| // Copyright 2018 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package ssa |
| |
| import ( |
| "fmt" |
| "math" |
| ) |
| |
| type indVarFlags uint8 |
| |
| const ( |
| indVarMinExc indVarFlags = 1 << iota // minimum value is exclusive (default: inclusive) |
| indVarMaxInc // maximum value is inclusive (default: exclusive) |
| ) |
| |
| type indVar struct { |
| ind *Value // induction variable |
| min *Value // minimum value, inclusive/exclusive depends on flags |
| max *Value // maximum value, inclusive/exclusive depends on flags |
| entry *Block // entry block in the loop. |
| flags indVarFlags |
| // Invariant: for all blocks strictly dominated by entry: |
| // min <= ind < max [if flags == 0] |
| // min < ind < max [if flags == indVarMinExc] |
| // min <= ind <= max [if flags == indVarMaxInc] |
| // min < ind <= max [if flags == indVarMinExc|indVarMaxInc] |
| } |
| |
| // parseIndVar checks whether the SSA value passed as argument is a valid induction |
| // variable, and, if so, extracts: |
| // * the minimum bound |
| // * the increment value |
| // * the "next" value (SSA value that is Phi'd into the induction variable every loop) |
| // Currently, we detect induction variables that match (Phi min nxt), |
| // with nxt being (Add inc ind). |
| // If it can't parse the induction variable correctly, it returns (nil, nil, nil). |
| func parseIndVar(ind *Value) (min, inc, nxt *Value) { |
| if ind.Op != OpPhi { |
| return |
| } |
| |
| if n := ind.Args[0]; n.Op == OpAdd64 && (n.Args[0] == ind || n.Args[1] == ind) { |
| min, nxt = ind.Args[1], n |
| } else if n := ind.Args[1]; n.Op == OpAdd64 && (n.Args[0] == ind || n.Args[1] == ind) { |
| min, nxt = ind.Args[0], n |
| } else { |
| // Not a recognized induction variable. |
| return |
| } |
| |
| if nxt.Args[0] == ind { // nxt = ind + inc |
| inc = nxt.Args[1] |
| } else if nxt.Args[1] == ind { // nxt = inc + ind |
| inc = nxt.Args[0] |
| } else { |
| panic("unreachable") // one of the cases must be true from the above. |
| } |
| |
| return |
| } |
| |
| // findIndVar finds induction variables in a function. |
| // |
| // Look for variables and blocks that satisfy the following |
| // |
| // loop: |
| // ind = (Phi min nxt), |
| // if ind < max |
| // then goto enter_loop |
| // else goto exit_loop |
| // |
| // enter_loop: |
| // do something |
| // nxt = inc + ind |
| // goto loop |
| // |
| // exit_loop: |
| // |
| // |
| // TODO: handle 32 bit operations |
| func findIndVar(f *Func) []indVar { |
| var iv []indVar |
| sdom := f.Sdom() |
| |
| for _, b := range f.Blocks { |
| if b.Kind != BlockIf || len(b.Preds) != 2 { |
| continue |
| } |
| |
| var flags indVarFlags |
| var ind, max *Value // induction, and maximum |
| |
| // Check thet the control if it either ind </<= max or max >/>= ind. |
| // TODO: Handle 32-bit comparisons. |
| // TODO: Handle unsigned comparisons? |
| c := b.Controls[0] |
| switch c.Op { |
| case OpLeq64: |
| flags |= indVarMaxInc |
| fallthrough |
| case OpLess64: |
| ind, max = c.Args[0], c.Args[1] |
| default: |
| continue |
| } |
| |
| // See if this is really an induction variable |
| less := true |
| min, inc, nxt := parseIndVar(ind) |
| if min == nil { |
| // We failed to parse the induction variable. Before punting, we want to check |
| // whether the control op was written with arguments in non-idiomatic order, |
| // so that we believe being "max" (the upper bound) is actually the induction |
| // variable itself. This would happen for code like: |
| // for i := 0; len(n) > i; i++ |
| min, inc, nxt = parseIndVar(max) |
| if min == nil { |
| // No recognied induction variable on either operand |
| continue |
| } |
| |
| // Ok, the arguments were reversed. Swap them, and remember that we're |
| // looking at a ind >/>= loop (so the induction must be decrementing). |
| ind, max = max, ind |
| less = false |
| } |
| |
| // Expect the increment to be a nonzero constant. |
| if inc.Op != OpConst64 { |
| continue |
| } |
| step := inc.AuxInt |
| if step == 0 { |
| continue |
| } |
| |
| // Increment sign must match comparison direction. |
| // When incrementing, the termination comparison must be ind </<= max. |
| // When decrementing, the termination comparison must be ind >/>= max. |
| // See issue 26116. |
| if step > 0 && !less { |
| continue |
| } |
| if step < 0 && less { |
| continue |
| } |
| |
| // If the increment is negative, swap min/max and their flags |
| if step < 0 { |
| min, max = max, min |
| oldf := flags |
| flags = indVarMaxInc |
| if oldf&indVarMaxInc == 0 { |
| flags |= indVarMinExc |
| } |
| step = -step |
| } |
| |
| // Up to now we extracted the induction variable (ind), |
| // the increment delta (inc), the temporary sum (nxt), |
| // the mininum value (min) and the maximum value (max). |
| // |
| // We also know that ind has the form (Phi min nxt) where |
| // nxt is (Add inc nxt) which means: 1) inc dominates nxt |
| // and 2) there is a loop starting at inc and containing nxt. |
| // |
| // We need to prove that the induction variable is incremented |
| // only when it's smaller than the maximum value. |
| // Two conditions must happen listed below to accept ind |
| // as an induction variable. |
| |
| // First condition: loop entry has a single predecessor, which |
| // is the header block. This implies that b.Succs[0] is |
| // reached iff ind < max. |
| if len(b.Succs[0].b.Preds) != 1 { |
| // b.Succs[1] must exit the loop. |
| continue |
| } |
| |
| // Second condition: b.Succs[0] dominates nxt so that |
| // nxt is computed when inc < max, meaning nxt <= max. |
| if !sdom.IsAncestorEq(b.Succs[0].b, nxt.Block) { |
| // inc+ind can only be reached through the branch that enters the loop. |
| continue |
| } |
| |
| // We can only guarantee that the loop runs within limits of induction variable |
| // if (one of) |
| // (1) the increment is ±1 |
| // (2) the limits are constants |
| // (3) loop is of the form k0 upto Known_not_negative-k inclusive, step <= k |
| // (4) loop is of the form k0 upto Known_not_negative-k exclusive, step <= k+1 |
| // (5) loop is of the form Known_not_negative downto k0, minint+step < k0 |
| if step > 1 { |
| ok := false |
| if min.Op == OpConst64 && max.Op == OpConst64 { |
| if max.AuxInt > min.AuxInt && max.AuxInt%step == min.AuxInt%step { // handle overflow |
| ok = true |
| } |
| } |
| // Handle induction variables of these forms. |
| // KNN is known-not-negative. |
| // SIGNED ARITHMETIC ONLY. (see switch on c above) |
| // Possibilities for KNN are len and cap; perhaps we can infer others. |
| // for i := 0; i <= KNN-k ; i += k |
| // for i := 0; i < KNN-(k-1); i += k |
| // Also handle decreasing. |
| |
| // "Proof" copied from https://go-review.googlesource.com/c/go/+/104041/10/src/cmd/compile/internal/ssa/loopbce.go#164 |
| // |
| // In the case of |
| // // PC is Positive Constant |
| // L := len(A)-PC |
| // for i := 0; i < L; i = i+PC |
| // |
| // we know: |
| // |
| // 0 + PC does not over/underflow. |
| // len(A)-PC does not over/underflow |
| // maximum value for L is MaxInt-PC |
| // i < L <= MaxInt-PC means i + PC < MaxInt hence no overflow. |
| |
| // To match in SSA: |
| // if (a) min.Op == OpConst64(k0) |
| // and (b) k0 >= MININT + step |
| // and (c) max.Op == OpSubtract(Op{StringLen,SliceLen,SliceCap}, k) |
| // or (c) max.Op == OpAdd(Op{StringLen,SliceLen,SliceCap}, -k) |
| // or (c) max.Op == Op{StringLen,SliceLen,SliceCap} |
| // and (d) if upto loop, require indVarMaxInc && step <= k or !indVarMaxInc && step-1 <= k |
| |
| if min.Op == OpConst64 && min.AuxInt >= step+math.MinInt64 { |
| knn := max |
| k := int64(0) |
| var kArg *Value |
| |
| switch max.Op { |
| case OpSub64: |
| knn = max.Args[0] |
| kArg = max.Args[1] |
| |
| case OpAdd64: |
| knn = max.Args[0] |
| kArg = max.Args[1] |
| if knn.Op == OpConst64 { |
| knn, kArg = kArg, knn |
| } |
| } |
| switch knn.Op { |
| case OpSliceLen, OpStringLen, OpSliceCap: |
| default: |
| knn = nil |
| } |
| |
| if kArg != nil && kArg.Op == OpConst64 { |
| k = kArg.AuxInt |
| if max.Op == OpAdd64 { |
| k = -k |
| } |
| } |
| if k >= 0 && knn != nil { |
| if inc.AuxInt > 0 { // increasing iteration |
| // The concern for the relation between step and k is to ensure that iv never exceeds knn |
| // i.e., iv < knn-(K-1) ==> iv + K <= knn; iv <= knn-K ==> iv +K < knn |
| if step <= k || flags&indVarMaxInc == 0 && step-1 == k { |
| ok = true |
| } |
| } else { // decreasing iteration |
| // Will be decrementing from max towards min; max is knn-k; will only attempt decrement if |
| // knn-k >[=] min; underflow is only a concern if min-step is not smaller than min. |
| // This all assumes signed integer arithmetic |
| // This is already assured by the test above: min.AuxInt >= step+math.MinInt64 |
| ok = true |
| } |
| } |
| } |
| |
| // TODO: other unrolling idioms |
| // for i := 0; i < KNN - KNN % k ; i += k |
| // for i := 0; i < KNN&^(k-1) ; i += k // k a power of 2 |
| // for i := 0; i < KNN&(-k) ; i += k // k a power of 2 |
| |
| if !ok { |
| continue |
| } |
| } |
| |
| if f.pass.debug >= 1 { |
| printIndVar(b, ind, min, max, step, flags) |
| } |
| |
| iv = append(iv, indVar{ |
| ind: ind, |
| min: min, |
| max: max, |
| entry: b.Succs[0].b, |
| flags: flags, |
| }) |
| b.Logf("found induction variable %v (inc = %v, min = %v, max = %v)\n", ind, inc, min, max) |
| } |
| |
| return iv |
| } |
| |
| func dropAdd64(v *Value) (*Value, int64) { |
| if v.Op == OpAdd64 && v.Args[0].Op == OpConst64 { |
| return v.Args[1], v.Args[0].AuxInt |
| } |
| if v.Op == OpAdd64 && v.Args[1].Op == OpConst64 { |
| return v.Args[0], v.Args[1].AuxInt |
| } |
| return v, 0 |
| } |
| |
| func printIndVar(b *Block, i, min, max *Value, inc int64, flags indVarFlags) { |
| mb1, mb2 := "[", "]" |
| if flags&indVarMinExc != 0 { |
| mb1 = "(" |
| } |
| if flags&indVarMaxInc == 0 { |
| mb2 = ")" |
| } |
| |
| mlim1, mlim2 := fmt.Sprint(min.AuxInt), fmt.Sprint(max.AuxInt) |
| if !min.isGenericIntConst() { |
| if b.Func.pass.debug >= 2 { |
| mlim1 = fmt.Sprint(min) |
| } else { |
| mlim1 = "?" |
| } |
| } |
| if !max.isGenericIntConst() { |
| if b.Func.pass.debug >= 2 { |
| mlim2 = fmt.Sprint(max) |
| } else { |
| mlim2 = "?" |
| } |
| } |
| extra := "" |
| if b.Func.pass.debug >= 2 { |
| extra = fmt.Sprintf(" (%s)", i) |
| } |
| b.Func.Warnl(b.Pos, "Induction variable: limits %v%v,%v%v, increment %d%s", mb1, mlim1, mlim2, mb2, inc, extra) |
| } |