| /* |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions are met: |
| |
| * Redistributions of source code must retain the above copyright |
| notice, this list of conditions and the following disclaimer. |
| |
| * Redistributions in binary form must reproduce the above copyright |
| notice, this list of conditions and the following disclaimer in the |
| documentation and/or other materials provided with the distribution. |
| |
| * Neither the name of "The Computer Language Benchmarks Game" nor the |
| name of "The Computer Language Shootout Benchmarks" nor the names of |
| its contributors may be used to endorse or promote products derived |
| from this software without specific prior written permission. |
| |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| /* The Computer Language Benchmarks Game |
| * http://shootout.alioth.debian.org/ |
| * |
| * contributed by The Go Authors. |
| * based on meteor-contest.c by Christian Vosteen |
| */ |
| |
| package main |
| |
| import ( |
| "flag" |
| "fmt" |
| ) |
| |
| var max_solutions = flag.Int("n", 2100, "maximum number of solutions") |
| |
| func boolInt(b bool) int8 { |
| if b { |
| return 1 |
| } |
| return 0 |
| } |
| |
| /* The board is a 50 cell hexagonal pattern. For . . . . . |
| * maximum speed the board will be implemented as . . . . . |
| * 50 bits, which will fit into a 64 bit long long . . . . . |
| * int. . . . . . |
| * . . . . . |
| * I will represent 0's as empty cells and 1's . . . . . |
| * as full cells. . . . . . |
| * . . . . . |
| * . . . . . |
| * . . . . . |
| */ |
| |
| var board uint64 = 0xFFFC000000000000 |
| |
| /* The puzzle pieces must be specified by the path followed |
| * from one end to the other along 12 hexagonal directions. |
| * |
| * Piece 0 Piece 1 Piece 2 Piece 3 Piece 4 |
| * |
| * O O O O O O O O O O O O O O O |
| * O O O O O O O |
| * O O O |
| * |
| * Piece 5 Piece 6 Piece 7 Piece 8 Piece 9 |
| * |
| * O O O O O O O O O O O O O |
| * O O O O O O O O O |
| * O O O |
| * |
| * I had to make it 12 directions because I wanted all of the |
| * piece definitions to fit into the same size arrays. It is |
| * not possible to define piece 4 in terms of the 6 cardinal |
| * directions in 4 moves. |
| */ |
| |
| const ( |
| E = iota |
| ESE |
| SE |
| S |
| SW |
| WSW |
| W |
| WNW |
| NW |
| N |
| NE |
| ENE |
| PIVOT |
| ) |
| |
| var piece_def = [10][4]int8{ |
| [4]int8{E, E, E, SE}, |
| [4]int8{SE, E, NE, E}, |
| [4]int8{E, E, SE, SW}, |
| [4]int8{E, E, SW, SE}, |
| [4]int8{SE, E, NE, S}, |
| [4]int8{E, E, SW, E}, |
| [4]int8{E, SE, SE, NE}, |
| [4]int8{E, SE, SE, W}, |
| [4]int8{E, SE, E, E}, |
| [4]int8{E, E, E, SW}, |
| } |
| |
| /* To minimize the amount of work done in the recursive solve function below, |
| * I'm going to allocate enough space for all legal rotations of each piece |
| * at each position on the board. That's 10 pieces x 50 board positions x |
| * 12 rotations. However, not all 12 rotations will fit on every cell, so |
| * I'll have to keep count of the actual number that do. |
| * The pieces are going to be unsigned long long ints just like the board so |
| * they can be bitwise-anded with the board to determine if they fit. |
| * I'm also going to record the next possible open cell for each piece and |
| * location to reduce the burden on the solve function. |
| */ |
| var ( |
| pieces [10][50][12]uint64 |
| piece_counts [10][50]int |
| next_cell [10][50][12]int8 |
| ) |
| |
| /* Returns the direction rotated 60 degrees clockwise */ |
| func rotate(dir int8) int8 { return (dir + 2) % PIVOT } |
| |
| /* Returns the direction flipped on the horizontal axis */ |
| func flip(dir int8) int8 { return (PIVOT - dir) % PIVOT } |
| |
| /* Returns the new cell index from the specified cell in the |
| * specified direction. The index is only valid if the |
| * starting cell and direction have been checked by the |
| * out_of_bounds function first. |
| */ |
| func shift(cell, dir int8) int8 { |
| switch dir { |
| case E: |
| return cell + 1 |
| case ESE: |
| if ((cell / 5) % 2) != 0 { |
| return cell + 7 |
| } else { |
| return cell + 6 |
| } |
| case SE: |
| if ((cell / 5) % 2) != 0 { |
| return cell + 6 |
| } else { |
| return cell + 5 |
| } |
| case S: |
| return cell + 10 |
| case SW: |
| if ((cell / 5) % 2) != 0 { |
| return cell + 5 |
| } else { |
| return cell + 4 |
| } |
| case WSW: |
| if ((cell / 5) % 2) != 0 { |
| return cell + 4 |
| } else { |
| return cell + 3 |
| } |
| case W: |
| return cell - 1 |
| case WNW: |
| if ((cell / 5) % 2) != 0 { |
| return cell - 6 |
| } else { |
| return cell - 7 |
| } |
| case NW: |
| if ((cell / 5) % 2) != 0 { |
| return cell - 5 |
| } else { |
| return cell - 6 |
| } |
| case N: |
| return cell - 10 |
| case NE: |
| if ((cell / 5) % 2) != 0 { |
| return cell - 4 |
| } else { |
| return cell - 5 |
| } |
| case ENE: |
| if ((cell / 5) % 2) != 0 { |
| return cell - 3 |
| } else { |
| return cell - 4 |
| } |
| } |
| return cell |
| } |
| |
| /* Returns wether the specified cell and direction will land outside |
| * of the board. Used to determine if a piece is at a legal board |
| * location or not. |
| */ |
| func out_of_bounds(cell, dir int8) bool { |
| switch dir { |
| case E: |
| return cell%5 == 4 |
| case ESE: |
| i := cell % 10 |
| return i == 4 || i == 8 || i == 9 || cell >= 45 |
| case SE: |
| return cell%10 == 9 || cell >= 45 |
| case S: |
| return cell >= 40 |
| case SW: |
| return cell%10 == 0 || cell >= 45 |
| case WSW: |
| i := cell % 10 |
| return i == 0 || i == 1 || i == 5 || cell >= 45 |
| case W: |
| return cell%5 == 0 |
| case WNW: |
| i := cell % 10 |
| return i == 0 || i == 1 || i == 5 || cell < 5 |
| case NW: |
| return cell%10 == 0 || cell < 5 |
| case N: |
| return cell < 10 |
| case NE: |
| return cell%10 == 9 || cell < 5 |
| case ENE: |
| i := cell % 10 |
| return i == 4 || i == 8 || i == 9 || cell < 5 |
| } |
| return false |
| } |
| |
| /* Rotate a piece 60 degrees clockwise */ |
| func rotate_piece(piece int) { |
| for i := 0; i < 4; i++ { |
| piece_def[piece][i] = rotate(piece_def[piece][i]) |
| } |
| } |
| |
| /* Flip a piece along the horizontal axis */ |
| func flip_piece(piece int) { |
| for i := 0; i < 4; i++ { |
| piece_def[piece][i] = flip(piece_def[piece][i]) |
| } |
| } |
| |
| /* Convenience function to quickly calculate all of the indices for a piece */ |
| func calc_cell_indices(cell []int8, piece int, index int8) { |
| cell[0] = index |
| for i := 1; i < 5; i++ { |
| cell[i] = shift(cell[i-1], piece_def[piece][i-1]) |
| } |
| } |
| |
| /* Convenience function to quickly calculate if a piece fits on the board */ |
| func cells_fit_on_board(cell []int8, piece int) bool { |
| return !out_of_bounds(cell[0], piece_def[piece][0]) && |
| !out_of_bounds(cell[1], piece_def[piece][1]) && |
| !out_of_bounds(cell[2], piece_def[piece][2]) && |
| !out_of_bounds(cell[3], piece_def[piece][3]) |
| } |
| |
| /* Returns the lowest index of the cells of a piece. |
| * I use the lowest index that a piece occupies as the index for looking up |
| * the piece in the solve function. |
| */ |
| func minimum_of_cells(cell []int8) int8 { |
| minimum := cell[0] |
| for i := 1; i < 5; i++ { |
| if cell[i] < minimum { |
| minimum = cell[i] |
| } |
| } |
| return minimum |
| } |
| |
| /* Calculate the lowest possible open cell if the piece is placed on the board. |
| * Used to later reduce the amount of time searching for open cells in the |
| * solve function. |
| */ |
| func first_empty_cell(cell []int8, minimum int8) int8 { |
| first_empty := minimum |
| for first_empty == cell[0] || first_empty == cell[1] || |
| first_empty == cell[2] || first_empty == cell[3] || |
| first_empty == cell[4] { |
| first_empty++ |
| } |
| return first_empty |
| } |
| |
| /* Generate the unsigned long long int that will later be anded with the |
| * board to determine if it fits. |
| */ |
| func bitmask_from_cells(cell []int8) uint64 { |
| var piece_mask uint64 |
| for i := 0; i < 5; i++ { |
| piece_mask |= 1 << uint(cell[i]) |
| } |
| return piece_mask |
| } |
| |
| /* Record the piece and other important information in arrays that will |
| * later be used by the solve function. |
| */ |
| func record_piece(piece int, minimum int8, first_empty int8, piece_mask uint64) { |
| pieces[piece][minimum][piece_counts[piece][minimum]] = piece_mask |
| next_cell[piece][minimum][piece_counts[piece][minimum]] = first_empty |
| piece_counts[piece][minimum]++ |
| } |
| |
| /* Fill the entire board going cell by cell. If any cells are "trapped" |
| * they will be left alone. |
| */ |
| func fill_contiguous_space(board []int8, index int8) { |
| if board[index] == 1 { |
| return |
| } |
| board[index] = 1 |
| if !out_of_bounds(index, E) { |
| fill_contiguous_space(board, shift(index, E)) |
| } |
| if !out_of_bounds(index, SE) { |
| fill_contiguous_space(board, shift(index, SE)) |
| } |
| if !out_of_bounds(index, SW) { |
| fill_contiguous_space(board, shift(index, SW)) |
| } |
| if !out_of_bounds(index, W) { |
| fill_contiguous_space(board, shift(index, W)) |
| } |
| if !out_of_bounds(index, NW) { |
| fill_contiguous_space(board, shift(index, NW)) |
| } |
| if !out_of_bounds(index, NE) { |
| fill_contiguous_space(board, shift(index, NE)) |
| } |
| } |
| |
| /* To thin the number of pieces, I calculate if any of them trap any empty |
| * cells at the edges. There are only a handful of exceptions where the |
| * the board can be solved with the trapped cells. For example: piece 8 can |
| * trap 5 cells in the corner, but piece 3 can fit in those cells, or piece 0 |
| * can split the board in half where both halves are viable. |
| */ |
| func has_island(cell []int8, piece int) bool { |
| temp_board := make([]int8, 50) |
| var i int |
| for i = 0; i < 5; i++ { |
| temp_board[cell[i]] = 1 |
| } |
| i = 49 |
| for temp_board[i] == 1 { |
| i-- |
| } |
| fill_contiguous_space(temp_board, int8(i)) |
| c := 0 |
| for i = 0; i < 50; i++ { |
| if temp_board[i] == 0 { |
| c++ |
| } |
| } |
| if c == 0 || (c == 5 && piece == 8) || (c == 40 && piece == 8) || |
| (c%5 == 0 && piece == 0) { |
| return false |
| } |
| return true |
| } |
| |
| /* Calculate all six rotations of the specified piece at the specified index. |
| * We calculate only half of piece 3's rotations. This is because any solution |
| * found has an identical solution rotated 180 degrees. Thus we can reduce the |
| * number of attempted pieces in the solve algorithm by not including the 180- |
| * degree-rotated pieces of ONE of the pieces. I chose piece 3 because it gave |
| * me the best time ;) |
| */ |
| func calc_six_rotations(piece, index int) { |
| cell := make([]int8, 5) |
| for rotation := 0; rotation < 6; rotation++ { |
| if piece != 3 || rotation < 3 { |
| calc_cell_indices(cell, piece, int8(index)) |
| if cells_fit_on_board(cell, piece) && !has_island(cell, piece) { |
| minimum := minimum_of_cells(cell) |
| first_empty := first_empty_cell(cell, minimum) |
| piece_mask := bitmask_from_cells(cell) |
| record_piece(piece, minimum, first_empty, piece_mask) |
| } |
| } |
| rotate_piece(piece) |
| } |
| } |
| |
| /* Calculate every legal rotation for each piece at each board location. */ |
| func calc_pieces() { |
| for piece := 0; piece < 10; piece++ { |
| for index := 0; index < 50; index++ { |
| calc_six_rotations(piece, index) |
| flip_piece(piece) |
| calc_six_rotations(piece, index) |
| } |
| } |
| } |
| |
| /* Calculate all 32 possible states for a 5-bit row and all rows that will |
| * create islands that follow any of the 32 possible rows. These pre- |
| * calculated 5-bit rows will be used to find islands in a partially solved |
| * board in the solve function. |
| */ |
| const ( |
| ROW_MASK = 0x1F |
| TRIPLE_MASK = 0x7FFF |
| ) |
| |
| var ( |
| all_rows = [32]int8{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, |
| 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, |
| } |
| bad_even_rows [32][32]int8 |
| bad_odd_rows [32][32]int8 |
| bad_even_triple [32768]int8 |
| bad_odd_triple [32768]int8 |
| ) |
| |
| func rows_bad(row1, row2 int8, even bool) int8 { |
| /* even is referring to row1 */ |
| var row2_shift int8 |
| /* Test for blockages at same index and shifted index */ |
| if even { |
| row2_shift = ((row2 << 1) & ROW_MASK) | 0x01 |
| } else { |
| row2_shift = (row2 >> 1) | 0x10 |
| } |
| block := ((row1 ^ row2) & row2) & ((row1 ^ row2_shift) & row2_shift) |
| /* Test for groups of 0's */ |
| in_zeroes := false |
| group_okay := false |
| for i := uint8(0); i < 5; i++ { |
| if row1&(1<<i) != 0 { |
| if in_zeroes { |
| if !group_okay { |
| return 1 |
| } |
| in_zeroes = false |
| group_okay = false |
| } |
| } else { |
| if !in_zeroes { |
| in_zeroes = true |
| } |
| if (block & (1 << i)) == 0 { |
| group_okay = true |
| } |
| } |
| } |
| if in_zeroes { |
| return boolInt(!group_okay) |
| } |
| return 0 |
| } |
| |
| /* Check for cases where three rows checked sequentially cause a false |
| * positive. One scenario is when 5 cells may be surrounded where piece 5 |
| * or 7 can fit. The other scenario is when piece 2 creates a hook shape. |
| */ |
| func triple_is_okay(row1, row2, row3 int, even bool) bool { |
| if even { |
| /* There are four cases: |
| * row1: 00011 00001 11001 10101 |
| * row2: 01011 00101 10001 10001 |
| * row3: 011?? 00110 ????? ????? |
| */ |
| return ((row1 == 0x03) && (row2 == 0x0B) && ((row3 & 0x1C) == 0x0C)) || |
| ((row1 == 0x01) && (row2 == 0x05) && (row3 == 0x06)) || |
| ((row1 == 0x19) && (row2 == 0x11)) || |
| ((row1 == 0x15) && (row2 == 0x11)) |
| } |
| /* There are two cases: |
| * row1: 10011 10101 |
| * row2: 10001 10001 |
| * row3: ????? ????? |
| */ |
| return ((row1 == 0x13) && (row2 == 0x11)) || |
| ((row1 == 0x15) && (row2 == 0x11)) |
| } |
| |
| func calc_rows() { |
| for row1 := int8(0); row1 < 32; row1++ { |
| for row2 := int8(0); row2 < 32; row2++ { |
| bad_even_rows[row1][row2] = rows_bad(row1, row2, true) |
| bad_odd_rows[row1][row2] = rows_bad(row1, row2, false) |
| } |
| } |
| for row1 := 0; row1 < 32; row1++ { |
| for row2 := 0; row2 < 32; row2++ { |
| for row3 := 0; row3 < 32; row3++ { |
| result1 := bad_even_rows[row1][row2] |
| result2 := bad_odd_rows[row2][row3] |
| if result1 == 0 && result2 != 0 && triple_is_okay(row1, row2, row3, true) { |
| bad_even_triple[row1+(row2*32)+(row3*1024)] = 0 |
| } else { |
| bad_even_triple[row1+(row2*32)+(row3*1024)] = boolInt(result1 != 0 || result2 != 0) |
| } |
| |
| result1 = bad_odd_rows[row1][row2] |
| result2 = bad_even_rows[row2][row3] |
| if result1 == 0 && result2 != 0 && triple_is_okay(row1, row2, row3, false) { |
| bad_odd_triple[row1+(row2*32)+(row3*1024)] = 0 |
| } else { |
| bad_odd_triple[row1+(row2*32)+(row3*1024)] = boolInt(result1 != 0 || result2 != 0) |
| } |
| } |
| } |
| } |
| } |
| |
| /* Calculate islands while solving the board. |
| */ |
| func boardHasIslands(cell int8) int8 { |
| /* Too low on board, don't bother checking */ |
| if cell >= 40 { |
| return 0 |
| } |
| current_triple := (board >> uint((cell/5)*5)) & TRIPLE_MASK |
| if (cell/5)%2 != 0 { |
| return bad_odd_triple[current_triple] |
| } |
| return bad_even_triple[current_triple] |
| } |
| |
| /* The recursive solve algorithm. Try to place each permutation in the upper- |
| * leftmost empty cell. Mark off available pieces as it goes along. |
| * Because the board is a bit mask, the piece number and bit mask must be saved |
| * at each successful piece placement. This data is used to create a 50 char |
| * array if a solution is found. |
| */ |
| var ( |
| avail uint16 = 0x03FF |
| sol_nums [10]int8 |
| sol_masks [10]uint64 |
| solutions [2100][50]int8 |
| solution_count = 0 |
| ) |
| |
| func record_solution() { |
| for sol_no := 0; sol_no < 10; sol_no++ { |
| sol_mask := sol_masks[sol_no] |
| for index := 0; index < 50; index++ { |
| if sol_mask&1 == 1 { |
| solutions[solution_count][index] = sol_nums[sol_no] |
| /* Board rotated 180 degrees is a solution too! */ |
| solutions[solution_count+1][49-index] = sol_nums[sol_no] |
| } |
| sol_mask = sol_mask >> 1 |
| } |
| } |
| solution_count += 2 |
| } |
| |
| func solve(depth, cell int8) { |
| if solution_count >= *max_solutions { |
| return |
| } |
| |
| for board&(1<<uint(cell)) != 0 { |
| cell++ |
| } |
| |
| for piece := int8(0); piece < 10; piece++ { |
| var piece_no_mask uint16 = 1 << uint(piece) |
| if avail&piece_no_mask == 0 { |
| continue |
| } |
| avail ^= piece_no_mask |
| max_rots := piece_counts[piece][cell] |
| piece_mask := pieces[piece][cell] |
| for rotation := 0; rotation < max_rots; rotation++ { |
| if board&piece_mask[rotation] == 0 { |
| sol_nums[depth] = piece |
| sol_masks[depth] = piece_mask[rotation] |
| if depth == 9 { |
| /* Solution found!!!!!11!!ONE! */ |
| record_solution() |
| avail ^= piece_no_mask |
| return |
| } |
| board |= piece_mask[rotation] |
| if boardHasIslands(next_cell[piece][cell][rotation]) == 0 { |
| solve(depth+1, next_cell[piece][cell][rotation]) |
| } |
| board ^= piece_mask[rotation] |
| } |
| } |
| avail ^= piece_no_mask |
| } |
| } |
| |
| /* pretty print a board in the specified hexagonal format */ |
| func pretty(b *[50]int8) { |
| for i := 0; i < 50; i += 10 { |
| fmt.Printf("%c %c %c %c %c \n %c %c %c %c %c \n", b[i]+'0', b[i+1]+'0', |
| b[i+2]+'0', b[i+3]+'0', b[i+4]+'0', b[i+5]+'0', b[i+6]+'0', |
| b[i+7]+'0', b[i+8]+'0', b[i+9]+'0') |
| } |
| fmt.Printf("\n") |
| } |
| |
| /* Find smallest and largest solutions */ |
| func smallest_largest() (smallest, largest *[50]int8) { |
| smallest = &solutions[0] |
| largest = &solutions[0] |
| for i := 1; i < solution_count; i++ { |
| candidate := &solutions[i] |
| for j, s := range *smallest { |
| c := candidate[j] |
| if c == s { |
| continue |
| } |
| if c < s { |
| smallest = candidate |
| } |
| break |
| } |
| for j, s := range *largest { |
| c := candidate[j] |
| if c == s { |
| continue |
| } |
| if c > s { |
| largest = candidate |
| } |
| break |
| } |
| } |
| return |
| } |
| |
| func main() { |
| flag.Parse() |
| calc_pieces() |
| calc_rows() |
| solve(0, 0) |
| fmt.Printf("%d solutions found\n\n", solution_count) |
| smallest, largest := smallest_largest() |
| pretty(smallest) |
| pretty(largest) |
| } |