i <= prec; i++ { | 
 | 			dst = append(dst, '0') | 
 | 		} | 
 | 	} | 
 |  | 
 | 	// e± | 
 | 	dst = append(dst, fmt) | 
 | 	exp := d.dp - 1 | 
 | 	if d.nd == 0 { // special case: 0 has exponent 0 | 
 | 		exp = 0 | 
 | 	} | 
 | 	if exp < 0 { | 
 | 		ch = '-' | 
 | 		exp = -exp | 
 | 	} else { | 
 | 		ch = '+' | 
 | 	} | 
 | 	dst = append(dst, ch) | 
 |  | 
 | 	// dd or ddd | 
 | 	switch { | 
 | 	case exp < 10: | 
 | 		dst = append(dst, '0', byte(exp)+'0') | 
 | 	case exp < 100: | 
 | 		dst = append(dst, byte(exp/10)+'0', byte(exp%10)+'0') | 
 | 	default: | 
 | 		dst = append(dst, byte(exp/100)+'0', byte(exp/10)%10+'0', byte(exp%10)+'0') | 
 | 	} | 
 |  | 
 | 	return dst | 
 | } | 
 |  | 
 | // %f: -ddddddd.ddddd | 
 | func fmtF(dst []byte, neg bool, d decimalSlice, prec int) []byte { | 
 | 	// sign | 
 | 	if neg { | 
 | 		dst = append(dst, '-') | 
 | 	} | 
 |  | 
 | 	// integer, padded with zeros as needed. | 
 | 	if d.dp > 0 { | 
 | 		m := min(d.nd, d.dp) | 
 | 		dst = append(dst, d.d[:m]...) | 
 | 		for ; m < d.dp; m++ { | 
 | 			dst = append(dst, '0') | 
 | 		} | 
 | 	} else { | 
 | 		dst = append(dst, '0') | 
 | 	} | 
 |  | 
 | 	// fraction | 
 | 	if prec > 0 { | 
 | 		dst = append(dst, '.') | 
 | 		for i := 0; i < prec; i++ { | 
 | 			ch := byte('0') | 
 | 			if j := d.dp + i; 0 <= j && j < d.nd { | 
 | 				ch = d.d[j] | 
 | 			} | 
 | 			dst = append(dst, ch) | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return dst | 
 | } | 
 |  | 
 | // %b: -ddddddddp±ddd | 
 | func fmtB(dst []byte, neg bool, mant uint64, exp int, flt *floatInfo) []byte { | 
 | 	// sign | 
 | 	if neg { | 
 | 		dst = append(dst, '-') | 
 | 	} | 
 |  | 
 | 	// mantissa | 
 | 	dst, _ = formatBits(dst, mant, 10, false, true) | 
 |  | 
 | 	// p | 
 | 	dst = append(dst, 'p') | 
 |  | 
 | 	// ±exponent | 
 | 	exp -= int(flt.mantbits) | 
 | 	if exp >= 0 { | 
 | 		dst = append(dst, '+') | 
 | 	} | 
 | 	dst, _ = formatBits(dst, uint64(exp), 10, exp < 0, true) | 
 |  | 
 | 	return dst | 
 | } | 
 |  | 
 | // %x: -0x1.yyyyyyyyp±ddd or -0x0p+0. (y is hex digit, d is decimal digit) | 
 | func fmtX(dst []byte, prec int, fmt byte, neg bool, mant uint64, exp int, flt *floatInfo) []byte { | 
 | 	if mant == 0 { | 
 | 		exp = 0 | 
 | 	} | 
 |  | 
 | 	// Shift digits so leading 1 (if any) is at bit 1<<60. | 
 | 	mant <<= 60 - flt.mantbits | 
 | 	for mant != 0 && mant&(1<<60) == 0 { | 
 | 		mant <<= 1 | 
 | 		exp-- | 
 | 	} | 
 |  | 
 | 	// Round if requested. | 
 | 	if prec >= 0 && prec < 15 { | 
 | 		shift := uint(prec * 4) | 
 | 		extra := (mant << shift) & (1<<60 - 1) | 
 | 		mant >>= 60 - shift | 
 | 		if extra|(mant&1) > 1<<59 { | 
 | 			mant++ | 
 | 		} | 
 | 		mant <<= 60 - shift | 
 | 		if mant&(1<<61) != 0 { | 
 | 			// Wrapped around. | 
 | 			mant >>= 1 | 
 | 			exp++ | 
 | 		} | 
 | 	} | 
 |  | 
 | 	hex := lowerhex | 
 | 	if fmt == 'X' { | 
 | 		hex = upperhex | 
 | 	} | 
 |  | 
 | 	// sign, 0x, leading digit | 
 | 	if neg { | 
 | 		dst = append(dst, '-') | 
 | 	} | 
 | 	dst = append(dst, '0', fmt, '0'+byte((mant>>60)&1)) | 
 |  | 
 | 	// .fraction | 
 | 	mant <<= 4 // remove leading 0 or 1 | 
 | 	if prec < 0 && mant != 0 { | 
 | 		dst = append(dst, '.') | 
 | 		for mant != 0 { | 
 | 			dst = append(dst, hex[(mant>>60)&15]) | 
 | 			mant <<= 4 | 
 | 		} | 
 | 	} else if prec > 0 { | 
 | 		dst = append(dst, '.') | 
 | 		for i := 0; i < prec; i++ { | 
 | 			dst = append(dst, hex[(mant>>60)&15]) | 
 | 			mant <<= 4 | 
 | 		} | 
 | 	} | 
 |  | 
 | 	// p± | 
 | 	ch := byte('P') | 
 | 	if fmt == lower(fmt) { | 
 | 		ch = 'p' | 
 | 	} | 
 | 	dst = append(dst, ch) | 
 | 	if exp < 0 { | 
 | 		ch = '-' | 
 | 		exp = -exp | 
 | 	} else { | 
 | 		ch = '+' | 
 | 	} | 
 | 	dst = append(dst, ch) | 
 |  | 
 | 	// dd or ddd or dddd | 
 | 	switch { | 
 | 	case exp < 100: | 
 | 		dst = append(dst, byte(exp/10)+'0', byte(exp%10)+'0') | 
 | 	case exp < 1000: | 
 | 		dst = append(dst, byte(exp/100)+'0', byte((exp/10)%10)+'0', byte(exp%10)+'0') | 
 | 	default: | 
 | 		dst = append(dst, byte(exp/1000)+'0', byte(exp/100)%10+'0', byte((exp/10)%10)+'0', byte(exp%10)+'0') | 
 | 	} | 
 |  | 
 | 	return dst | 
 | } | 
 |  | 
 | func min(a, b int) int { | 
 | 	if a < b { | 
 | 		return a | 
 | 	} | 
 | 	return b | 
 | } | 
 |  | 
 | func max(a, b int) int { | 
 | 	if a > b { | 
 | 		return a | 
 | 	} | 
 | 	return b | 
 | } |