| // Copyright 2016 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package ssa |
| |
| // Code to compute lowest common ancestors in the dominator tree. |
| // https://en.wikipedia.org/wiki/Lowest_common_ancestor |
| // https://en.wikipedia.org/wiki/Range_minimum_query#Solution_using_constant_time_and_linearithmic_space |
| |
| // lcaRange is a data structure that can compute lowest common ancestor queries |
| // in O(n lg n) precomputed space and O(1) time per query. |
| type lcaRange struct { |
| // Additional information about each block (indexed by block ID). |
| blocks []lcaRangeBlock |
| |
| // Data structure for range minimum queries. |
| // rangeMin[k][i] contains the ID of the minimum depth block |
| // in the Euler tour from positions i to i+1<<k-1, inclusive. |
| rangeMin [][]ID |
| } |
| |
| type lcaRangeBlock struct { |
| b *Block |
| parent ID // parent in dominator tree. 0 = no parent (entry or unreachable) |
| firstChild ID // first child in dominator tree |
| sibling ID // next child of parent |
| pos int32 // an index in the Euler tour where this block appears (any one of its occurrences) |
| depth int32 // depth in dominator tree (root=0, its children=1, etc.) |
| } |
| |
| func makeLCArange(f *Func) *lcaRange { |
| dom := f.Idom() |
| |
| // Build tree |
| blocks := make([]lcaRangeBlock, f.NumBlocks()) |
| for _, b := range f.Blocks { |
| blocks[b.ID].b = b |
| if dom[b.ID] == nil { |
| continue // entry or unreachable |
| } |
| parent := dom[b.ID].ID |
| blocks[b.ID].parent = parent |
| blocks[b.ID].sibling = blocks[parent].firstChild |
| blocks[parent].firstChild = b.ID |
| } |
| |
| // Compute euler tour ordering. |
| // Each reachable block will appear #children+1 times in the tour. |
| tour := make([]ID, 0, f.NumBlocks()*2-1) |
| type queueEntry struct { |
| bid ID // block to work on |
| cid ID // child we're already working on (0 = haven't started yet) |
| } |
| q := []queueEntry{{f.Entry.ID, 0}} |
| for len(q) > 0 { |
| n := len(q) - 1 |
| bid := q[n].bid |
| cid := q[n].cid |
| q = q[:n] |
| |
| // Add block to tour. |
| blocks[bid].pos = int32(len(tour)) |
| tour = append(tour, bid) |
| |
| // Proceed down next child edge (if any). |
| if cid == 0 { |
| // This is our first visit to b. Set its depth. |
| blocks[bid].depth = blocks[blocks[bid].parent].depth + 1 |
| // Then explore its first child. |
| cid = blocks[bid].firstChild |
| } else { |
| // We've seen b before. Explore the next child. |
| cid = blocks[cid].sibling |
| } |
| if cid != 0 { |
| q = append(q, queueEntry{bid, cid}, queueEntry{cid, 0}) |
| } |
| } |
| |
| // Compute fast range-minimum query data structure |
| var rangeMin [][]ID |
| rangeMin = append(rangeMin, tour) // 1-size windows are just the tour itself. |
| for logS, s := 1, 2; s < len(tour); logS, s = logS+1, s*2 { |
| r := make([]ID, len(tour)-s+1) |
| for i := 0; i < len(tour)-s+1; i++ { |
| bid := rangeMin[logS-1][i] |
| bid2 := rangeMin[logS-1][i+s/2] |
| if blocks[bid2].depth < blocks[bid].depth { |
| bid = bid2 |
| } |
| r[i] = bid |
| } |
| rangeMin = append(rangeMin, r) |
| } |
| |
| return &lcaRange{blocks: blocks, rangeMin: rangeMin} |
| } |
| |
| // find returns the lowest common ancestor of a and b. |
| func (lca *lcaRange) find(a, b *Block) *Block { |
| if a == b { |
| return a |
| } |
| // Find the positions of a and bin the Euler tour. |
| p1 := lca.blocks[a.ID].pos |
| p2 := lca.blocks[b.ID].pos |
| if p1 > p2 { |
| p1, p2 = p2, p1 |
| } |
| |
| // The lowest common ancestor is the minimum depth block |
| // on the tour from p1 to p2. We've precomputed minimum |
| // depth blocks for powers-of-two subsequences of the tour. |
| // Combine the right two precomputed values to get the answer. |
| logS := uint(log2(int64(p2 - p1))) |
| bid1 := lca.rangeMin[logS][p1] |
| bid2 := lca.rangeMin[logS][p2-1<<logS+1] |
| if lca.blocks[bid1].depth < lca.blocks[bid2].depth { |
| return lca.blocks[bid1].b |
| } |
| return lca.blocks[bid2].b |
| } |