| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package gc |
| |
| import ( |
| "cmd/compile/internal/types" |
| "cmd/internal/obj" |
| "cmd/internal/objabi" |
| "cmd/internal/sys" |
| "encoding/binary" |
| "fmt" |
| "strings" |
| ) |
| |
| // The constant is known to runtime. |
| const tmpstringbufsize = 32 |
| const zeroValSize = 1024 // must match value of runtime/map.go:maxZero |
| |
| func walk(fn *Node) { |
| Curfn = fn |
| |
| if Debug['W'] != 0 { |
| s := fmt.Sprintf("\nbefore walk %v", Curfn.Func.Nname.Sym) |
| dumplist(s, Curfn.Nbody) |
| } |
| |
| lno := lineno |
| |
| // Final typecheck for any unused variables. |
| for i, ln := range fn.Func.Dcl { |
| if ln.Op == ONAME && (ln.Class() == PAUTO || ln.Class() == PAUTOHEAP) { |
| ln = typecheck(ln, ctxExpr|ctxAssign) |
| fn.Func.Dcl[i] = ln |
| } |
| } |
| |
| // Propagate the used flag for typeswitch variables up to the NONAME in its definition. |
| for _, ln := range fn.Func.Dcl { |
| if ln.Op == ONAME && (ln.Class() == PAUTO || ln.Class() == PAUTOHEAP) && ln.Name.Defn != nil && ln.Name.Defn.Op == OTYPESW && ln.Name.Used() { |
| ln.Name.Defn.Left.Name.SetUsed(true) |
| } |
| } |
| |
| for _, ln := range fn.Func.Dcl { |
| if ln.Op != ONAME || (ln.Class() != PAUTO && ln.Class() != PAUTOHEAP) || ln.Sym.Name[0] == '&' || ln.Name.Used() { |
| continue |
| } |
| if defn := ln.Name.Defn; defn != nil && defn.Op == OTYPESW { |
| if defn.Left.Name.Used() { |
| continue |
| } |
| yyerrorl(defn.Left.Pos, "%v declared but not used", ln.Sym) |
| defn.Left.Name.SetUsed(true) // suppress repeats |
| } else { |
| yyerrorl(ln.Pos, "%v declared but not used", ln.Sym) |
| } |
| } |
| |
| lineno = lno |
| if nerrors != 0 { |
| return |
| } |
| walkstmtlist(Curfn.Nbody.Slice()) |
| if Debug['W'] != 0 { |
| s := fmt.Sprintf("after walk %v", Curfn.Func.Nname.Sym) |
| dumplist(s, Curfn.Nbody) |
| } |
| |
| zeroResults() |
| heapmoves() |
| if Debug['W'] != 0 && Curfn.Func.Enter.Len() > 0 { |
| s := fmt.Sprintf("enter %v", Curfn.Func.Nname.Sym) |
| dumplist(s, Curfn.Func.Enter) |
| } |
| } |
| |
| func walkstmtlist(s []*Node) { |
| for i := range s { |
| s[i] = walkstmt(s[i]) |
| } |
| } |
| |
| func paramoutheap(fn *Node) bool { |
| for _, ln := range fn.Func.Dcl { |
| switch ln.Class() { |
| case PPARAMOUT: |
| if ln.isParamStackCopy() || ln.Name.Addrtaken() { |
| return true |
| } |
| |
| case PAUTO: |
| // stop early - parameters are over |
| return false |
| } |
| } |
| |
| return false |
| } |
| |
| // The result of walkstmt MUST be assigned back to n, e.g. |
| // n.Left = walkstmt(n.Left) |
| func walkstmt(n *Node) *Node { |
| if n == nil { |
| return n |
| } |
| |
| setlineno(n) |
| |
| walkstmtlist(n.Ninit.Slice()) |
| |
| switch n.Op { |
| default: |
| if n.Op == ONAME { |
| yyerror("%v is not a top level statement", n.Sym) |
| } else { |
| yyerror("%v is not a top level statement", n.Op) |
| } |
| Dump("nottop", n) |
| |
| case OAS, |
| OASOP, |
| OAS2, |
| OAS2DOTTYPE, |
| OAS2RECV, |
| OAS2FUNC, |
| OAS2MAPR, |
| OCLOSE, |
| OCOPY, |
| OCALLMETH, |
| OCALLINTER, |
| OCALL, |
| OCALLFUNC, |
| ODELETE, |
| OSEND, |
| OPRINT, |
| OPRINTN, |
| OPANIC, |
| OEMPTY, |
| ORECOVER, |
| OGETG: |
| if n.Typecheck() == 0 { |
| Fatalf("missing typecheck: %+v", n) |
| } |
| wascopy := n.Op == OCOPY |
| init := n.Ninit |
| n.Ninit.Set(nil) |
| n = walkexpr(n, &init) |
| n = addinit(n, init.Slice()) |
| if wascopy && n.Op == OCONVNOP { |
| n.Op = OEMPTY // don't leave plain values as statements. |
| } |
| |
| // special case for a receive where we throw away |
| // the value received. |
| case ORECV: |
| if n.Typecheck() == 0 { |
| Fatalf("missing typecheck: %+v", n) |
| } |
| init := n.Ninit |
| n.Ninit.Set(nil) |
| |
| n.Left = walkexpr(n.Left, &init) |
| n = mkcall1(chanfn("chanrecv1", 2, n.Left.Type), nil, &init, n.Left, nodnil()) |
| n = walkexpr(n, &init) |
| |
| n = addinit(n, init.Slice()) |
| |
| case OBREAK, |
| OCONTINUE, |
| OFALL, |
| OGOTO, |
| OLABEL, |
| ODCLCONST, |
| ODCLTYPE, |
| OCHECKNIL, |
| OVARDEF, |
| OVARKILL, |
| OVARLIVE: |
| break |
| |
| case ODCL: |
| v := n.Left |
| if v.Class() == PAUTOHEAP { |
| if compiling_runtime { |
| yyerror("%v escapes to heap, not allowed in runtime", v) |
| } |
| if prealloc[v] == nil { |
| prealloc[v] = callnew(v.Type) |
| } |
| nn := nod(OAS, v.Name.Param.Heapaddr, prealloc[v]) |
| nn.SetColas(true) |
| nn = typecheck(nn, ctxStmt) |
| return walkstmt(nn) |
| } |
| |
| case OBLOCK: |
| walkstmtlist(n.List.Slice()) |
| |
| case OCASE: |
| yyerror("case statement out of place") |
| |
| case ODEFER: |
| Curfn.Func.SetHasDefer(true) |
| Curfn.Func.numDefers++ |
| if Curfn.Func.numDefers > maxOpenDefers { |
| // Don't allow open-coded defers if there are more than |
| // 8 defers in the function, since we use a single |
| // byte to record active defers. |
| Curfn.Func.SetOpenCodedDeferDisallowed(true) |
| } |
| if n.Esc != EscNever { |
| // If n.Esc is not EscNever, then this defer occurs in a loop, |
| // so open-coded defers cannot be used in this function. |
| Curfn.Func.SetOpenCodedDeferDisallowed(true) |
| } |
| fallthrough |
| case OGO: |
| switch n.Left.Op { |
| case OPRINT, OPRINTN: |
| n.Left = wrapCall(n.Left, &n.Ninit) |
| |
| case ODELETE: |
| if mapfast(n.Left.List.First().Type) == mapslow { |
| n.Left = wrapCall(n.Left, &n.Ninit) |
| } else { |
| n.Left = walkexpr(n.Left, &n.Ninit) |
| } |
| |
| case OCOPY: |
| n.Left = copyany(n.Left, &n.Ninit, true) |
| |
| case OCALLFUNC, OCALLMETH, OCALLINTER: |
| if n.Left.Nbody.Len() > 0 { |
| n.Left = wrapCall(n.Left, &n.Ninit) |
| } else { |
| n.Left = walkexpr(n.Left, &n.Ninit) |
| } |
| |
| default: |
| n.Left = walkexpr(n.Left, &n.Ninit) |
| } |
| |
| case OFOR, OFORUNTIL: |
| if n.Left != nil { |
| walkstmtlist(n.Left.Ninit.Slice()) |
| init := n.Left.Ninit |
| n.Left.Ninit.Set(nil) |
| n.Left = walkexpr(n.Left, &init) |
| n.Left = addinit(n.Left, init.Slice()) |
| } |
| |
| n.Right = walkstmt(n.Right) |
| if n.Op == OFORUNTIL { |
| walkstmtlist(n.List.Slice()) |
| } |
| walkstmtlist(n.Nbody.Slice()) |
| |
| case OIF: |
| n.Left = walkexpr(n.Left, &n.Ninit) |
| walkstmtlist(n.Nbody.Slice()) |
| walkstmtlist(n.Rlist.Slice()) |
| |
| case ORETURN: |
| Curfn.Func.numReturns++ |
| if n.List.Len() == 0 { |
| break |
| } |
| if (Curfn.Type.FuncType().Outnamed && n.List.Len() > 1) || paramoutheap(Curfn) { |
| // assign to the function out parameters, |
| // so that reorder3 can fix up conflicts |
| var rl []*Node |
| |
| for _, ln := range Curfn.Func.Dcl { |
| cl := ln.Class() |
| if cl == PAUTO || cl == PAUTOHEAP { |
| break |
| } |
| if cl == PPARAMOUT { |
| if ln.isParamStackCopy() { |
| ln = walkexpr(typecheck(nod(ODEREF, ln.Name.Param.Heapaddr, nil), ctxExpr), nil) |
| } |
| rl = append(rl, ln) |
| } |
| } |
| |
| if got, want := n.List.Len(), len(rl); got != want { |
| // order should have rewritten multi-value function calls |
| // with explicit OAS2FUNC nodes. |
| Fatalf("expected %v return arguments, have %v", want, got) |
| } |
| |
| // move function calls out, to make reorder3's job easier. |
| walkexprlistsafe(n.List.Slice(), &n.Ninit) |
| |
| ll := ascompatee(n.Op, rl, n.List.Slice(), &n.Ninit) |
| n.List.Set(reorder3(ll)) |
| break |
| } |
| walkexprlist(n.List.Slice(), &n.Ninit) |
| |
| // For each return parameter (lhs), assign the corresponding result (rhs). |
| lhs := Curfn.Type.Results() |
| rhs := n.List.Slice() |
| res := make([]*Node, lhs.NumFields()) |
| for i, nl := range lhs.FieldSlice() { |
| nname := asNode(nl.Nname) |
| if nname.isParamHeapCopy() { |
| nname = nname.Name.Param.Stackcopy |
| } |
| a := nod(OAS, nname, rhs[i]) |
| res[i] = convas(a, &n.Ninit) |
| } |
| n.List.Set(res) |
| |
| case ORETJMP: |
| break |
| |
| case OINLMARK: |
| break |
| |
| case OSELECT: |
| walkselect(n) |
| |
| case OSWITCH: |
| walkswitch(n) |
| |
| case ORANGE: |
| n = walkrange(n) |
| } |
| |
| if n.Op == ONAME { |
| Fatalf("walkstmt ended up with name: %+v", n) |
| } |
| return n |
| } |
| |
| func isSmallMakeSlice(n *Node) bool { |
| if n.Op != OMAKESLICE { |
| return false |
| } |
| r := n.Right |
| if r == nil { |
| r = n.Left |
| } |
| t := n.Type |
| |
| return smallintconst(r) && (t.Elem().Width == 0 || r.Int64() < maxImplicitStackVarSize/t.Elem().Width) |
| } |
| |
| // walk the whole tree of the body of an |
| // expression or simple statement. |
| // the types expressions are calculated. |
| // compile-time constants are evaluated. |
| // complex side effects like statements are appended to init |
| func walkexprlist(s []*Node, init *Nodes) { |
| for i := range s { |
| s[i] = walkexpr(s[i], init) |
| } |
| } |
| |
| func walkexprlistsafe(s []*Node, init *Nodes) { |
| for i, n := range s { |
| s[i] = safeexpr(n, init) |
| s[i] = walkexpr(s[i], init) |
| } |
| } |
| |
| func walkexprlistcheap(s []*Node, init *Nodes) { |
| for i, n := range s { |
| s[i] = cheapexpr(n, init) |
| s[i] = walkexpr(s[i], init) |
| } |
| } |
| |
| // convFuncName builds the runtime function name for interface conversion. |
| // It also reports whether the function expects the data by address. |
| // Not all names are possible. For example, we never generate convE2E or convE2I. |
| func convFuncName(from, to *types.Type) (fnname string, needsaddr bool) { |
| tkind := to.Tie() |
| switch from.Tie() { |
| case 'I': |
| if tkind == 'I' { |
| return "convI2I", false |
| } |
| case 'T': |
| switch { |
| case from.Size() == 2 && from.Align == 2: |
| return "convT16", false |
| case from.Size() == 4 && from.Align == 4 && !from.HasPointers(): |
| return "convT32", false |
| case from.Size() == 8 && from.Align == types.Types[TUINT64].Align && !from.HasPointers(): |
| return "convT64", false |
| } |
| if sc := from.SoleComponent(); sc != nil { |
| switch { |
| case sc.IsString(): |
| return "convTstring", false |
| case sc.IsSlice(): |
| return "convTslice", false |
| } |
| } |
| |
| switch tkind { |
| case 'E': |
| if !from.HasPointers() { |
| return "convT2Enoptr", true |
| } |
| return "convT2E", true |
| case 'I': |
| if !from.HasPointers() { |
| return "convT2Inoptr", true |
| } |
| return "convT2I", true |
| } |
| } |
| Fatalf("unknown conv func %c2%c", from.Tie(), to.Tie()) |
| panic("unreachable") |
| } |
| |
| // The result of walkexpr MUST be assigned back to n, e.g. |
| // n.Left = walkexpr(n.Left, init) |
| func walkexpr(n *Node, init *Nodes) *Node { |
| if n == nil { |
| return n |
| } |
| |
| // Eagerly checkwidth all expressions for the back end. |
| if n.Type != nil && !n.Type.WidthCalculated() { |
| switch n.Type.Etype { |
| case TBLANK, TNIL, TIDEAL: |
| default: |
| checkwidth(n.Type) |
| } |
| } |
| |
| if init == &n.Ninit { |
| // not okay to use n->ninit when walking n, |
| // because we might replace n with some other node |
| // and would lose the init list. |
| Fatalf("walkexpr init == &n->ninit") |
| } |
| |
| if n.Ninit.Len() != 0 { |
| walkstmtlist(n.Ninit.Slice()) |
| init.AppendNodes(&n.Ninit) |
| } |
| |
| lno := setlineno(n) |
| |
| if Debug['w'] > 1 { |
| Dump("before walk expr", n) |
| } |
| |
| if n.Typecheck() != 1 { |
| Fatalf("missed typecheck: %+v", n) |
| } |
| |
| if n.Type.IsUntyped() { |
| Fatalf("expression has untyped type: %+v", n) |
| } |
| |
| if n.Op == ONAME && n.Class() == PAUTOHEAP { |
| nn := nod(ODEREF, n.Name.Param.Heapaddr, nil) |
| nn = typecheck(nn, ctxExpr) |
| nn = walkexpr(nn, init) |
| nn.Left.MarkNonNil() |
| return nn |
| } |
| |
| opswitch: |
| switch n.Op { |
| default: |
| Dump("walk", n) |
| Fatalf("walkexpr: switch 1 unknown op %+S", n) |
| |
| case ONONAME, OEMPTY, OGETG, ONEWOBJ: |
| |
| case OTYPE, ONAME, OLITERAL: |
| // TODO(mdempsky): Just return n; see discussion on CL 38655. |
| // Perhaps refactor to use Node.mayBeShared for these instead. |
| // If these return early, make sure to still call |
| // stringsym for constant strings. |
| |
| case ONOT, ONEG, OPLUS, OBITNOT, OREAL, OIMAG, ODOTMETH, ODOTINTER, |
| ODEREF, OSPTR, OITAB, OIDATA, OADDR: |
| n.Left = walkexpr(n.Left, init) |
| |
| case OEFACE, OAND, OSUB, OMUL, OADD, OOR, OXOR, OLSH, ORSH: |
| n.Left = walkexpr(n.Left, init) |
| n.Right = walkexpr(n.Right, init) |
| |
| case ODOT, ODOTPTR: |
| usefield(n) |
| n.Left = walkexpr(n.Left, init) |
| |
| case ODOTTYPE, ODOTTYPE2: |
| n.Left = walkexpr(n.Left, init) |
| // Set up interface type addresses for back end. |
| n.Right = typename(n.Type) |
| if n.Op == ODOTTYPE { |
| n.Right.Right = typename(n.Left.Type) |
| } |
| if !n.Type.IsInterface() && !n.Left.Type.IsEmptyInterface() { |
| n.List.Set1(itabname(n.Type, n.Left.Type)) |
| } |
| |
| case OLEN, OCAP: |
| if isRuneCount(n) { |
| // Replace len([]rune(string)) with runtime.countrunes(string). |
| n = mkcall("countrunes", n.Type, init, conv(n.Left.Left, types.Types[TSTRING])) |
| break |
| } |
| |
| n.Left = walkexpr(n.Left, init) |
| |
| // replace len(*[10]int) with 10. |
| // delayed until now to preserve side effects. |
| t := n.Left.Type |
| |
| if t.IsPtr() { |
| t = t.Elem() |
| } |
| if t.IsArray() { |
| safeexpr(n.Left, init) |
| setintconst(n, t.NumElem()) |
| n.SetTypecheck(1) |
| } |
| |
| case OCOMPLEX: |
| // Use results from call expression as arguments for complex. |
| if n.Left == nil && n.Right == nil { |
| n.Left = n.List.First() |
| n.Right = n.List.Second() |
| } |
| n.Left = walkexpr(n.Left, init) |
| n.Right = walkexpr(n.Right, init) |
| |
| case OEQ, ONE, OLT, OLE, OGT, OGE: |
| n = walkcompare(n, init) |
| |
| case OANDAND, OOROR: |
| n.Left = walkexpr(n.Left, init) |
| |
| // cannot put side effects from n.Right on init, |
| // because they cannot run before n.Left is checked. |
| // save elsewhere and store on the eventual n.Right. |
| var ll Nodes |
| |
| n.Right = walkexpr(n.Right, &ll) |
| n.Right = addinit(n.Right, ll.Slice()) |
| |
| case OPRINT, OPRINTN: |
| n = walkprint(n, init) |
| |
| case OPANIC: |
| n = mkcall("gopanic", nil, init, n.Left) |
| |
| case ORECOVER: |
| n = mkcall("gorecover", n.Type, init, nod(OADDR, nodfp, nil)) |
| |
| case OCLOSUREVAR, OCFUNC: |
| |
| case OCALLINTER, OCALLFUNC, OCALLMETH: |
| if n.Op == OCALLINTER { |
| usemethod(n) |
| } |
| |
| if n.Op == OCALLFUNC && n.Left.Op == OCLOSURE { |
| // Transform direct call of a closure to call of a normal function. |
| // transformclosure already did all preparation work. |
| |
| // Prepend captured variables to argument list. |
| n.List.Prepend(n.Left.Func.Enter.Slice()...) |
| |
| n.Left.Func.Enter.Set(nil) |
| |
| // Replace OCLOSURE with ONAME/PFUNC. |
| n.Left = n.Left.Func.Closure.Func.Nname |
| |
| // Update type of OCALLFUNC node. |
| // Output arguments had not changed, but their offsets could. |
| if n.Left.Type.NumResults() == 1 { |
| n.Type = n.Left.Type.Results().Field(0).Type |
| } else { |
| n.Type = n.Left.Type.Results() |
| } |
| } |
| |
| walkCall(n, init) |
| |
| case OAS, OASOP: |
| init.AppendNodes(&n.Ninit) |
| |
| // Recognize m[k] = append(m[k], ...) so we can reuse |
| // the mapassign call. |
| mapAppend := n.Left.Op == OINDEXMAP && n.Right.Op == OAPPEND |
| if mapAppend && !samesafeexpr(n.Left, n.Right.List.First()) { |
| Fatalf("not same expressions: %v != %v", n.Left, n.Right.List.First()) |
| } |
| |
| n.Left = walkexpr(n.Left, init) |
| n.Left = safeexpr(n.Left, init) |
| |
| if mapAppend { |
| n.Right.List.SetFirst(n.Left) |
| } |
| |
| if n.Op == OASOP { |
| // Rewrite x op= y into x = x op y. |
| n.Right = nod(n.SubOp(), n.Left, n.Right) |
| n.Right = typecheck(n.Right, ctxExpr) |
| |
| n.Op = OAS |
| n.ResetAux() |
| } |
| |
| if oaslit(n, init) { |
| break |
| } |
| |
| if n.Right == nil { |
| // TODO(austin): Check all "implicit zeroing" |
| break |
| } |
| |
| if !instrumenting && isZero(n.Right) { |
| break |
| } |
| |
| switch n.Right.Op { |
| default: |
| n.Right = walkexpr(n.Right, init) |
| |
| case ORECV: |
| // x = <-c; n.Left is x, n.Right.Left is c. |
| // order.stmt made sure x is addressable. |
| n.Right.Left = walkexpr(n.Right.Left, init) |
| |
| n1 := nod(OADDR, n.Left, nil) |
| r := n.Right.Left // the channel |
| n = mkcall1(chanfn("chanrecv1", 2, r.Type), nil, init, r, n1) |
| n = walkexpr(n, init) |
| break opswitch |
| |
| case OAPPEND: |
| // x = append(...) |
| r := n.Right |
| if r.Type.Elem().NotInHeap() { |
| yyerror("%v can't be allocated in Go; it is incomplete (or unallocatable)", r.Type.Elem()) |
| } |
| switch { |
| case isAppendOfMake(r): |
| // x = append(y, make([]T, y)...) |
| r = extendslice(r, init) |
| case r.IsDDD(): |
| r = appendslice(r, init) // also works for append(slice, string). |
| default: |
| r = walkappend(r, init, n) |
| } |
| n.Right = r |
| if r.Op == OAPPEND { |
| // Left in place for back end. |
| // Do not add a new write barrier. |
| // Set up address of type for back end. |
| r.Left = typename(r.Type.Elem()) |
| break opswitch |
| } |
| // Otherwise, lowered for race detector. |
| // Treat as ordinary assignment. |
| } |
| |
| if n.Left != nil && n.Right != nil { |
| n = convas(n, init) |
| } |
| |
| case OAS2: |
| init.AppendNodes(&n.Ninit) |
| walkexprlistsafe(n.List.Slice(), init) |
| walkexprlistsafe(n.Rlist.Slice(), init) |
| ll := ascompatee(OAS, n.List.Slice(), n.Rlist.Slice(), init) |
| ll = reorder3(ll) |
| n = liststmt(ll) |
| |
| // a,b,... = fn() |
| case OAS2FUNC: |
| init.AppendNodes(&n.Ninit) |
| |
| r := n.Right |
| walkexprlistsafe(n.List.Slice(), init) |
| r = walkexpr(r, init) |
| |
| if isIntrinsicCall(r) { |
| n.Right = r |
| break |
| } |
| init.Append(r) |
| |
| ll := ascompatet(n.List, r.Type) |
| n = liststmt(ll) |
| |
| // x, y = <-c |
| // order.stmt made sure x is addressable or blank. |
| case OAS2RECV: |
| init.AppendNodes(&n.Ninit) |
| |
| r := n.Right |
| walkexprlistsafe(n.List.Slice(), init) |
| r.Left = walkexpr(r.Left, init) |
| var n1 *Node |
| if n.List.First().isBlank() { |
| n1 = nodnil() |
| } else { |
| n1 = nod(OADDR, n.List.First(), nil) |
| } |
| fn := chanfn("chanrecv2", 2, r.Left.Type) |
| ok := n.List.Second() |
| call := mkcall1(fn, types.Types[TBOOL], init, r.Left, n1) |
| n = nod(OAS, ok, call) |
| n = typecheck(n, ctxStmt) |
| |
| // a,b = m[i] |
| case OAS2MAPR: |
| init.AppendNodes(&n.Ninit) |
| |
| r := n.Right |
| walkexprlistsafe(n.List.Slice(), init) |
| r.Left = walkexpr(r.Left, init) |
| r.Right = walkexpr(r.Right, init) |
| t := r.Left.Type |
| |
| fast := mapfast(t) |
| var key *Node |
| if fast != mapslow { |
| // fast versions take key by value |
| key = r.Right |
| } else { |
| // standard version takes key by reference |
| // order.expr made sure key is addressable. |
| key = nod(OADDR, r.Right, nil) |
| } |
| |
| // from: |
| // a,b = m[i] |
| // to: |
| // var,b = mapaccess2*(t, m, i) |
| // a = *var |
| a := n.List.First() |
| |
| if w := t.Elem().Width; w <= zeroValSize { |
| fn := mapfn(mapaccess2[fast], t) |
| r = mkcall1(fn, fn.Type.Results(), init, typename(t), r.Left, key) |
| } else { |
| fn := mapfn("mapaccess2_fat", t) |
| z := zeroaddr(w) |
| r = mkcall1(fn, fn.Type.Results(), init, typename(t), r.Left, key, z) |
| } |
| |
| // mapaccess2* returns a typed bool, but due to spec changes, |
| // the boolean result of i.(T) is now untyped so we make it the |
| // same type as the variable on the lhs. |
| if ok := n.List.Second(); !ok.isBlank() && ok.Type.IsBoolean() { |
| r.Type.Field(1).Type = ok.Type |
| } |
| n.Right = r |
| n.Op = OAS2FUNC |
| |
| // don't generate a = *var if a is _ |
| if !a.isBlank() { |
| var_ := temp(types.NewPtr(t.Elem())) |
| var_.SetTypecheck(1) |
| var_.MarkNonNil() // mapaccess always returns a non-nil pointer |
| n.List.SetFirst(var_) |
| n = walkexpr(n, init) |
| init.Append(n) |
| n = nod(OAS, a, nod(ODEREF, var_, nil)) |
| } |
| |
| n = typecheck(n, ctxStmt) |
| n = walkexpr(n, init) |
| |
| case ODELETE: |
| init.AppendNodes(&n.Ninit) |
| map_ := n.List.First() |
| key := n.List.Second() |
| map_ = walkexpr(map_, init) |
| key = walkexpr(key, init) |
| |
| t := map_.Type |
| fast := mapfast(t) |
| if fast == mapslow { |
| // order.stmt made sure key is addressable. |
| key = nod(OADDR, key, nil) |
| } |
| n = mkcall1(mapfndel(mapdelete[fast], t), nil, init, typename(t), map_, key) |
| |
| case OAS2DOTTYPE: |
| walkexprlistsafe(n.List.Slice(), init) |
| n.Right = walkexpr(n.Right, init) |
| |
| case OCONVIFACE: |
| n.Left = walkexpr(n.Left, init) |
| |
| fromType := n.Left.Type |
| toType := n.Type |
| |
| if !fromType.IsInterface() { |
| markTypeUsedInInterface(fromType) |
| } |
| |
| // typeword generates the type word of the interface value. |
| typeword := func() *Node { |
| if toType.IsEmptyInterface() { |
| return typename(fromType) |
| } |
| return itabname(fromType, toType) |
| } |
| |
| // Optimize convT2E or convT2I as a two-word copy when T is pointer-shaped. |
| if isdirectiface(fromType) { |
| l := nod(OEFACE, typeword(), n.Left) |
| l.Type = toType |
| l.SetTypecheck(n.Typecheck()) |
| n = l |
| break |
| } |
| |
| if staticuint64s == nil { |
| staticuint64s = newname(Runtimepkg.Lookup("staticuint64s")) |
| staticuint64s.SetClass(PEXTERN) |
| // The actual type is [256]uint64, but we use [256*8]uint8 so we can address |
| // individual bytes. |
| staticuint64s.Type = types.NewArray(types.Types[TUINT8], 256*8) |
| zerobase = newname(Runtimepkg.Lookup("zerobase")) |
| zerobase.SetClass(PEXTERN) |
| zerobase.Type = types.Types[TUINTPTR] |
| } |
| |
| // Optimize convT2{E,I} for many cases in which T is not pointer-shaped, |
| // by using an existing addressable value identical to n.Left |
| // or creating one on the stack. |
| var value *Node |
| switch { |
| case fromType.Size() == 0: |
| // n.Left is zero-sized. Use zerobase. |
| cheapexpr(n.Left, init) // Evaluate n.Left for side-effects. See issue 19246. |
| value = zerobase |
| case fromType.IsBoolean() || (fromType.Size() == 1 && fromType.IsInteger()): |
| // n.Left is a bool/byte. Use staticuint64s[n.Left * 8] on little-endian |
| // and staticuint64s[n.Left * 8 + 7] on big-endian. |
| n.Left = cheapexpr(n.Left, init) |
| // byteindex widens n.Left so that the multiplication doesn't overflow. |
| index := nod(OLSH, byteindex(n.Left), nodintconst(3)) |
| if thearch.LinkArch.ByteOrder == binary.BigEndian { |
| index = nod(OADD, index, nodintconst(7)) |
| } |
| value = nod(OINDEX, staticuint64s, index) |
| value.SetBounded(true) |
| case n.Left.Class() == PEXTERN && n.Left.Name != nil && n.Left.Name.Readonly(): |
| // n.Left is a readonly global; use it directly. |
| value = n.Left |
| case !fromType.IsInterface() && n.Esc == EscNone && fromType.Width <= 1024: |
| // n.Left does not escape. Use a stack temporary initialized to n.Left. |
| value = temp(fromType) |
| init.Append(typecheck(nod(OAS, value, n.Left), ctxStmt)) |
| } |
| |
| if value != nil { |
| // Value is identical to n.Left. |
| // Construct the interface directly: {type/itab, &value}. |
| l := nod(OEFACE, typeword(), typecheck(nod(OADDR, value, nil), ctxExpr)) |
| l.Type = toType |
| l.SetTypecheck(n.Typecheck()) |
| n = l |
| break |
| } |
| |
| // Implement interface to empty interface conversion. |
| // tmp = i.itab |
| // if tmp != nil { |
| // tmp = tmp.type |
| // } |
| // e = iface{tmp, i.data} |
| if toType.IsEmptyInterface() && fromType.IsInterface() && !fromType.IsEmptyInterface() { |
| // Evaluate the input interface. |
| c := temp(fromType) |
| init.Append(nod(OAS, c, n.Left)) |
| |
| // Get the itab out of the interface. |
| tmp := temp(types.NewPtr(types.Types[TUINT8])) |
| init.Append(nod(OAS, tmp, typecheck(nod(OITAB, c, nil), ctxExpr))) |
| |
| // Get the type out of the itab. |
| nif := nod(OIF, typecheck(nod(ONE, tmp, nodnil()), ctxExpr), nil) |
| nif.Nbody.Set1(nod(OAS, tmp, itabType(tmp))) |
| init.Append(nif) |
| |
| // Build the result. |
| e := nod(OEFACE, tmp, ifaceData(n.Pos, c, types.NewPtr(types.Types[TUINT8]))) |
| e.Type = toType // assign type manually, typecheck doesn't understand OEFACE. |
| e.SetTypecheck(1) |
| n = e |
| break |
| } |
| |
| fnname, needsaddr := convFuncName(fromType, toType) |
| |
| if !needsaddr && !fromType.IsInterface() { |
| // Use a specialized conversion routine that only returns a data pointer. |
| // ptr = convT2X(val) |
| // e = iface{typ/tab, ptr} |
| fn := syslook(fnname) |
| dowidth(fromType) |
| fn = substArgTypes(fn, fromType) |
| dowidth(fn.Type) |
| call := nod(OCALL, fn, nil) |
| call.List.Set1(n.Left) |
| call = typecheck(call, ctxExpr) |
| call = walkexpr(call, init) |
| call = safeexpr(call, init) |
| e := nod(OEFACE, typeword(), call) |
| e.Type = toType |
| e.SetTypecheck(1) |
| n = e |
| break |
| } |
| |
| var tab *Node |
| if fromType.IsInterface() { |
| // convI2I |
| tab = typename(toType) |
| } else { |
| // convT2x |
| tab = typeword() |
| } |
| |
| v := n.Left |
| if needsaddr { |
| // Types of large or unknown size are passed by reference. |
| // Orderexpr arranged for n.Left to be a temporary for all |
| // the conversions it could see. Comparison of an interface |
| // with a non-interface, especially in a switch on interface value |
| // with non-interface cases, is not visible to order.stmt, so we |
| // have to fall back on allocating a temp here. |
| if !islvalue(v) { |
| v = copyexpr(v, v.Type, init) |
| } |
| v = nod(OADDR, v, nil) |
| } |
| |
| dowidth(fromType) |
| fn := syslook(fnname) |
| fn = substArgTypes(fn, fromType, toType) |
| dowidth(fn.Type) |
| n = nod(OCALL, fn, nil) |
| n.List.Set2(tab, v) |
| n = typecheck(n, ctxExpr) |
| n = walkexpr(n, init) |
| |
| case OCONV, OCONVNOP: |
| n.Left = walkexpr(n.Left, init) |
| if n.Op == OCONVNOP && checkPtr(Curfn, 1) { |
| if n.Type.IsPtr() && n.Left.Type.IsUnsafePtr() { // unsafe.Pointer to *T |
| n = walkCheckPtrAlignment(n, init, nil) |
| break |
| } |
| if n.Type.IsUnsafePtr() && n.Left.Type.IsUintptr() { // uintptr to unsafe.Pointer |
| n = walkCheckPtrArithmetic(n, init) |
| break |
| } |
| } |
| param, result := rtconvfn(n.Left.Type, n.Type) |
| if param == Txxx { |
| break |
| } |
| fn := basicnames[param] + "to" + basicnames[result] |
| n = conv(mkcall(fn, types.Types[result], init, conv(n.Left, types.Types[param])), n.Type) |
| |
| case OANDNOT: |
| n.Left = walkexpr(n.Left, init) |
| n.Op = OAND |
| n.SetImplicit(true) // for walkCheckPtrArithmetic |
| n.Right = nod(OBITNOT, n.Right, nil) |
| n.Right = typecheck(n.Right, ctxExpr) |
| n.Right = walkexpr(n.Right, init) |
| |
| case ODIV, OMOD: |
| n.Left = walkexpr(n.Left, init) |
| n.Right = walkexpr(n.Right, init) |
| |
| // rewrite complex div into function call. |
| et := n.Left.Type.Etype |
| |
| if isComplex[et] && n.Op == ODIV { |
| t := n.Type |
| n = mkcall("complex128div", types.Types[TCOMPLEX128], init, conv(n.Left, types.Types[TCOMPLEX128]), conv(n.Right, types.Types[TCOMPLEX128])) |
| n = conv(n, t) |
| break |
| } |
| |
| // Nothing to do for float divisions. |
| if isFloat[et] { |
| break |
| } |
| |
| // rewrite 64-bit div and mod on 32-bit architectures. |
| // TODO: Remove this code once we can introduce |
| // runtime calls late in SSA processing. |
| if Widthreg < 8 && (et == TINT64 || et == TUINT64) { |
| if n.Right.Op == OLITERAL { |
| // Leave div/mod by constant powers of 2. |
| // The SSA backend will handle those. |
| switch et { |
| case TINT64: |
| c := n.Right.Int64() |
| if c < 0 { |
| c = -c |
| } |
| if c != 0 && c&(c-1) == 0 { |
| break opswitch |
| } |
| case TUINT64: |
| c := uint64(n.Right.Int64()) |
| if c != 0 && c&(c-1) == 0 { |
| break opswitch |
| } |
| } |
| } |
| var fn string |
| if et == TINT64 { |
| fn = "int64" |
| } else { |
| fn = "uint64" |
| } |
| if n.Op == ODIV { |
| fn += "div" |
| } else { |
| fn += "mod" |
| } |
| n = mkcall(fn, n.Type, init, conv(n.Left, types.Types[et]), conv(n.Right, types.Types[et])) |
| } |
| |
| case OINDEX: |
| n.Left = walkexpr(n.Left, init) |
| |
| // save the original node for bounds checking elision. |
| // If it was a ODIV/OMOD walk might rewrite it. |
| r := n.Right |
| |
| n.Right = walkexpr(n.Right, init) |
| |
| // if range of type cannot exceed static array bound, |
| // disable bounds check. |
| if n.Bounded() { |
| break |
| } |
| t := n.Left.Type |
| if t != nil && t.IsPtr() { |
| t = t.Elem() |
| } |
| if t.IsArray() { |
| n.SetBounded(bounded(r, t.NumElem())) |
| if Debug['m'] != 0 && n.Bounded() && !Isconst(n.Right, CTINT) { |
| Warn("index bounds check elided") |
| } |
| if smallintconst(n.Right) && !n.Bounded() { |
| yyerror("index out of bounds") |
| } |
| } else if Isconst(n.Left, CTSTR) { |
| n.SetBounded(bounded(r, int64(len(strlit(n.Left))))) |
| if Debug['m'] != 0 && n.Bounded() && !Isconst(n.Right, CTINT) { |
| Warn("index bounds check elided") |
| } |
| if smallintconst(n.Right) && !n.Bounded() { |
| yyerror("index out of bounds") |
| } |
| } |
| |
| if Isconst(n.Right, CTINT) { |
| if n.Right.Val().U.(*Mpint).CmpInt64(0) < 0 || n.Right.Val().U.(*Mpint).Cmp(maxintval[TINT]) > 0 { |
| yyerror("index out of bounds") |
| } |
| } |
| |
| case OINDEXMAP: |
| // Replace m[k] with *map{access1,assign}(maptype, m, &k) |
| n.Left = walkexpr(n.Left, init) |
| n.Right = walkexpr(n.Right, init) |
| map_ := n.Left |
| key := n.Right |
| t := map_.Type |
| if n.IndexMapLValue() { |
| // This m[k] expression is on the left-hand side of an assignment. |
| fast := mapfast(t) |
| if fast == mapslow { |
| // standard version takes key by reference. |
| // order.expr made sure key is addressable. |
| key = nod(OADDR, key, nil) |
| } |
| n = mkcall1(mapfn(mapassign[fast], t), nil, init, typename(t), map_, key) |
| } else { |
| // m[k] is not the target of an assignment. |
| fast := mapfast(t) |
| if fast == mapslow { |
| // standard version takes key by reference. |
| // order.expr made sure key is addressable. |
| key = nod(OADDR, key, nil) |
| } |
| |
| if w := t.Elem().Width; w <= zeroValSize { |
| n = mkcall1(mapfn(mapaccess1[fast], t), types.NewPtr(t.Elem()), init, typename(t), map_, key) |
| } else { |
| z := zeroaddr(w) |
| n = mkcall1(mapfn("mapaccess1_fat", t), types.NewPtr(t.Elem()), init, typename(t), map_, key, z) |
| } |
| } |
| n.Type = types.NewPtr(t.Elem()) |
| n.MarkNonNil() // mapaccess1* and mapassign always return non-nil pointers. |
| n = nod(ODEREF, n, nil) |
| n.Type = t.Elem() |
| n.SetTypecheck(1) |
| |
| case ORECV: |
| Fatalf("walkexpr ORECV") // should see inside OAS only |
| |
| case OSLICEHEADER: |
| n.Left = walkexpr(n.Left, init) |
| n.List.SetFirst(walkexpr(n.List.First(), init)) |
| n.List.SetSecond(walkexpr(n.List.Second(), init)) |
| |
| case OSLICE, OSLICEARR, OSLICESTR, OSLICE3, OSLICE3ARR: |
| checkSlice := checkPtr(Curfn, 1) && n.Op == OSLICE3ARR && n.Left.Op == OCONVNOP && n.Left.Left.Type.IsUnsafePtr() |
| if checkSlice { |
| n.Left.Left = walkexpr(n.Left.Left, init) |
| } else { |
| n.Left = walkexpr(n.Left, init) |
| } |
| low, high, max := n.SliceBounds() |
| low = walkexpr(low, init) |
| if low != nil && isZero(low) { |
| // Reduce x[0:j] to x[:j] and x[0:j:k] to x[:j:k]. |
| low = nil |
| } |
| high = walkexpr(high, init) |
| max = walkexpr(max, init) |
| n.SetSliceBounds(low, high, max) |
| if checkSlice { |
| n.Left = walkCheckPtrAlignment(n.Left, init, max) |
| } |
| if n.Op.IsSlice3() { |
| if max != nil && max.Op == OCAP && samesafeexpr(n.Left, max.Left) { |
| // Reduce x[i:j:cap(x)] to x[i:j]. |
| if n.Op == OSLICE3 { |
| n.Op = OSLICE |
| } else { |
| n.Op = OSLICEARR |
| } |
| n = reduceSlice(n) |
| } |
| } else { |
| n = reduceSlice(n) |
| } |
| |
| case ONEW: |
| if n.Type.Elem().NotInHeap() { |
| yyerror("%v can't be allocated in Go; it is incomplete (or unallocatable)", n.Type.Elem()) |
| } |
| if n.Esc == EscNone { |
| if n.Type.Elem().Width >= maxImplicitStackVarSize { |
| Fatalf("large ONEW with EscNone: %v", n) |
| } |
| r := temp(n.Type.Elem()) |
| r = nod(OAS, r, nil) // zero temp |
| r = typecheck(r, ctxStmt) |
| init.Append(r) |
| r = nod(OADDR, r.Left, nil) |
| r = typecheck(r, ctxExpr) |
| n = r |
| } else { |
| n = callnew(n.Type.Elem()) |
| } |
| |
| case OADDSTR: |
| n = addstr(n, init) |
| |
| case OAPPEND: |
| // order should make sure we only see OAS(node, OAPPEND), which we handle above. |
| Fatalf("append outside assignment") |
| |
| case OCOPY: |
| n = copyany(n, init, instrumenting && !compiling_runtime) |
| |
| // cannot use chanfn - closechan takes any, not chan any |
| case OCLOSE: |
| fn := syslook("closechan") |
| |
| fn = substArgTypes(fn, n.Left.Type) |
| n = mkcall1(fn, nil, init, n.Left) |
| |
| case OMAKECHAN: |
| // When size fits into int, use makechan instead of |
| // makechan64, which is faster and shorter on 32 bit platforms. |
| size := n.Left |
| fnname := "makechan64" |
| argtype := types.Types[TINT64] |
| |
| // Type checking guarantees that TIDEAL size is positive and fits in an int. |
| // The case of size overflow when converting TUINT or TUINTPTR to TINT |
| // will be handled by the negative range checks in makechan during runtime. |
| if size.Type.IsKind(TIDEAL) || maxintval[size.Type.Etype].Cmp(maxintval[TUINT]) <= 0 { |
| fnname = "makechan" |
| argtype = types.Types[TINT] |
| } |
| |
| n = mkcall1(chanfn(fnname, 1, n.Type), n.Type, init, typename(n.Type), conv(size, argtype)) |
| |
| case OMAKEMAP: |
| t := n.Type |
| hmapType := hmap(t) |
| hint := n.Left |
| |
| // var h *hmap |
| var h *Node |
| if n.Esc == EscNone { |
| // Allocate hmap on stack. |
| |
| // var hv hmap |
| hv := temp(hmapType) |
| zero := nod(OAS, hv, nil) |
| zero = typecheck(zero, ctxStmt) |
| init.Append(zero) |
| // h = &hv |
| h = nod(OADDR, hv, nil) |
| |
| // Allocate one bucket pointed to by hmap.buckets on stack if hint |
| // is not larger than BUCKETSIZE. In case hint is larger than |
| // BUCKETSIZE runtime.makemap will allocate the buckets on the heap. |
| // Maximum key and elem size is 128 bytes, larger objects |
| // are stored with an indirection. So max bucket size is 2048+eps. |
| if !Isconst(hint, CTINT) || |
| hint.Val().U.(*Mpint).CmpInt64(BUCKETSIZE) <= 0 { |
| |
| // In case hint is larger than BUCKETSIZE runtime.makemap |
| // will allocate the buckets on the heap, see #20184 |
| // |
| // if hint <= BUCKETSIZE { |
| // var bv bmap |
| // b = &bv |
| // h.buckets = b |
| // } |
| |
| nif := nod(OIF, nod(OLE, hint, nodintconst(BUCKETSIZE)), nil) |
| nif.SetLikely(true) |
| |
| // var bv bmap |
| bv := temp(bmap(t)) |
| zero = nod(OAS, bv, nil) |
| nif.Nbody.Append(zero) |
| |
| // b = &bv |
| b := nod(OADDR, bv, nil) |
| |
| // h.buckets = b |
| bsym := hmapType.Field(5).Sym // hmap.buckets see reflect.go:hmap |
| na := nod(OAS, nodSym(ODOT, h, bsym), b) |
| nif.Nbody.Append(na) |
| |
| nif = typecheck(nif, ctxStmt) |
| nif = walkstmt(nif) |
| init.Append(nif) |
| } |
| } |
| |
| if Isconst(hint, CTINT) && hint.Val().U.(*Mpint).CmpInt64(BUCKETSIZE) <= 0 { |
| // Handling make(map[any]any) and |
| // make(map[any]any, hint) where hint <= BUCKETSIZE |
| // special allows for faster map initialization and |
| // improves binary size by using calls with fewer arguments. |
| // For hint <= BUCKETSIZE overLoadFactor(hint, 0) is false |
| // and no buckets will be allocated by makemap. Therefore, |
| // no buckets need to be allocated in this code path. |
| if n.Esc == EscNone { |
| // Only need to initialize h.hash0 since |
| // hmap h has been allocated on the stack already. |
| // h.hash0 = fastrand() |
| rand := mkcall("fastrand", types.Types[TUINT32], init) |
| hashsym := hmapType.Field(4).Sym // hmap.hash0 see reflect.go:hmap |
| a := nod(OAS, nodSym(ODOT, h, hashsym), rand) |
| a = typecheck(a, ctxStmt) |
| a = walkexpr(a, init) |
| init.Append(a) |
| n = convnop(h, t) |
| } else { |
| // Call runtime.makehmap to allocate an |
| // hmap on the heap and initialize hmap's hash0 field. |
| fn := syslook("makemap_small") |
| fn = substArgTypes(fn, t.Key(), t.Elem()) |
| n = mkcall1(fn, n.Type, init) |
| } |
| } else { |
| if n.Esc != EscNone { |
| h = nodnil() |
| } |
| // Map initialization with a variable or large hint is |
| // more complicated. We therefore generate a call to |
| // runtime.makemap to initialize hmap and allocate the |
| // map buckets. |
| |
| // When hint fits into int, use makemap instead of |
| // makemap64, which is faster and shorter on 32 bit platforms. |
| fnname := "makemap64" |
| argtype := types.Types[TINT64] |
| |
| // Type checking guarantees that TIDEAL hint is positive and fits in an int. |
| // See checkmake call in TMAP case of OMAKE case in OpSwitch in typecheck1 function. |
| // The case of hint overflow when converting TUINT or TUINTPTR to TINT |
| // will be handled by the negative range checks in makemap during runtime. |
| if hint.Type.IsKind(TIDEAL) || maxintval[hint.Type.Etype].Cmp(maxintval[TUINT]) <= 0 { |
| fnname = "makemap" |
| argtype = types.Types[TINT] |
| } |
| |
| fn := syslook(fnname) |
| fn = substArgTypes(fn, hmapType, t.Key(), t.Elem()) |
| n = mkcall1(fn, n.Type, init, typename(n.Type), conv(hint, argtype), h) |
| } |
| |
| case OMAKESLICE: |
| l := n.Left |
| r := n.Right |
| if r == nil { |
| r = safeexpr(l, init) |
| l = r |
| } |
| t := n.Type |
| if t.Elem().NotInHeap() { |
| yyerror("%v can't be allocated in Go; it is incomplete (or unallocatable)", t.Elem()) |
| } |
| if n.Esc == EscNone { |
| if !isSmallMakeSlice(n) { |
| Fatalf("non-small OMAKESLICE with EscNone: %v", n) |
| } |
| // var arr [r]T |
| // n = arr[:l] |
| i := indexconst(r) |
| if i < 0 { |
| Fatalf("walkexpr: invalid index %v", r) |
| } |
| |
| // cap is constrained to [0,2^31) or [0,2^63) depending on whether |
| // we're in 32-bit or 64-bit systems. So it's safe to do: |
| // |
| // if uint64(len) > cap { |
| // if len < 0 { panicmakeslicelen() } |
| // panicmakeslicecap() |
| // } |
| nif := nod(OIF, nod(OGT, conv(l, types.Types[TUINT64]), nodintconst(i)), nil) |
| niflen := nod(OIF, nod(OLT, l, nodintconst(0)), nil) |
| niflen.Nbody.Set1(mkcall("panicmakeslicelen", nil, init)) |
| nif.Nbody.Append(niflen, mkcall("panicmakeslicecap", nil, init)) |
| nif = typecheck(nif, ctxStmt) |
| init.Append(nif) |
| |
| t = types.NewArray(t.Elem(), i) // [r]T |
| var_ := temp(t) |
| a := nod(OAS, var_, nil) // zero temp |
| a = typecheck(a, ctxStmt) |
| init.Append(a) |
| r := nod(OSLICE, var_, nil) // arr[:l] |
| r.SetSliceBounds(nil, l, nil) |
| r = conv(r, n.Type) // in case n.Type is named. |
| r = typecheck(r, ctxExpr) |
| r = walkexpr(r, init) |
| n = r |
| } else { |
| // n escapes; set up a call to makeslice. |
| // When len and cap can fit into int, use makeslice instead of |
| // makeslice64, which is faster and shorter on 32 bit platforms. |
| |
| len, cap := l, r |
| |
| fnname := "makeslice64" |
| argtype := types.Types[TINT64] |
| |
| // Type checking guarantees that TIDEAL len/cap are positive and fit in an int. |
| // The case of len or cap overflow when converting TUINT or TUINTPTR to TINT |
| // will be handled by the negative range checks in makeslice during runtime. |
| if (len.Type.IsKind(TIDEAL) || maxintval[len.Type.Etype].Cmp(maxintval[TUINT]) <= 0) && |
| (cap.Type.IsKind(TIDEAL) || maxintval[cap.Type.Etype].Cmp(maxintval[TUINT]) <= 0) { |
| fnname = "makeslice" |
| argtype = types.Types[TINT] |
| } |
| |
| m := nod(OSLICEHEADER, nil, nil) |
| m.Type = t |
| |
| fn := syslook(fnname) |
| m.Left = mkcall1(fn, types.Types[TUNSAFEPTR], init, typename(t.Elem()), conv(len, argtype), conv(cap, argtype)) |
| m.Left.MarkNonNil() |
| m.List.Set2(conv(len, types.Types[TINT]), conv(cap, types.Types[TINT])) |
| |
| m = typecheck(m, ctxExpr) |
| m = walkexpr(m, init) |
| n = m |
| } |
| |
| case OMAKESLICECOPY: |
| if n.Esc == EscNone { |
| Fatalf("OMAKESLICECOPY with EscNone: %v", n) |
| } |
| |
| t := n.Type |
| if t.Elem().NotInHeap() { |
| yyerror("%v can't be allocated in Go; it is incomplete (or unallocatable)", t.Elem()) |
| } |
| |
| length := conv(n.Left, types.Types[TINT]) |
| copylen := nod(OLEN, n.Right, nil) |
| copyptr := nod(OSPTR, n.Right, nil) |
| |
| if !t.Elem().HasPointers() && n.Bounded() { |
| // When len(to)==len(from) and elements have no pointers: |
| // replace make+copy with runtime.mallocgc+runtime.memmove. |
| |
| // We do not check for overflow of len(to)*elem.Width here |
| // since len(from) is an existing checked slice capacity |
| // with same elem.Width for the from slice. |
| size := nod(OMUL, conv(length, types.Types[TUINTPTR]), conv(nodintconst(t.Elem().Width), types.Types[TUINTPTR])) |
| |
| // instantiate mallocgc(size uintptr, typ *byte, needszero bool) unsafe.Pointer |
| fn := syslook("mallocgc") |
| sh := nod(OSLICEHEADER, nil, nil) |
| sh.Left = mkcall1(fn, types.Types[TUNSAFEPTR], init, size, nodnil(), nodbool(false)) |
| sh.Left.MarkNonNil() |
| sh.List.Set2(length, length) |
| sh.Type = t |
| |
| s := temp(t) |
| r := typecheck(nod(OAS, s, sh), ctxStmt) |
| r = walkexpr(r, init) |
| init.Append(r) |
| |
| // instantiate memmove(to *any, frm *any, size uintptr) |
| fn = syslook("memmove") |
| fn = substArgTypes(fn, t.Elem(), t.Elem()) |
| ncopy := mkcall1(fn, nil, init, nod(OSPTR, s, nil), copyptr, size) |
| ncopy = typecheck(ncopy, ctxStmt) |
| ncopy = walkexpr(ncopy, init) |
| init.Append(ncopy) |
| |
| n = s |
| } else { // Replace make+copy with runtime.makeslicecopy. |
| // instantiate makeslicecopy(typ *byte, tolen int, fromlen int, from unsafe.Pointer) unsafe.Pointer |
| fn := syslook("makeslicecopy") |
| s := nod(OSLICEHEADER, nil, nil) |
| s.Left = mkcall1(fn, types.Types[TUNSAFEPTR], init, typename(t.Elem()), length, copylen, conv(copyptr, types.Types[TUNSAFEPTR])) |
| s.Left.MarkNonNil() |
| s.List.Set2(length, length) |
| s.Type = t |
| n = typecheck(s, ctxExpr) |
| n = walkexpr(n, init) |
| } |
| |
| case ORUNESTR: |
| a := nodnil() |
| if n.Esc == EscNone { |
| t := types.NewArray(types.Types[TUINT8], 4) |
| a = nod(OADDR, temp(t), nil) |
| } |
| // intstring(*[4]byte, rune) |
| n = mkcall("intstring", n.Type, init, a, conv(n.Left, types.Types[TINT64])) |
| |
| case OBYTES2STR, ORUNES2STR: |
| a := nodnil() |
| if n.Esc == EscNone { |
| // Create temporary buffer for string on stack. |
| t := types.NewArray(types.Types[TUINT8], tmpstringbufsize) |
| a = nod(OADDR, temp(t), nil) |
| } |
| if n.Op == ORUNES2STR { |
| // slicerunetostring(*[32]byte, []rune) string |
| n = mkcall("slicerunetostring", n.Type, init, a, n.Left) |
| } else { |
| // slicebytetostring(*[32]byte, ptr *byte, n int) string |
| n.Left = cheapexpr(n.Left, init) |
| ptr, len := n.Left.backingArrayPtrLen() |
| n = mkcall("slicebytetostring", n.Type, init, a, ptr, len) |
| } |
| |
| case OBYTES2STRTMP: |
| n.Left = walkexpr(n.Left, init) |
| if !instrumenting { |
| // Let the backend handle OBYTES2STRTMP directly |
| // to avoid a function call to slicebytetostringtmp. |
| break |
| } |
| // slicebytetostringtmp(ptr *byte, n int) string |
| n.Left = cheapexpr(n.Left, init) |
| ptr, len := n.Left.backingArrayPtrLen() |
| n = mkcall("slicebytetostringtmp", n.Type, init, ptr, len) |
| |
| case OSTR2BYTES: |
| s := n.Left |
| if Isconst(s, CTSTR) { |
| sc := strlit(s) |
| |
| // Allocate a [n]byte of the right size. |
| t := types.NewArray(types.Types[TUINT8], int64(len(sc))) |
| var a *Node |
| if n.Esc == EscNone && len(sc) <= int(maxImplicitStackVarSize) { |
| a = nod(OADDR, temp(t), nil) |
| } else { |
| a = callnew(t) |
| } |
| p := temp(t.PtrTo()) // *[n]byte |
| init.Append(typecheck(nod(OAS, p, a), ctxStmt)) |
| |
| // Copy from the static string data to the [n]byte. |
| if len(sc) > 0 { |
| as := nod(OAS, |
| nod(ODEREF, p, nil), |
| nod(ODEREF, convnop(nod(OSPTR, s, nil), t.PtrTo()), nil)) |
| as = typecheck(as, ctxStmt) |
| as = walkstmt(as) |
| init.Append(as) |
| } |
| |
| // Slice the [n]byte to a []byte. |
| n.Op = OSLICEARR |
| n.Left = p |
| n = walkexpr(n, init) |
| break |
| } |
| |
| a := nodnil() |
| if n.Esc == EscNone { |
| // Create temporary buffer for slice on stack. |
| t := types.NewArray(types.Types[TUINT8], tmpstringbufsize) |
| a = nod(OADDR, temp(t), nil) |
| } |
| // stringtoslicebyte(*32[byte], string) []byte |
| n = mkcall("stringtoslicebyte", n.Type, init, a, conv(s, types.Types[TSTRING])) |
| |
| case OSTR2BYTESTMP: |
| // []byte(string) conversion that creates a slice |
| // referring to the actual string bytes. |
| // This conversion is handled later by the backend and |
| // is only for use by internal compiler optimizations |
| // that know that the slice won't be mutated. |
| // The only such case today is: |
| // for i, c := range []byte(string) |
| n.Left = walkexpr(n.Left, init) |
| |
| case OSTR2RUNES: |
| a := nodnil() |
| if n.Esc == EscNone { |
| // Create temporary buffer for slice on stack. |
| t := types.NewArray(types.Types[TINT32], tmpstringbufsize) |
| a = nod(OADDR, temp(t), nil) |
| } |
| // stringtoslicerune(*[32]rune, string) []rune |
| n = mkcall("stringtoslicerune", n.Type, init, a, conv(n.Left, types.Types[TSTRING])) |
| |
| case OARRAYLIT, OSLICELIT, OMAPLIT, OSTRUCTLIT, OPTRLIT: |
| if isStaticCompositeLiteral(n) && !canSSAType(n.Type) { |
| // n can be directly represented in the read-only data section. |
| // Make direct reference to the static data. See issue 12841. |
| vstat := readonlystaticname(n.Type) |
| fixedlit(inInitFunction, initKindStatic, n, vstat, init) |
| n = vstat |
| n = typecheck(n, ctxExpr) |
| break |
| } |
| var_ := temp(n.Type) |
| anylit(n, var_, init) |
| n = var_ |
| |
| case OSEND: |
| n1 := n.Right |
| n1 = assignconv(n1, n.Left.Type.Elem(), "chan send") |
| n1 = walkexpr(n1, init) |
| n1 = nod(OADDR, n1, nil) |
| n = mkcall1(chanfn("chansend1", 2, n.Left.Type), nil, init, n.Left, n1) |
| |
| case OCLOSURE: |
| n = walkclosure(n, init) |
| |
| case OCALLPART: |
| n = walkpartialcall(n, init) |
| } |
| |
| // Expressions that are constant at run time but not |
| // considered const by the language spec are not turned into |
| // constants until walk. For example, if n is y%1 == 0, the |
| // walk of y%1 may have replaced it by 0. |
| // Check whether n with its updated args is itself now a constant. |
| t := n.Type |
| evconst(n) |
| if n.Type != t { |
| Fatalf("evconst changed Type: %v had type %v, now %v", n, t, n.Type) |
| } |
| if n.Op == OLITERAL { |
| n = typecheck(n, ctxExpr) |
| // Emit string symbol now to avoid emitting |
| // any concurrently during the backend. |
| if s, ok := n.Val().U.(string); ok { |
| _ = stringsym(n.Pos, s) |
| } |
| } |
| |
| updateHasCall(n) |
| |
| if Debug['w'] != 0 && n != nil { |
| Dump("after walk expr", n) |
| } |
| |
| lineno = lno |
| return n |
| } |
| |
| // markTypeUsedInInterface marks that type t is converted to an interface. |
| // This information is used in the linker in dead method elimination. |
| func markTypeUsedInInterface(t *types.Type) { |
| typenamesym(t).Linksym().Set(obj.AttrUsedInIface, true) |
| } |
| |
| // rtconvfn returns the parameter and result types that will be used by a |
| // runtime function to convert from type src to type dst. The runtime function |
| // name can be derived from the names of the returned types. |
| // |
| // If no such function is necessary, it returns (Txxx, Txxx). |
| func rtconvfn(src, dst *types.Type) (param, result types.EType) { |
| if thearch.SoftFloat { |
| return Txxx, Txxx |
| } |
| |
| switch thearch.LinkArch.Family { |
| case sys.ARM, sys.MIPS: |
| if src.IsFloat() { |
| switch dst.Etype { |
| case TINT64, TUINT64: |
| return TFLOAT64, dst.Etype |
| } |
| } |
| if dst.IsFloat() { |
| switch src.Etype { |
| case TINT64, TUINT64: |
| return src.Etype, TFLOAT64 |
| } |
| } |
| |
| case sys.I386: |
| if src.IsFloat() { |
| switch dst.Etype { |
| case TINT64, TUINT64: |
| return TFLOAT64, dst.Etype |
| case TUINT32, TUINT, TUINTPTR: |
| return TFLOAT64, TUINT32 |
| } |
| } |
| if dst.IsFloat() { |
| switch src.Etype { |
| case TINT64, TUINT64: |
| return src.Etype, TFLOAT64 |
| case TUINT32, TUINT, TUINTPTR: |
| return TUINT32, TFLOAT64 |
| } |
| } |
| } |
| return Txxx, Txxx |
| } |
| |
| // TODO(josharian): combine this with its caller and simplify |
| func reduceSlice(n *Node) *Node { |
| low, high, max := n.SliceBounds() |
| if high != nil && high.Op == OLEN && samesafeexpr(n.Left, high.Left) { |
| // Reduce x[i:len(x)] to x[i:]. |
| high = nil |
| } |
| n.SetSliceBounds(low, high, max) |
| if (n.Op == OSLICE || n.Op == OSLICESTR) && low == nil && high == nil { |
| // Reduce x[:] to x. |
| if Debug_slice > 0 { |
| Warn("slice: omit slice operation") |
| } |
| return n.Left |
| } |
| return n |
| } |
| |
| func ascompatee1(l *Node, r *Node, init *Nodes) *Node { |
| // convas will turn map assigns into function calls, |
| // making it impossible for reorder3 to work. |
| n := nod(OAS, l, r) |
| |
| if l.Op == OINDEXMAP { |
| return n |
| } |
| |
| return convas(n, init) |
| } |
| |
| func ascompatee(op Op, nl, nr []*Node, init *Nodes) []*Node { |
| // check assign expression list to |
| // an expression list. called in |
| // expr-list = expr-list |
| |
| // ensure order of evaluation for function calls |
| for i := range nl { |
| nl[i] = safeexpr(nl[i], init) |
| } |
| for i1 := range nr { |
| nr[i1] = safeexpr(nr[i1], init) |
| } |
| |
| var nn []*Node |
| i := 0 |
| for ; i < len(nl); i++ { |
| if i >= len(nr) { |
| break |
| } |
| // Do not generate 'x = x' during return. See issue 4014. |
| if op == ORETURN && samesafeexpr(nl[i], nr[i]) { |
| continue |
| } |
| nn = append(nn, ascompatee1(nl[i], nr[i], init)) |
| } |
| |
| // cannot happen: caller checked that lists had same length |
| if i < len(nl) || i < len(nr) { |
| var nln, nrn Nodes |
| nln.Set(nl) |
| nrn.Set(nr) |
| Fatalf("error in shape across %+v %v %+v / %d %d [%s]", nln, op, nrn, len(nl), len(nr), Curfn.funcname()) |
| } |
| return nn |
| } |
| |
| // fncall reports whether assigning an rvalue of type rt to an lvalue l might involve a function call. |
| func fncall(l *Node, rt *types.Type) bool { |
| if l.HasCall() || l.Op == OINDEXMAP { |
| return true |
| } |
| if types.Identical(l.Type, rt) { |
| return false |
| } |
| // There might be a conversion required, which might involve a runtime call. |
| return true |
| } |
| |
| // check assign type list to |
| // an expression list. called in |
| // expr-list = func() |
| func ascompatet(nl Nodes, nr *types.Type) []*Node { |
| if nl.Len() != nr.NumFields() { |
| Fatalf("ascompatet: assignment count mismatch: %d = %d", nl.Len(), nr.NumFields()) |
| } |
| |
| var nn, mm Nodes |
| for i, l := range nl.Slice() { |
| if l.isBlank() { |
| continue |
| } |
| r := nr.Field(i) |
| |
| // Any assignment to an lvalue that might cause a function call must be |
| // deferred until all the returned values have been read. |
| if fncall(l, r.Type) { |
| tmp := temp(r.Type) |
| tmp = typecheck(tmp, ctxExpr) |
| a := nod(OAS, l, tmp) |
| a = convas(a, &mm) |
| mm.Append(a) |
| l = tmp |
| } |
| |
| res := nod(ORESULT, nil, nil) |
| res.Xoffset = Ctxt.FixedFrameSize() + r.Offset |
| res.Type = r.Type |
| res.SetTypecheck(1) |
| |
| a := nod(OAS, l, res) |
| a = convas(a, &nn) |
| updateHasCall(a) |
| if a.HasCall() { |
| Dump("ascompatet ucount", a) |
| Fatalf("ascompatet: too many function calls evaluating parameters") |
| } |
| |
| nn.Append(a) |
| } |
| return append(nn.Slice(), mm.Slice()...) |
| } |
| |
| // package all the arguments that match a ... T parameter into a []T. |
| func mkdotargslice(typ *types.Type, args []*Node) *Node { |
| var n *Node |
| if len(args) == 0 { |
| n = nodnil() |
| n.Type = typ |
| } else { |
| n = nod(OCOMPLIT, nil, typenod(typ)) |
| n.List.Append(args...) |
| n.SetImplicit(true) |
| } |
| |
| n = typecheck(n, ctxExpr) |
| if n.Type == nil { |
| Fatalf("mkdotargslice: typecheck failed") |
| } |
| return n |
| } |
| |
| // fixVariadicCall rewrites calls to variadic functions to use an |
| // explicit ... argument if one is not already present. |
| func fixVariadicCall(call *Node) { |
| fntype := call.Left.Type |
| if !fntype.IsVariadic() || call.IsDDD() { |
| return |
| } |
| |
| vi := fntype.NumParams() - 1 |
| vt := fntype.Params().Field(vi).Type |
| |
| args := call.List.Slice() |
| extra := args[vi:] |
| slice := mkdotargslice(vt, extra) |
| for i := range extra { |
| extra[i] = nil // allow GC |
| } |
| |
| call.List.Set(append(args[:vi], slice)) |
| call.SetIsDDD(true) |
| } |
| |
| func walkCall(n *Node, init *Nodes) { |
| if n.Rlist.Len() != 0 { |
| return // already walked |
| } |
| |
| params := n.Left.Type.Params() |
| args := n.List.Slice() |
| |
| n.Left = walkexpr(n.Left, init) |
| walkexprlist(args, init) |
| |
| // If this is a method call, add the receiver at the beginning of the args. |
| if n.Op == OCALLMETH { |
| withRecv := make([]*Node, len(args)+1) |
| withRecv[0] = n.Left.Left |
| n.Left.Left = nil |
| copy(withRecv[1:], args) |
| args = withRecv |
| } |
| |
| // For any argument whose evaluation might require a function call, |
| // store that argument into a temporary variable, |
| // to prevent that calls from clobbering arguments already on the stack. |
| // When instrumenting, all arguments might require function calls. |
| var tempAssigns []*Node |
| for i, arg := range args { |
| updateHasCall(arg) |
| // Determine param type. |
| var t *types.Type |
| if n.Op == OCALLMETH { |
| if i == 0 { |
| t = n.Left.Type.Recv().Type |
| } else { |
| t = params.Field(i - 1).Type |
| } |
| } else { |
| t = params.Field(i).Type |
| } |
| if instrumenting || fncall(arg, t) { |
| // make assignment of fncall to tempAt |
| tmp := temp(t) |
| a := nod(OAS, tmp, arg) |
| a = convas(a, init) |
| tempAssigns = append(tempAssigns, a) |
| // replace arg with temp |
| args[i] = tmp |
| } |
| } |
| |
| n.List.Set(tempAssigns) |
| n.Rlist.Set(args) |
| } |
| |
| // generate code for print |
| func walkprint(nn *Node, init *Nodes) *Node { |
| // Hoist all the argument evaluation up before the lock. |
| walkexprlistcheap(nn.List.Slice(), init) |
| |
| // For println, add " " between elements and "\n" at the end. |
| if nn.Op == OPRINTN { |
| s := nn.List.Slice() |
| t := make([]*Node, 0, len(s)*2) |
| for i, n := range s { |
| if i != 0 { |
| t = append(t, nodstr(" ")) |
| } |
| t = append(t, n) |
| } |
| t = append(t, nodstr("\n")) |
| nn.List.Set(t) |
| } |
| |
| // Collapse runs of constant strings. |
| s := nn.List.Slice() |
| t := make([]*Node, 0, len(s)) |
| for i := 0; i < len(s); { |
| var strs []string |
| for i < len(s) && Isconst(s[i], CTSTR) { |
| strs = append(strs, strlit(s[i])) |
| i++ |
| } |
| if len(strs) > 0 { |
| t = append(t, nodstr(strings.Join(strs, ""))) |
| } |
| if i < len(s) { |
| t = append(t, s[i]) |
| i++ |
| } |
| } |
| nn.List.Set(t) |
| |
| calls := []*Node{mkcall("printlock", nil, init)} |
| for i, n := range nn.List.Slice() { |
| if n.Op == OLITERAL { |
| switch n.Val().Ctype() { |
| case CTRUNE: |
| n = defaultlit(n, types.Runetype) |
| |
| case CTINT: |
| n = defaultlit(n, types.Types[TINT64]) |
| |
| case CTFLT: |
| n = defaultlit(n, types.Types[TFLOAT64]) |
| } |
| } |
| |
| if n.Op != OLITERAL && n.Type != nil && n.Type.Etype == TIDEAL { |
| n = defaultlit(n, types.Types[TINT64]) |
| } |
| n = defaultlit(n, nil) |
| nn.List.SetIndex(i, n) |
| if n.Type == nil || n.Type.Etype == TFORW { |
| continue |
| } |
| |
| var on *Node |
| switch n.Type.Etype { |
| case TINTER: |
| if n.Type.IsEmptyInterface() { |
| on = syslook("printeface") |
| } else { |
| on = syslook("printiface") |
| } |
| on = substArgTypes(on, n.Type) // any-1 |
| case TPTR, TCHAN, TMAP, TFUNC, TUNSAFEPTR: |
| on = syslook("printpointer") |
| on = substArgTypes(on, n.Type) // any-1 |
| case TSLICE: |
| on = syslook("printslice") |
| on = substArgTypes(on, n.Type) // any-1 |
| case TUINT, TUINT8, TUINT16, TUINT32, TUINT64, TUINTPTR: |
| if isRuntimePkg(n.Type.Sym.Pkg) && n.Type.Sym.Name == "hex" { |
| on = syslook("printhex") |
| } else { |
| on = syslook("printuint") |
| } |
| case TINT, TINT8, TINT16, TINT32, TINT64: |
| on = syslook("printint") |
| case TFLOAT32, TFLOAT64: |
| on = syslook("printfloat") |
| case TCOMPLEX64, TCOMPLEX128: |
| on = syslook("printcomplex") |
| case TBOOL: |
| on = syslook("printbool") |
| case TSTRING: |
| cs := "" |
| if Isconst(n, CTSTR) { |
| cs = strlit(n) |
| } |
| switch cs { |
| case " ": |
| on = syslook("printsp") |
| case "\n": |
| on = syslook("printnl") |
| default: |
| on = syslook("printstring") |
| } |
| default: |
| badtype(OPRINT, n.Type, nil) |
| continue |
| } |
| |
| r := nod(OCALL, on, nil) |
| if params := on.Type.Params().FieldSlice(); len(params) > 0 { |
| t := params[0].Type |
| if !types.Identical(t, n.Type) { |
| n = nod(OCONV, n, nil) |
| n.Type = t |
| } |
| r.List.Append(n) |
| } |
| calls = append(calls, r) |
| } |
| |
| calls = append(calls, mkcall("printunlock", nil, init)) |
| |
| typecheckslice(calls, ctxStmt) |
| walkexprlist(calls, init) |
| |
| r := nod(OEMPTY, nil, nil) |
| r = typecheck(r, ctxStmt) |
| r = walkexpr(r, init) |
| r.Ninit.Set(calls) |
| return r |
| } |
| |
| func callnew(t *types.Type) *Node { |
| dowidth(t) |
| n := nod(ONEWOBJ, typename(t), nil) |
| n.Type = types.NewPtr(t) |
| n.SetTypecheck(1) |
| n.MarkNonNil() |
| return n |
| } |
| |
| // isReflectHeaderDataField reports whether l is an expression p.Data |
| // where p has type reflect.SliceHeader or reflect.StringHeader. |
| func isReflectHeaderDataField(l *Node) bool { |
| if l.Type != types.Types[TUINTPTR] { |
| return false |
| } |
| |
| var tsym *types.Sym |
| switch l.Op { |
| case ODOT: |
| tsym = l.Left.Type.Sym |
| case ODOTPTR: |
| tsym = l.Left.Type.Elem().Sym |
| default: |
| return false |
| } |
| |
| if tsym == nil || l.Sym.Name != "Data" || tsym.Pkg.Path != "reflect" { |
| return false |
| } |
| return tsym.Name == "SliceHeader" || tsym.Name == "StringHeader" |
| } |
| |
| func convas(n *Node, init *Nodes) *Node { |
| if n.Op != OAS { |
| Fatalf("convas: not OAS %v", n.Op) |
| } |
| defer updateHasCall(n) |
| |
| n.SetTypecheck(1) |
| |
| if n.Left == nil || n.Right == nil { |
| return n |
| } |
| |
| lt := n.Left.Type |
| rt := n.Right.Type |
| if lt == nil || rt == nil { |
| return n |
| } |
| |
| if n.Left.isBlank() { |
| n.Right = defaultlit(n.Right, nil) |
| return n |
| } |
| |
| if !types.Identical(lt, rt) { |
| n.Right = assignconv(n.Right, lt, "assignment") |
| n.Right = walkexpr(n.Right, init) |
| } |
| dowidth(n.Right.Type) |
| |
| return n |
| } |
| |
| // from ascompat[ee] |
| // a,b = c,d |
| // simultaneous assignment. there cannot |
| // be later use of an earlier lvalue. |
| // |
| // function calls have been removed. |
| func reorder3(all []*Node) []*Node { |
| // If a needed expression may be affected by an |
| // earlier assignment, make an early copy of that |
| // expression and use the copy instead. |
| var early []*Node |
| |
| var mapinit Nodes |
| for i, n := range all { |
| l := n.Left |
| |
| // Save subexpressions needed on left side. |
| // Drill through non-dereferences. |
| for { |
| if l.Op == ODOT || l.Op == OPAREN { |
| l = l.Left |
| continue |
| } |
| |
| if l.Op == OINDEX && l.Left.Type.IsArray() { |
| l.Right = reorder3save(l.Right, all, i, &early) |
| l = l.Left |
| continue |
| } |
| |
| break |
| } |
| |
| switch l.Op { |
| default: |
| Fatalf("reorder3 unexpected lvalue %#v", l.Op) |
| |
| case ONAME: |
| break |
| |
| case OINDEX, OINDEXMAP: |
| l.Left = reorder3save(l.Left, all, i, &early) |
| l.Right = reorder3save(l.Right, all, i, &early) |
| if l.Op == OINDEXMAP { |
| all[i] = convas(all[i], &mapinit) |
| } |
| |
| case ODEREF, ODOTPTR: |
| l.Left = reorder3save(l.Left, all, i, &early) |
| } |
| |
| // Save expression on right side. |
| all[i].Right = reorder3save(all[i].Right, all, i, &early) |
| } |
| |
| early = append(mapinit.Slice(), early...) |
| return append(early, all...) |
| } |
| |
| // if the evaluation of *np would be affected by the |
| // assignments in all up to but not including the ith assignment, |
| // copy into a temporary during *early and |
| // replace *np with that temp. |
| // The result of reorder3save MUST be assigned back to n, e.g. |
| // n.Left = reorder3save(n.Left, all, i, early) |
| func reorder3save(n *Node, all []*Node, i int, early *[]*Node) *Node { |
| if !aliased(n, all, i) { |
| return n |
| } |
| |
| q := temp(n.Type) |
| q = nod(OAS, q, n) |
| q = typecheck(q, ctxStmt) |
| *early = append(*early, q) |
| return q.Left |
| } |
| |
| // what's the outer value that a write to n affects? |
| // outer value means containing struct or array. |
| func outervalue(n *Node) *Node { |
| for { |
| switch n.Op { |
| case OXDOT: |
| Fatalf("OXDOT in walk") |
| case ODOT, OPAREN, OCONVNOP: |
| n = n.Left |
| continue |
| case OINDEX: |
| if n.Left.Type != nil && n.Left.Type.IsArray() { |
| n = n.Left |
| continue |
| } |
| } |
| |
| return n |
| } |
| } |
| |
| // Is it possible that the computation of n might be |
| // affected by writes in as up to but not including the ith element? |
| func aliased(n *Node, all []*Node, i int) bool { |
| if n == nil { |
| return false |
| } |
| |
| // Treat all fields of a struct as referring to the whole struct. |
| // We could do better but we would have to keep track of the fields. |
| for n.Op == ODOT { |
| n = n.Left |
| } |
| |
| // Look for obvious aliasing: a variable being assigned |
| // during the all list and appearing in n. |
| // Also record whether there are any writes to main memory. |
| // Also record whether there are any writes to variables |
| // whose addresses have been taken. |
| memwrite := false |
| varwrite := false |
| for _, an := range all[:i] { |
| a := outervalue(an.Left) |
| |
| for a.Op == ODOT { |
| a = a.Left |
| } |
| |
| if a.Op != ONAME { |
| memwrite = true |
| continue |
| } |
| |
| switch n.Class() { |
| default: |
| varwrite = true |
| continue |
| |
| case PAUTO, PPARAM, PPARAMOUT: |
| if n.Name.Addrtaken() { |
| varwrite = true |
| continue |
| } |
| |
| if vmatch2(a, n) { |
| // Direct hit. |
| return true |
| } |
| } |
| } |
| |
| // The variables being written do not appear in n. |
| // However, n might refer to computed addresses |
| // that are being written. |
| |
| // If no computed addresses are affected by the writes, no aliasing. |
| if !memwrite && !varwrite { |
| return false |
| } |
| |
| // If n does not refer to computed addresses |
| // (that is, if n only refers to variables whose addresses |
| // have not been taken), no aliasing. |
| if varexpr(n) { |
| return false |
| } |
| |
| // Otherwise, both the writes and n refer to computed memory addresses. |
| // Assume that they might conflict. |
| return true |
| } |
| |
| // does the evaluation of n only refer to variables |
| // whose addresses have not been taken? |
| // (and no other memory) |
| func varexpr(n *Node) bool { |
| if n == nil { |
| return true |
| } |
| |
| switch n.Op { |
| case OLITERAL: |
| return true |
| |
| case ONAME: |
| switch n.Class() { |
| case PAUTO, PPARAM, PPARAMOUT: |
| if !n.Name.Addrtaken() { |
| return true |
| } |
| } |
| |
| return false |
| |
| case OADD, |
| OSUB, |
| OOR, |
| OXOR, |
| OMUL, |
| ODIV, |
| OMOD, |
| OLSH, |
| ORSH, |
| OAND, |
| OANDNOT, |
| OPLUS, |
| ONEG, |
| OBITNOT, |
| OPAREN, |
| OANDAND, |
| OOROR, |
| OCONV, |
| OCONVNOP, |
| OCONVIFACE, |
| ODOTTYPE: |
| return varexpr(n.Left) && varexpr(n.Right) |
| |
| case ODOT: // but not ODOTPTR |
| // Should have been handled in aliased. |
| Fatalf("varexpr unexpected ODOT") |
| } |
| |
| // Be conservative. |
| return false |
| } |
| |
| // is the name l mentioned in r? |
| func vmatch2(l *Node, r *Node) bool { |
| if r == nil { |
| return false |
| } |
| switch r.Op { |
| // match each right given left |
| case ONAME: |
| return l == r |
| |
| case OLITERAL: |
| return false |
| } |
| |
| if vmatch2(l, r.Left) { |
| return true |
| } |
| if vmatch2(l, r.Right) { |
| return true |
| } |
| for _, n := range r.List.Slice() { |
| if vmatch2(l, n) { |
| return true |
| } |
| } |
| return false |
| } |
| |
| // is any name mentioned in l also mentioned in r? |
| // called by sinit.go |
| func vmatch1(l *Node, r *Node) bool { |
| // isolate all left sides |
| if l == nil || r == nil { |
| return false |
| } |
| switch l.Op { |
| case ONAME: |
| switch l.Class() { |
| case PPARAM, PAUTO: |
| break |
| |
| default: |
| // assignment to non-stack variable must be |
| // delayed if right has function calls. |
| if r.HasCall() { |
| return true |
| } |
| } |
| |
| return vmatch2(l, r) |
| |
| case OLITERAL: |
| return false |
| } |
| |
| if vmatch1(l.Left, r) { |
| return true |
| } |
| if vmatch1(l.Right, r) { |
| return true |
| } |
| for _, n := range l.List.Slice() { |
| if vmatch1(n, r) { |
| return true |
| } |
| } |
| return false |
| } |
| |
| // paramstoheap returns code to allocate memory for heap-escaped parameters |
| // and to copy non-result parameters' values from the stack. |
| func paramstoheap(params *types.Type) []*Node { |
| var nn []*Node |
| for _, t := range params.Fields().Slice() { |
| v := asNode(t.Nname) |
| if v != nil && v.Sym != nil && strings.HasPrefix(v.Sym.Name, "~r") { // unnamed result |
| v = nil |
| } |
| if v == nil { |
| continue |
| } |
| |
| if stackcopy := v.Name.Param.Stackcopy; stackcopy != nil { |
| nn = append(nn, walkstmt(nod(ODCL, v, nil))) |
| if stackcopy.Class() == PPARAM { |
| nn = append(nn, walkstmt(typecheck(nod(OAS, v, stackcopy), ctxStmt))) |
| } |
| } |
| } |
| |
| return nn |
| } |
| |
| // zeroResults zeros the return values at the start of the function. |
| // We need to do this very early in the function. Defer might stop a |
| // panic and show the return values as they exist at the time of |
| // panic. For precise stacks, the garbage collector assumes results |
| // are always live, so we need to zero them before any allocations, |
| // even allocations to move params/results to the heap. |
| // The generated code is added to Curfn's Enter list. |
| func zeroResults() { |
| for _, f := range Curfn.Type.Results().Fields().Slice() { |
| v := asNode(f.Nname) |
| if v != nil && v.Name.Param.Heapaddr != nil { |
| // The local which points to the return value is the |
| // thing that needs zeroing. This is already handled |
| // by a Needzero annotation in plive.go:livenessepilogue. |
| continue |
| } |
| if v.isParamHeapCopy() { |
| // TODO(josharian/khr): Investigate whether we can switch to "continue" here, |
| // and document more in either case. |
| // In the review of CL 114797, Keith wrote (roughly): |
| // I don't think the zeroing below matters. |
| // The stack return value will never be marked as live anywhere in the function. |
| // It is not written to until deferreturn returns. |
| v = v.Name.Param.Stackcopy |
| } |
| // Zero the stack location containing f. |
| Curfn.Func.Enter.Append(nodl(Curfn.Pos, OAS, v, nil)) |
| } |
| } |
| |
| // returnsfromheap returns code to copy values for heap-escaped parameters |
| // back to the stack. |
| func returnsfromheap(params *types.Type) []*Node { |
| var nn []*Node |
| for _, t := range params.Fields().Slice() { |
| v := asNode(t.Nname) |
| if v == nil { |
| continue |
| } |
| if stackcopy := v.Name.Param.Stackcopy; stackcopy != nil && stackcopy.Class() == PPARAMOUT { |
| nn = append(nn, walkstmt(typecheck(nod(OAS, stackcopy, v), ctxStmt))) |
| } |
| } |
| |
| return nn |
| } |
| |
| // heapmoves generates code to handle migrating heap-escaped parameters |
| // between the stack and the heap. The generated code is added to Curfn's |
| // Enter and Exit lists. |
| func heapmoves() { |
| lno := lineno |
| lineno = Curfn.Pos |
| nn := paramstoheap(Curfn.Type.Recvs()) |
| nn = append(nn, paramstoheap(Curfn.Type.Params())...) |
| nn = append(nn, paramstoheap(Curfn.Type.Results())...) |
| Curfn.Func.Enter.Append(nn...) |
| lineno = Curfn.Func.Endlineno |
| Curfn.Func.Exit.Append(returnsfromheap(Curfn.Type.Results())...) |
| lineno = lno |
| } |
| |
| func vmkcall(fn *Node, t *types.Type, init *Nodes, va []*Node) *Node { |
| if fn.Type == nil || fn.Type.Etype != TFUNC { |
| Fatalf("mkcall %v %v", fn, fn.Type) |
| } |
| |
| n := fn.Type.NumParams() |
| if n != len(va) { |
| Fatalf("vmkcall %v needs %v args got %v", fn, n, len(va)) |
| } |
| |
| r := nod(OCALL, fn, nil) |
| r.List.Set(va) |
| if fn.Type.NumResults() > 0 { |
| r = typecheck(r, ctxExpr|ctxMultiOK) |
| } else { |
| r = typecheck(r, ctxStmt) |
| } |
| r = walkexpr(r, init) |
| r.Type = t |
| return r |
| } |
| |
| func mkcall(name string, t *types.Type, init *Nodes, args ...*Node) *Node { |
| return vmkcall(syslook(name), t, init, args) |
| } |
| |
| func mkcall1(fn *Node, t *types.Type, init *Nodes, args ...*Node) *Node { |
| return vmkcall(fn, t, init, args) |
| } |
| |
| func conv(n *Node, t *types.Type) *Node { |
| if types.Identical(n.Type, t) { |
| return n |
| } |
| n = nod(OCONV, n, nil) |
| n.Type = t |
| n = typecheck(n, ctxExpr) |
| return n |
| } |
| |
| // convnop converts node n to type t using the OCONVNOP op |
| // and typechecks the result with ctxExpr. |
| func convnop(n *Node, t *types.Type) *Node { |
| if types.Identical(n.Type, t) { |
| return n |
| } |
| n = nod(OCONVNOP, n, nil) |
| n.Type = t |
| n = typecheck(n, ctxExpr) |
| return n |
| } |
| |
| // byteindex converts n, which is byte-sized, to an int used to index into an array. |
| // We cannot use conv, because we allow converting bool to int here, |
| // which is forbidden in user code. |
| func byteindex(n *Node) *Node { |
| // We cannot convert from bool to int directly. |
| // While converting from int8 to int is possible, it would yield |
| // the wrong result for negative values. |
| // Reinterpreting the value as an unsigned byte solves both cases. |
| if !types.Identical(n.Type, types.Types[TUINT8]) { |
| n = nod(OCONV, n, nil) |
| n.Type = types.Types[TUINT8] |
| n.SetTypecheck(1) |
| } |
| n = nod(OCONV, n, nil) |
| n.Type = types.Types[TINT] |
| n.SetTypecheck(1) |
| return n |
| } |
| |
| func chanfn(name string, n int, t *types.Type) *Node { |
| if !t.IsChan() { |
| Fatalf("chanfn %v", t) |
| } |
| fn := syslook(name) |
| switch n { |
| default: |
| Fatalf("chanfn %d", n) |
| case 1: |
| fn = substArgTypes(fn, t.Elem()) |
| case 2: |
| fn = substArgTypes(fn, t.Elem(), t.Elem()) |
| } |
| return fn |
| } |
| |
| func mapfn(name string, t *types.Type) *Node { |
| if !t.IsMap() { |
| Fatalf("mapfn %v", t) |
| } |
| fn := syslook(name) |
| fn = substArgTypes(fn, t.Key(), t.Elem(), t.Key(), t.Elem()) |
| return fn |
| } |
| |
| func mapfndel(name string, t *types.Type) *Node { |
| if !t.IsMap() { |
| Fatalf("mapfn %v", t) |
| } |
| fn := syslook(name) |
| fn = substArgTypes(fn, t.Key(), t.Elem(), t.Key()) |
| return fn |
| } |
| |
| const ( |
| mapslow = iota |
| mapfast32 |
| mapfast32ptr |
| mapfast64 |
| mapfast64ptr |
| mapfaststr |
| nmapfast |
| ) |
| |
| type mapnames [nmapfast]string |
| |
| func mkmapnames(base string, ptr string) mapnames { |
| return mapnames{base, base + "_fast32", base + "_fast32" + ptr, base + "_fast64", base + "_fast64" + ptr, base + "_faststr"} |
| } |
| |
| var mapaccess1 = mkmapnames("mapaccess1", "") |
| var mapaccess2 = mkmapnames("mapaccess2", "") |
| var mapassign = mkmapnames("mapassign", "ptr") |
| var mapdelete = mkmapnames("mapdelete", "") |
| |
| func mapfast(t *types.Type) int { |
| // Check runtime/map.go:maxElemSize before changing. |
| if t.Elem().Width > 128 { |
| return mapslow |
| } |
| switch algtype(t.Key()) { |
| case AMEM32: |
| if !t.Key().HasPointers() { |
| return mapfast32 |
| } |
| if Widthptr == 4 { |
| return mapfast32ptr |
| } |
| Fatalf("small pointer %v", t.Key()) |
| case AMEM64: |
| if !t.Key().HasPointers() { |
| return mapfast64 |
| } |
| if Widthptr == 8 { |
| return mapfast64ptr |
| } |
| // Two-word object, at least one of which is a pointer. |
| // Use the slow path. |
| case ASTRING: |
| return mapfaststr |
| } |
| return mapslow |
| } |
| |
| func writebarrierfn(name string, l *types.Type, r *types.Type) *Node { |
| fn := syslook(name) |
| fn = substArgTypes(fn, l, r) |
| return fn |
| } |
| |
| func addstr(n *Node, init *Nodes) *Node { |
| // order.expr rewrote OADDSTR to have a list of strings. |
| c := n.List.Len() |
| |
| if c < 2 { |
| Fatalf("addstr count %d too small", c) |
| } |
| |
| buf := nodnil() |
| if n.Esc == EscNone { |
| sz := int64(0) |
| for _, n1 := range n.List.Slice() { |
| if n1.Op == OLITERAL { |
| sz += int64(len(strlit(n1))) |
| } |
| } |
| |
| // Don't allocate the buffer if the result won't fit. |
| if sz < tmpstringbufsize { |
| // Create temporary buffer for result string on stack. |
| t := types.NewArray(types.Types[TUINT8], tmpstringbufsize) |
| buf = nod(OADDR, temp(t), nil) |
| } |
| } |
| |
| // build list of string arguments |
| args := []*Node{buf} |
| for _, n2 := range n.List.Slice() { |
| args = append(args, conv(n2, types.Types[TSTRING])) |
| } |
| |
| var fn string |
| if c <= 5 { |
| // small numbers of strings use direct runtime helpers. |
| // note: order.expr knows this cutoff too. |
| fn = fmt.Sprintf("concatstring%d", c) |
| } else { |
| // large numbers of strings are passed to the runtime as a slice. |
| fn = "concatstrings" |
| |
| t := types.NewSlice(types.Types[TSTRING]) |
| slice := nod(OCOMPLIT, nil, typenod(t)) |
| if prealloc[n] != nil { |
| prealloc[slice] = prealloc[n] |
| } |
| slice.List.Set(args[1:]) // skip buf arg |
| args = []*Node{buf, slice} |
| slice.Esc = EscNone |
| } |
| |
| cat := syslook(fn) |
| r := nod(OCALL, cat, nil) |
| r.List.Set(args) |
| r = typecheck(r, ctxExpr) |
| r = walkexpr(r, init) |
| r.Type = n.Type |
| |
| return r |
| } |
| |
| func walkAppendArgs(n *Node, init *Nodes) { |
| walkexprlistsafe(n.List.Slice(), init) |
| |
| // walkexprlistsafe will leave OINDEX (s[n]) alone if both s |
| // and n are name or literal, but those may index the slice we're |
| // modifying here. Fix explicitly. |
| ls := n.List.Slice() |
| for i1, n1 := range ls { |
| ls[i1] = cheapexpr(n1, init) |
| } |
| } |
| |
| // expand append(l1, l2...) to |
| // init { |
| // s := l1 |
| // n := len(s) + len(l2) |
| // // Compare as uint so growslice can panic on overflow. |
| // if uint(n) > uint(cap(s)) { |
| // s = growslice(s, n) |
| // } |
| // s = s[:n] |
| // memmove(&s[len(l1)], &l2[0], len(l2)*sizeof(T)) |
| // } |
| // s |
| // |
| // l2 is allowed to be a string. |
| func appendslice(n *Node, init *Nodes) *Node { |
| walkAppendArgs(n, init) |
| |
| l1 := n.List.First() |
| l2 := n.List.Second() |
| l2 = cheapexpr(l2, init) |
| n.List.SetSecond(l2) |
| |
| var nodes Nodes |
| |
| // var s []T |
| s := temp(l1.Type) |
| nodes.Append(nod(OAS, s, l1)) // s = l1 |
| |
| elemtype := s.Type.Elem() |
| |
| // n := len(s) + len(l2) |
| nn := temp(types.Types[TINT]) |
| nodes.Append(nod(OAS, nn, nod(OADD, nod(OLEN, s, nil), nod(OLEN, l2, nil)))) |
| |
| // if uint(n) > uint(cap(s)) |
| nif := nod(OIF, nil, nil) |
| nuint := conv(nn, types.Types[TUINT]) |
| scapuint := conv(nod(OCAP, s, nil), types.Types[TUINT]) |
| nif.Left = nod(OGT, nuint, scapuint) |
| |
| // instantiate growslice(typ *type, []any, int) []any |
| fn := syslook("growslice") |
| fn = substArgTypes(fn, elemtype, elemtype) |
| |
| // s = growslice(T, s, n) |
| nif.Nbody.Set1(nod(OAS, s, mkcall1(fn, s.Type, &nif.Ninit, typename(elemtype), s, nn))) |
| nodes.Append(nif) |
| |
| // s = s[:n] |
| nt := nod(OSLICE, s, nil) |
| nt.SetSliceBounds(nil, nn, nil) |
| nt.SetBounded(true) |
| nodes.Append(nod(OAS, s, nt)) |
| |
| var ncopy *Node |
| if elemtype.HasPointers() { |
| // copy(s[len(l1):], l2) |
| nptr1 := nod(OSLICE, s, nil) |
| nptr1.Type = s.Type |
| nptr1.SetSliceBounds(nod(OLEN, l1, nil), nil, nil) |
| nptr1 = cheapexpr(nptr1, &nodes) |
| |
| nptr2 := l2 |
| |
| Curfn.Func.setWBPos(n.Pos) |
| |
| // instantiate typedslicecopy(typ *type, dstPtr *any, dstLen int, srcPtr *any, srcLen int) int |
| fn := syslook("typedslicecopy") |
| fn = substArgTypes(fn, l1.Type.Elem(), l2.Type.Elem()) |
| ptr1, len1 := nptr1.backingArrayPtrLen() |
| ptr2, len2 := nptr2.backingArrayPtrLen() |
| ncopy = mkcall1(fn, types.Types[TINT], &nodes, typename(elemtype), ptr1, len1, ptr2, len2) |
| } else if instrumenting && !compiling_runtime { |
| // rely on runtime to instrument: |
| // copy(s[len(l1):], l2) |
| // l2 can be a slice or string. |
| nptr1 := nod(OSLICE, s, nil) |
| nptr1.Type = s.Type |
| nptr1.SetSliceBounds(nod(OLEN, l1, nil), nil, nil) |
| nptr1 = cheapexpr(nptr1, &nodes) |
| nptr2 := l2 |
| |
| ptr1, len1 := nptr1.backingArrayPtrLen() |
| ptr2, len2 := nptr2.backingArrayPtrLen() |
| |
| fn := syslook("slicecopy") |
| fn = substArgTypes(fn, ptr1.Type.Elem(), ptr2.Type.Elem()) |
| ncopy = mkcall1(fn, types.Types[TINT], &nodes, ptr1, len1, ptr2, len2, nodintconst(elemtype.Width)) |
| } else { |
| // memmove(&s[len(l1)], &l2[0], len(l2)*sizeof(T)) |
| nptr1 := nod(OINDEX, s, nod(OLEN, l1, nil)) |
| nptr1.SetBounded(true) |
| nptr1 = nod(OADDR, nptr1, nil) |
| |
| nptr2 := nod(OSPTR, l2, nil) |
| |
| nwid := cheapexpr(conv(nod(OLEN, l2, nil), types.Types[TUINTPTR]), &nodes) |
| nwid = nod(OMUL, nwid, nodintconst(elemtype.Width)) |
| |
| // instantiate func memmove(to *any, frm *any, length uintptr) |
| fn := syslook("memmove") |
| fn = substArgTypes(fn, elemtype, elemtype) |
| ncopy = mkcall1(fn, nil, &nodes, nptr1, nptr2, nwid) |
| } |
| ln := append(nodes.Slice(), ncopy) |
| |
| typecheckslice(ln, ctxStmt) |
| walkstmtlist(ln) |
| init.Append(ln...) |
| return s |
| } |
| |
| // isAppendOfMake reports whether n is of the form append(x , make([]T, y)...). |
| // isAppendOfMake assumes n has already been typechecked. |
| func isAppendOfMake(n *Node) bool { |
| if Debug['N'] != 0 || instrumenting { |
| return false |
| } |
| |
| if n.Typecheck() == 0 { |
| Fatalf("missing typecheck: %+v", n) |
| } |
| |
| if n.Op != OAPPEND || !n.IsDDD() || n.List.Len() != 2 { |
| return false |
| } |
| |
| second := n.List.Second() |
| if second.Op != OMAKESLICE || second.Right != nil { |
| return false |
| } |
| |
| // y must be either an integer constant or the largest possible positive value |
| // of variable y needs to fit into an uint. |
| |
| // typecheck made sure that constant arguments to make are not negative and fit into an int. |
| |
| // The care of overflow of the len argument to make will be handled by an explicit check of int(len) < 0 during runtime. |
| y := second.Left |
| if !Isconst(y, CTINT) && maxintval[y.Type.Etype].Cmp(maxintval[TUINT]) > 0 { |
| return false |
| } |
| |
| return true |
| } |
| |
| // extendslice rewrites append(l1, make([]T, l2)...) to |
| // init { |
| // if l2 >= 0 { // Empty if block here for more meaningful node.SetLikely(true) |
| // } else { |
| // panicmakeslicelen() |
| // } |
| // s := l1 |
| // n := len(s) + l2 |
| // // Compare n and s as uint so growslice can panic on overflow of len(s) + l2. |
| // // cap is a positive int and n can become negative when len(s) + l2 |
| // // overflows int. Interpreting n when negative as uint makes it larger |
| // // than cap(s). growslice will check the int n arg and panic if n is |
| // // negative. This prevents the overflow from being undetected. |
| // if uint(n) > uint(cap(s)) { |
| // s = growslice(T, s, n) |
| // } |
| // s = s[:n] |
| // lptr := &l1[0] |
| // sptr := &s[0] |
| // if lptr == sptr || !T.HasPointers() { |
| // // growslice did not clear the whole underlying array (or did not get called) |
| // hp := &s[len(l1)] |
| // hn := l2 * sizeof(T) |
| // memclr(hp, hn) |
| // } |
| // } |
| // s |
| func extendslice(n *Node, init *Nodes) *Node { |
| // isAppendOfMake made sure all possible positive values of l2 fit into an uint. |
| // The case of l2 overflow when converting from e.g. uint to int is handled by an explicit |
| // check of l2 < 0 at runtime which is generated below. |
| l2 := conv(n.List.Second().Left, types.Types[TINT]) |
| l2 = typecheck(l2, ctxExpr) |
| n.List.SetSecond(l2) // walkAppendArgs expects l2 in n.List.Second(). |
| |
| walkAppendArgs(n, init) |
| |
| l1 := n.List.First() |
| l2 = n.List.Second() // re-read l2, as it may have been updated by walkAppendArgs |
| |
| var nodes []*Node |
| |
| // if l2 >= 0 (likely happens), do nothing |
| nifneg := nod(OIF, nod(OGE, l2, nodintconst(0)), nil) |
| nifneg.SetLikely(true) |
| |
| // else panicmakeslicelen() |
| nifneg.Rlist.Set1(mkcall("panicmakeslicelen", nil, init)) |
| nodes = append(nodes, nifneg) |
| |
| // s := l1 |
| s := temp(l1.Type) |
| nodes = append(nodes, nod(OAS, s, l1)) |
| |
| elemtype := s.Type.Elem() |
| |
| // n := len(s) + l2 |
| nn := temp(types.Types[TINT]) |
| nodes = append(nodes, nod(OAS, nn, nod(OADD, nod(OLEN, s, nil), l2))) |
| |
| // if uint(n) > uint(cap(s)) |
| nuint := conv(nn, types.Types[TUINT]) |
| capuint := conv(nod(OCAP, s, nil), types.Types[TUINT]) |
| nif := nod(OIF, nod(OGT, nuint, capuint), nil) |
| |
| // instantiate growslice(typ *type, old []any, newcap int) []any |
| fn := syslook("growslice") |
| fn = substArgTypes(fn, elemtype, elemtype) |
| |
| // s = growslice(T, s, n) |
| nif.Nbody.Set1(nod(OAS, s, mkcall1(fn, s.Type, &nif.Ninit, typename(elemtype), s, nn))) |
| nodes = append(nodes, nif) |
| |
| // s = s[:n] |
| nt := nod(OSLICE, s, nil) |
| nt.SetSliceBounds(nil, nn, nil) |
| nt.SetBounded(true) |
| nodes = append(nodes, nod(OAS, s, nt)) |
| |
| // lptr := &l1[0] |
| l1ptr := temp(l1.Type.Elem().PtrTo()) |
| tmp := nod(OSPTR, l1, nil) |
| nodes = append(nodes, nod(OAS, l1ptr, tmp)) |
| |
| // sptr := &s[0] |
| sptr := temp(elemtype.PtrTo()) |
| tmp = nod(OSPTR, s, nil) |
| nodes = append(nodes, nod(OAS, sptr, tmp)) |
| |
| // hp := &s[len(l1)] |
| hp := nod(OINDEX, s, nod(OLEN, l1, nil)) |
| hp.SetBounded(true) |
| hp = nod(OADDR, hp, nil) |
| hp = convnop(hp, types.Types[TUNSAFEPTR]) |
| |
| // hn := l2 * sizeof(elem(s)) |
| hn := nod(OMUL, l2, nodintconst(elemtype.Width)) |
| hn = conv(hn, types.Types[TUINTPTR]) |
| |
| clrname := "memclrNoHeapPointers" |
| hasPointers := elemtype.HasPointers() |
| if hasPointers { |
| clrname = "memclrHasPointers" |
| Curfn.Func.setWBPos(n.Pos) |
| } |
| |
| var clr Nodes |
| clrfn := mkcall(clrname, nil, &clr, hp, hn) |
| clr.Append(clrfn) |
| |
| if hasPointers { |
| // if l1ptr == sptr |
| nifclr := nod(OIF, nod(OEQ, l1ptr, sptr), nil) |
| nifclr.Nbody = clr |
| nodes = append(nodes, nifclr) |
| } else { |
| nodes = append(nodes, clr.Slice()...) |
| } |
| |
| typecheckslice(nodes, ctxStmt) |
| walkstmtlist(nodes) |
| init.Append(nodes...) |
| return s |
| } |
| |
| // Rewrite append(src, x, y, z) so that any side effects in |
| // x, y, z (including runtime panics) are evaluated in |
| // initialization statements before the append. |
| // For normal code generation, stop there and leave the |
| // rest to cgen_append. |
| // |
| // For race detector, expand append(src, a [, b]* ) to |
| // |
| // init { |
| // s := src |
| // const argc = len(args) - 1 |
| // if cap(s) - len(s) < argc { |
| // s = growslice(s, len(s)+argc) |
| // } |
| // n := len(s) |
| // s = s[:n+argc] |
| // s[n] = a |
| // s[n+1] = b |
| // ... |
| // } |
| // s |
| func walkappend(n *Node, init *Nodes, dst *Node) *Node { |
| if !samesafeexpr(dst, n.List.First()) { |
| n.List.SetFirst(safeexpr(n.List.First(), init)) |
| n.List.SetFirst(walkexpr(n.List.First(), init)) |
| } |
| walkexprlistsafe(n.List.Slice()[1:], init) |
| |
| nsrc := n.List.First() |
| |
| // walkexprlistsafe will leave OINDEX (s[n]) alone if both s |
| // and n are name or literal, but those may index the slice we're |
| // modifying here. Fix explicitly. |
| // Using cheapexpr also makes sure that the evaluation |
| // of all arguments (and especially any panics) happen |
| // before we begin to modify the slice in a visible way. |
| ls := n.List.Slice()[1:] |
| for i, n := range ls { |
| n = cheapexpr(n, init) |
| if !types.Identical(n.Type, nsrc.Type.Elem()) { |
| n = assignconv(n, nsrc.Type.Elem(), "append") |
| n = walkexpr(n, init) |
| } |
| ls[i] = n |
| } |
| |
| argc := n.List.Len() - 1 |
| if argc < 1 { |
| return nsrc |
| } |
| |
| // General case, with no function calls left as arguments. |
| // Leave for gen, except that instrumentation requires old form. |
| if !instrumenting || compiling_runtime { |
| return n |
| } |
| |
| var l []*Node |
| |
| ns := temp(nsrc.Type) |
| l = append(l, nod(OAS, ns, nsrc)) // s = src |
| |
| na := nodintconst(int64(argc)) // const argc |
| nx := nod(OIF, nil, nil) // if cap(s) - len(s) < argc |
| nx.Left = nod(OLT, nod(OSUB, nod(OCAP, ns, nil), nod(OLEN, ns, nil)), na) |
| |
| fn := syslook("growslice") // growslice(<type>, old []T, mincap int) (ret []T) |
| fn = substArgTypes(fn, ns.Type.Elem(), ns.Type.Elem()) |
| |
| nx.Nbody.Set1(nod(OAS, ns, |
| mkcall1(fn, ns.Type, &nx.Ninit, typename(ns.Type.Elem()), ns, |
| nod(OADD, nod(OLEN, ns, nil), na)))) |
| |
| l = append(l, nx) |
| |
| nn := temp(types.Types[TINT]) |
| l = append(l, nod(OAS, nn, nod(OLEN, ns, nil))) // n = len(s) |
| |
| nx = nod(OSLICE, ns, nil) // ...s[:n+argc] |
| nx.SetSliceBounds(nil, nod(OADD, nn, na), nil) |
| nx.SetBounded(true) |
| l = append(l, nod(OAS, ns, nx)) // s = s[:n+argc] |
| |
| ls = n.List.Slice()[1:] |
| for i, n := range ls { |
| nx = nod(OINDEX, ns, nn) // s[n] ... |
| nx.SetBounded(true) |
| l = append(l, nod(OAS, nx, n)) // s[n] = arg |
| if i+1 < len(ls) { |
| l = append(l, nod(OAS, nn, nod(OADD, nn, nodintconst(1)))) // n = n + 1 |
| } |
| } |
| |
| typecheckslice(l, ctxStmt) |
| walkstmtlist(l) |
| init.Append(l...) |
| return ns |
| } |
| |
| // Lower copy(a, b) to a memmove call or a runtime call. |
| // |
| // init { |
| // n := len(a) |
| // if n > len(b) { n = len(b) } |
| // if a.ptr != b.ptr { memmove(a.ptr, b.ptr, n*sizeof(elem(a))) } |
| // } |
| // n; |
| // |
| // Also works if b is a string. |
| // |
| func copyany(n *Node, init *Nodes, runtimecall bool) *Node { |
| if n.Left.Type.Elem().HasPointers() { |
| Curfn.Func.setWBPos(n.Pos) |
| fn := writebarrierfn("typedslicecopy", n.Left.Type.Elem(), n.Right.Type.Elem()) |
| n.Left = cheapexpr(n.Left, init) |
| ptrL, lenL := n.Left.backingArrayPtrLen() |
| n.Right = cheapexpr(n.Right, init) |
| ptrR, lenR := n.Right.backingArrayPtrLen() |
| return mkcall1(fn, n.Type, init, typename(n.Left.Type.Elem()), ptrL, lenL, ptrR, lenR) |
| } |
| |
| if runtimecall { |
| // rely on runtime to instrument: |
| // copy(n.Left, n.Right) |
| // n.Right can be a slice or string. |
| |
| n.Left = cheapexpr(n.Left, init) |
| ptrL, lenL := n.Left.backingArrayPtrLen() |
| n.Right = cheapexpr(n.Right, init) |
| ptrR, lenR := n.Right.backingArrayPtrLen() |
| |
| fn := syslook("slicecopy") |
| fn = substArgTypes(fn, ptrL.Type.Elem(), ptrR.Type.Elem()) |
| |
| return mkcall1(fn, n.Type, init, ptrL, lenL, ptrR, lenR, nodintconst(n.Left.Type.Elem().Width)) |
| } |
| |
| n.Left = walkexpr(n.Left, init) |
| n.Right = walkexpr(n.Right, init) |
| nl := temp(n.Left.Type) |
| nr := temp(n.Right.Type) |
| var l []*Node |
| l = append(l, nod(OAS, nl, n.Left)) |
| l = append(l, nod(OAS, nr, n.Right)) |
| |
| nfrm := nod(OSPTR, nr, nil) |
| nto := nod(OSPTR, nl, nil) |
| |
| nlen := temp(types.Types[TINT]) |
| |
| // n = len(to) |
| l = append(l, nod(OAS, nlen, nod(OLEN, nl, nil))) |
| |
| // if n > len(frm) { n = len(frm) } |
| nif := nod(OIF, nil, nil) |
| |
| nif.Left = nod(OGT, nlen, nod(OLEN, nr, nil)) |
| nif.Nbody.Append(nod(OAS, nlen, nod(OLEN, nr, nil))) |
| l = append(l, nif) |
| |
| // if to.ptr != frm.ptr { memmove( ... ) } |
| ne := nod(OIF, nod(ONE, nto, nfrm), nil) |
| ne.SetLikely(true) |
| l = append(l, ne) |
| |
| fn := syslook("memmove") |
| fn = substArgTypes(fn, nl.Type.Elem(), nl.Type.Elem()) |
| nwid := temp(types.Types[TUINTPTR]) |
| setwid := nod(OAS, nwid, conv(nlen, types.Types[TUINTPTR])) |
| ne.Nbody.Append(setwid) |
| nwid = nod(OMUL, nwid, nodintconst(nl.Type.Elem().Width)) |
| call := mkcall1(fn, nil, init, nto, nfrm, nwid) |
| ne.Nbody.Append(call) |
| |
| typecheckslice(l, ctxStmt) |
| walkstmtlist(l) |
| init.Append(l...) |
| return nlen |
| } |
| |
| func eqfor(t *types.Type) (n *Node, needsize bool) { |
| // Should only arrive here with large memory or |
| // a struct/array containing a non-memory field/element. |
| // Small memory is handled inline, and single non-memory |
| // is handled by walkcompare. |
| switch a, _ := algtype1(t); a { |
| case AMEM: |
| n := syslook("memequal") |
| n = substArgTypes(n, t, t) |
| return n, true |
| case ASPECIAL: |
| sym := typesymprefix(".eq", t) |
| n := newname(sym) |
| setNodeNameFunc(n) |
| n.Type = functype(nil, []*Node{ |
| anonfield(types.NewPtr(t)), |
| anonfield(types.NewPtr(t)), |
| }, []*Node{ |
| anonfield(types.Types[TBOOL]), |
| }) |
| return n, false |
| } |
| Fatalf("eqfor %v", t) |
| return nil, false |
| } |
| |
| // The result of walkcompare MUST be assigned back to n, e.g. |
| // n.Left = walkcompare(n.Left, init) |
| func walkcompare(n *Node, init *Nodes) *Node { |
| if n.Left.Type.IsInterface() && n.Right.Type.IsInterface() && n.Left.Op != OLITERAL && n.Right.Op != OLITERAL { |
| return walkcompareInterface(n, init) |
| } |
| |
| if n.Left.Type.IsString() && n.Right.Type.IsString() { |
| return walkcompareString(n, init) |
| } |
| |
| n.Left = walkexpr(n.Left, init) |
| n.Right = walkexpr(n.Right, init) |
| |
| // Given mixed interface/concrete comparison, |
| // rewrite into types-equal && data-equal. |
| // This is efficient, avoids allocations, and avoids runtime calls. |
| if n.Left.Type.IsInterface() != n.Right.Type.IsInterface() { |
| // Preserve side-effects in case of short-circuiting; see #32187. |
| l := cheapexpr(n.Left, init) |
| r := cheapexpr(n.Right, init) |
| // Swap so that l is the interface value and r is the concrete value. |
| if n.Right.Type.IsInterface() { |
| l, r = r, l |
| } |
| |
| // Handle both == and !=. |
| eq := n.Op |
| andor := OOROR |
| if eq == OEQ { |
| andor = OANDAND |
| } |
| // Check for types equal. |
| // For empty interface, this is: |
| // l.tab == type(r) |
| // For non-empty interface, this is: |
| // l.tab != nil && l.tab._type == type(r) |
| var eqtype *Node |
| tab := nod(OITAB, l, nil) |
| rtyp := typename(r.Type) |
| if l.Type.IsEmptyInterface() { |
| tab.Type = types.NewPtr(types.Types[TUINT8]) |
| tab.SetTypecheck(1) |
| eqtype = nod(eq, tab, rtyp) |
| } else { |
| nonnil := nod(brcom(eq), nodnil(), tab) |
| match := nod(eq, itabType(tab), rtyp) |
| eqtype = nod(andor, nonnil, match) |
| } |
| // Check for data equal. |
| eqdata := nod(eq, ifaceData(n.Pos, l, r.Type), r) |
| // Put it all together. |
| expr := nod(andor, eqtype, eqdata) |
| n = finishcompare(n, expr, init) |
| return n |
| } |
| |
| // Must be comparison of array or struct. |
| // Otherwise back end handles it. |
| // While we're here, decide whether to |
| // inline or call an eq alg. |
| t := n.Left.Type |
| var inline bool |
| |
| maxcmpsize := int64(4) |
| unalignedLoad := canMergeLoads() |
| if unalignedLoad { |
| // Keep this low enough to generate less code than a function call. |
| maxcmpsize = 2 * int64(thearch.LinkArch.RegSize) |
| } |
| |
| switch t.Etype { |
| default: |
| if Debug_libfuzzer != 0 && t.IsInteger() { |
| n.Left = cheapexpr(n.Left, init) |
| n.Right = cheapexpr(n.Right, init) |
| |
| // If exactly one comparison operand is |
| // constant, invoke the constcmp functions |
| // instead, and arrange for the constant |
| // operand to be the first argument. |
| l, r := n.Left, n.Right |
| if r.Op == OLITERAL { |
| l, r = r, l |
| } |
| constcmp := l.Op == OLITERAL && r.Op != OLITERAL |
| |
| var fn string |
| var paramType *types.Type |
| switch t.Size() { |
| case 1: |
| fn = "libfuzzerTraceCmp1" |
| if constcmp { |
| fn = "libfuzzerTraceConstCmp1" |
| } |
| paramType = types.Types[TUINT8] |
| case 2: |
| fn = "libfuzzerTraceCmp2" |
| if constcmp { |
| fn = "libfuzzerTraceConstCmp2" |
| } |
| paramType = types.Types[TUINT16] |
| case 4: |
| fn = "libfuzzerTraceCmp4" |
| if constcmp { |
| fn = "libfuzzerTraceConstCmp4" |
| } |
| paramType = types.Types[TUINT32] |
| case 8: |
| fn = "libfuzzerTraceCmp8" |
| if constcmp { |
| fn = "libfuzzerTraceConstCmp8" |
| } |
| paramType = types.Types[TUINT64] |
| default: |
| Fatalf("unexpected integer size %d for %v", t.Size(), t) |
| } |
| init.Append(mkcall(fn, nil, init, tracecmpArg(l, paramType, init), tracecmpArg(r, paramType, init))) |
| } |
| return n |
| case TARRAY: |
| // We can compare several elements at once with 2/4/8 byte integer compares |
| inline = t.NumElem() <= 1 || (issimple[t.Elem().Etype] && (t.NumElem() <= 4 || t.Elem().Width*t.NumElem() <= maxcmpsize)) |
| case TSTRUCT: |
| inline = t.NumComponents(types.IgnoreBlankFields) <= 4 |
| } |
| |
| cmpl := n.Left |
| for cmpl != nil && cmpl.Op == OCONVNOP { |
| cmpl = cmpl.Left |
| } |
| cmpr := n.Right |
| for cmpr != nil && cmpr.Op == OCONVNOP { |
| cmpr = cmpr.Left |
| } |
| |
| // Chose not to inline. Call equality function directly. |
| if !inline { |
| // eq algs take pointers; cmpl and cmpr must be addressable |
| if !islvalue(cmpl) || !islvalue(cmpr) { |
| Fatalf("arguments of comparison must be lvalues - %v %v", cmpl, cmpr) |
| } |
| |
| fn, needsize := eqfor(t) |
| call := nod(OCALL, fn, nil) |
| call.List.Append(nod(OADDR, cmpl, nil)) |
| call.List.Append(nod(OADDR, cmpr, nil)) |
| if needsize { |
| call.List.Append(nodintconst(t.Width)) |
| } |
| res := call |
| if n.Op != OEQ { |
| res = nod(ONOT, res, nil) |
| } |
| n = finishcompare(n, res, init) |
| return n |
| } |
| |
| // inline: build boolean expression comparing element by element |
| andor := OANDAND |
| if n.Op == ONE { |
| andor = OOROR |
| } |
| var expr *Node |
| compare := func(el, er *Node) { |
| a := nod(n.Op, el, er) |
| if expr == nil { |
| expr = a |
| } else { |
| expr = nod(andor, expr, a) |
| } |
| } |
| cmpl = safeexpr(cmpl, init) |
| cmpr = safeexpr(cmpr, init) |
| if t.IsStruct() { |
| for _, f := range t.Fields().Slice() { |
| sym := f.Sym |
| if sym.IsBlank() { |
| continue |
| } |
| compare( |
| nodSym(OXDOT, cmpl, sym), |
| nodSym(OXDOT, cmpr, sym), |
| ) |
| } |
| } else { |
| step := int64(1) |
| remains := t.NumElem() * t.Elem().Width |
| combine64bit := unalignedLoad && Widthreg == 8 && t.Elem().Width <= 4 && t.Elem().IsInteger() |
| combine32bit := unalignedLoad && t.Elem().Width <= 2 && t.Elem().IsInteger() |
| combine16bit := unalignedLoad && t.Elem().Width == 1 && t.Elem().IsInteger() |
| for i := int64(0); remains > 0; { |
| var convType *types.Type |
| switch { |
| case remains >= 8 && combine64bit: |
| convType = types.Types[TINT64] |
| step = 8 / t.Elem().Width |
| case remains >= 4 && combine32bit: |
| convType = types.Types[TUINT32] |
| step = 4 / t.Elem().Width |
| case remains >= 2 && combine16bit: |
| convType = types.Types[TUINT16] |
| step = 2 / t.Elem().Width |
| default: |
| step = 1 |
| } |
| if step == 1 { |
| compare( |
| nod(OINDEX, cmpl, nodintconst(i)), |
| nod(OINDEX, cmpr, nodintconst(i)), |
| ) |
| i++ |
| remains -= t.Elem().Width |
| } else { |
| elemType := t.Elem().ToUnsigned() |
| cmplw := nod(OINDEX, cmpl, nodintconst(i)) |
| cmplw = conv(cmplw, elemType) // convert to unsigned |
| cmplw = conv(cmplw, convType) // widen |
| cmprw := nod(OINDEX, cmpr, nodintconst(i)) |
| cmprw = conv(cmprw, elemType) |
| cmprw = conv(cmprw, convType) |
| // For code like this: uint32(s[0]) | uint32(s[1])<<8 | uint32(s[2])<<16 ... |
| // ssa will generate a single large load. |
| for offset := int64(1); offset < step; offset++ { |
| lb := nod(OINDEX, cmpl, nodintconst(i+offset)) |
| lb = conv(lb, elemType) |
| lb = conv(lb, convType) |
| lb = nod(OLSH, lb, nodintconst(8*t.Elem().Width*offset)) |
| cmplw = nod(OOR, cmplw, lb) |
| rb := nod(OINDEX, cmpr, nodintconst(i+offset)) |
| rb = conv(rb, elemType) |
| rb = conv(rb, convType) |
| rb = nod(OLSH, rb, nodintconst(8*t.Elem().Width*offset)) |
| cmprw = nod(OOR, cmprw, rb) |
| } |
| compare(cmplw, cmprw) |
| i += step |
| remains -= step * t.Elem().Width |
| } |
| } |
| } |
| if expr == nil { |
| expr = nodbool(n.Op == OEQ) |
| // We still need to use cmpl and cmpr, in case they contain |
| // an expression which might panic. See issue 23837. |
| t := temp(cmpl.Type) |
| a1 := nod(OAS, t, cmpl) |
| a1 = typecheck(a1, ctxStmt) |
| a2 := nod(OAS, t, cmpr) |
| a2 = typecheck(a2, ctxStmt) |
| init.Append(a1, a2) |
| } |
| n = finishcompare(n, expr, init) |
| return n |
| } |
| |
| func tracecmpArg(n *Node, t *types.Type, init *Nodes) *Node { |
| // Ugly hack to avoid "constant -1 overflows uintptr" errors, etc. |
| if n.Op == OLITERAL && n.Type.IsSigned() && n.Int64() < 0 { |
| n = copyexpr(n, n.Type, init) |
| } |
| |
| return conv(n, t) |
| } |
| |
| func walkcompareInterface(n *Node, init *Nodes) *Node { |
| n.Right = cheapexpr(n.Right, init) |
| n.Left = cheapexpr(n.Left, init) |
| eqtab, eqdata := eqinterface(n.Left, n.Right) |
| var cmp *Node |
| if n.Op == OEQ { |
| cmp = nod(OANDAND, eqtab, eqdata) |
| } else { |
| eqtab.Op = ONE |
| cmp = nod(OOROR, eqtab, nod(ONOT, eqdata, nil)) |
| } |
| return finishcompare(n, cmp, init) |
| } |
| |
| func walkcompareString(n *Node, init *Nodes) *Node { |
| // Rewrite comparisons to short constant strings as length+byte-wise comparisons. |
| var cs, ncs *Node // const string, non-const string |
| switch { |
| case Isconst(n.Left, CTSTR) && Isconst(n.Right, CTSTR): |
| // ignore; will be constant evaluated |
| case Isconst(n.Left, CTSTR): |
| cs = n.Left |
| ncs = n.Right |
| case Isconst(n.Right, CTSTR): |
| cs = n.Right |
| ncs = n.Left |
| } |
| if cs != nil { |
| cmp := n.Op |
| // Our comparison below assumes that the non-constant string |
| // is on the left hand side, so rewrite "" cmp x to x cmp "". |
| // See issue 24817. |
| if Isconst(n.Left, CTSTR) { |
| cmp = brrev(cmp) |
| } |
| |
| // maxRewriteLen was chosen empirically. |
| // It is the value that minimizes cmd/go file size |
| // across most architectures. |
| // See the commit description for CL 26758 for details. |
| maxRewriteLen := 6 |
| // Some architectures can load unaligned byte sequence as 1 word. |
| // So we can cover longer strings with the same amount of code. |
| canCombineLoads := canMergeLoads() |
| combine64bit := false |
| if canCombineLoads { |
| // Keep this low enough to generate less code than a function call. |
| maxRewriteLen = 2 * thearch.LinkArch.RegSize |
| combine64bit = thearch.LinkArch.RegSize >= 8 |
| } |
| |
| var and Op |
| switch cmp { |
| case OEQ: |
| and = OANDAND |
| case ONE: |
| and = OOROR |
| default: |
| // Don't do byte-wise comparisons for <, <=, etc. |
| // They're fairly complicated. |
| // Length-only checks are ok, though. |
| maxRewriteLen = 0 |
| } |
| if s := strlit(cs); len(s) <= maxRewriteLen { |
| if len(s) > 0 { |
| ncs = safeexpr(ncs, init) |
| } |
| r := nod(cmp, nod(OLEN, ncs, nil), nodintconst(int64(len(s)))) |
| remains := len(s) |
| for i := 0; remains > 0; { |
| if remains == 1 || !canCombineLoads { |
| cb := nodintconst(int64(s[i])) |
| ncb := nod(OINDEX, ncs, nodintconst(int64(i))) |
| r = nod(and, r, nod(cmp, ncb, cb)) |
| remains-- |
| i++ |
| continue |
| } |
| var step int |
| var convType *types.Type |
| switch { |
| case remains >= 8 && combine64bit: |
| convType = types.Types[TINT64] |
| step = 8 |
| case remains >= 4: |
| convType = types.Types[TUINT32] |
| step = 4 |
| case remains >= 2: |
| convType = types.Types[TUINT16] |
| step = 2 |
| } |
| ncsubstr := nod(OINDEX, ncs, nodintconst(int64(i))) |
| ncsubstr = conv(ncsubstr, convType) |
| csubstr := int64(s[i]) |
| // Calculate large constant from bytes as sequence of shifts and ors. |
| // Like this: uint32(s[0]) | uint32(s[1])<<8 | uint32(s[2])<<16 ... |
| // ssa will combine this into a single large load. |
| for offset := 1; offset < step; offset++ { |
| b := nod(OINDEX, ncs, nodintconst(int64(i+offset))) |
| b = conv(b, convType) |
| b = nod(OLSH, b, nodintconst(int64(8*offset))) |
| ncsubstr = nod(OOR, ncsubstr, b) |
| csubstr |= int64(s[i+offset]) << uint8(8*offset) |
| } |
| csubstrPart := nodintconst(csubstr) |
| // Compare "step" bytes as once |
| r = nod(and, r, nod(cmp, csubstrPart, ncsubstr)) |
| remains -= step |
| i += step |
| } |
| return finishcompare(n, r, init) |
| } |
| } |
| |
| var r *Node |
| if n.Op == OEQ || n.Op == ONE { |
| // prepare for rewrite below |
| n.Left = cheapexpr(n.Left, init) |
| n.Right = cheapexpr(n.Right, init) |
| eqlen, eqmem := eqstring(n.Left, n.Right) |
| // quick check of len before full compare for == or !=. |
| // memequal then tests equality up to length len. |
| if n.Op == OEQ { |
| // len(left) == len(right) && memequal(left, right, len) |
| r = nod(OANDAND, eqlen, eqmem) |
| } else { |
| // len(left) != len(right) || !memequal(left, right, len) |
| eqlen.Op = ONE |
| r = nod(OOROR, eqlen, nod(ONOT, eqmem, nil)) |
| } |
| } else { |
| // sys_cmpstring(s1, s2) :: 0 |
| r = mkcall("cmpstring", types.Types[TINT], init, conv(n.Left, types.Types[TSTRING]), conv(n.Right, types.Types[TSTRING])) |
| r = nod(n.Op, r, nodintconst(0)) |
| } |
| |
| return finishcompare(n, r, init) |
| } |
| |
| // The result of finishcompare MUST be assigned back to n, e.g. |
| // n.Left = finishcompare(n.Left, x, r, init) |
| func finishcompare(n, r *Node, init *Nodes) *Node { |
| r = typecheck(r, ctxExpr) |
| r = conv(r, n.Type) |
| r = walkexpr(r, init) |
| return r |
| } |
| |
| // return 1 if integer n must be in range [0, max), 0 otherwise |
| func bounded(n *Node, max int64) bool { |
| if n.Type == nil || !n.Type.IsInteger() { |
| return false |
| } |
| |
| sign := n.Type.IsSigned() |
| bits := int32(8 * n.Type.Width) |
| |
| if smallintconst(n) { |
| v := n.Int64() |
| return 0 <= v && v < max |
| } |
| |
| switch n.Op { |
| case OAND: |
| v := int64(-1) |
| if smallintconst(n.Left) { |
| v = n.Left.Int64() |
| } else if smallintconst(n.Right) { |
| v = n.Right.Int64() |
| } |
| |
| if 0 <= v && v < max { |
| return true |
| } |
| |
| case OMOD: |
| if !sign && smallintconst(n.Right) { |
| v := n.Right.Int64() |
| if 0 <= v && v <= max { |
| return true |
| } |
| } |
| |
| case ODIV: |
| if !sign && smallintconst(n.Right) { |
| v := n.Right.Int64() |
| for bits > 0 && v >= 2 { |
| bits-- |
| v >>= 1 |
| } |
| } |
| |
| case ORSH: |
| if !sign && smallintconst(n.Right) { |
| v := n.Right.Int64() |
| if v > int64(bits) { |
| return true |
| } |
| bits -= int32(v) |
| } |
| } |
| |
| if !sign && bits <= 62 && 1<<uint(bits) <= max { |
| return true |
| } |
| |
| return false |
| } |
| |
| // usemethod checks interface method calls for uses of reflect.Type.Method. |
| func usemethod(n *Node) { |
| t := n.Left.Type |
| |
| // Looking for either of: |
| // Method(int) reflect.Method |
| // MethodByName(string) (reflect.Method, bool) |
| // |
| // TODO(crawshaw): improve precision of match by working out |
| // how to check the method name. |
| if n := t.NumParams(); n != 1 { |
| return |
| } |
| if n := t.NumResults(); n != 1 && n != 2 { |
| return |
| } |
| p0 := t.Params().Field(0) |
| res0 := t.Results().Field(0) |
| var res1 *types.Field |
| if t.NumResults() == 2 { |
| res1 = t.Results().Field(1) |
| } |
| |
| if res1 == nil { |
| if p0.Type.Etype != TINT { |
| return |
| } |
| } else { |
| if !p0.Type.IsString() { |
| return |
| } |
| if !res1.Type.IsBoolean() { |
| return |
| } |
| } |
| |
| // Note: Don't rely on res0.Type.String() since its formatting depends on multiple factors |
| // (including global variables such as numImports - was issue #19028). |
| // Also need to check for reflect package itself (see Issue #38515). |
| if s := res0.Type.Sym; s != nil && s.Name == "Method" && isReflectPkg(s.Pkg) { |
| Curfn.Func.SetReflectMethod(true) |
| } |
| } |
| |
| func usefield(n *Node) { |
| if objabi.Fieldtrack_enabled == 0 { |
| return |
| } |
| |
| switch n.Op { |
| default: |
| Fatalf("usefield %v", n.Op) |
| |
| case ODOT, ODOTPTR: |
| break |
| } |
| if n.Sym == nil { |
| // No field name. This DOTPTR was built by the compiler for access |
| // to runtime data structures. Ignore. |
| return |
| } |
| |
| t := n.Left.Type |
| if t.IsPtr() { |
| t = t.Elem() |
| } |
| field := dotField[typeSymKey{t.Orig, n.Sym}] |
| if field == nil { |
| Fatalf("usefield %v %v without paramfld", n.Left.Type, n.Sym) |
| } |
| if !strings.Contains(field.Note, "go:\"track\"") { |
| return |
| } |
| |
| outer := n.Left.Type |
| if outer.IsPtr() { |
| outer = outer.Elem() |
| } |
| if outer.Sym == nil { |
| yyerror("tracked field must be in named struct type") |
| } |
| if !types.IsExported(field.Sym.Name) { |
| yyerror("tracked field must be exported (upper case)") |
| } |
| |
| sym := tracksym(outer, field) |
| if Curfn.Func.FieldTrack == nil { |
| Curfn.Func.FieldTrack = make(map[*types.Sym]struct{}) |
| } |
| Curfn.Func.FieldTrack[sym] = struct{}{} |
| } |
| |
| func candiscardlist(l Nodes) bool { |
| for _, n := range l.Slice() { |
| if !candiscard(n) { |
| return false |
| } |
| } |
| return true |
| } |
| |
| func candiscard(n *Node) bool { |
| if n == nil { |
| return true |
| } |
| |
| switch n.Op { |
| default: |
| return false |
| |
| // Discardable as long as the subpieces are. |
| case ONAME, |
| ONONAME, |
| OTYPE, |
| OPACK, |
| OLITERAL, |
| OADD, |
| OSUB, |
| OOR, |
| OXOR, |
| OADDSTR, |
| OADDR, |
| OANDAND, |
| OBYTES2STR, |
| ORUNES2STR, |
| OSTR2BYTES, |
| OSTR2RUNES, |
| OCAP, |
| OCOMPLIT, |
| OMAPLIT, |
| OSTRUCTLIT, |
| OARRAYLIT, |
| OSLICELIT, |
| OPTRLIT, |
| OCONV, |
| OCONVIFACE, |
| OCONVNOP, |
| ODOT, |
| OEQ, |
| ONE, |
| OLT, |
| OLE, |
| OGT, |
| OGE, |
| OKEY, |
| OSTRUCTKEY, |
| OLEN, |
| OMUL, |
| OLSH, |
| ORSH, |
| OAND, |
| OANDNOT, |
| ONEW, |
| ONOT, |
| OBITNOT, |
| OPLUS, |
| ONEG, |
| OOROR, |
| OPAREN, |
| ORUNESTR, |
| OREAL, |
| OIMAG, |
| OCOMPLEX: |
| break |
| |
| // Discardable as long as we know it's not division by zero. |
| case ODIV, OMOD: |
| if Isconst(n.Right, CTINT) && n.Right.Val().U.(*Mpint).CmpInt64(0) != 0 { |
| break |
| } |
| if Isconst(n.Right, CTFLT) && n.Right.Val().U.(*Mpflt).CmpFloat64(0) != 0 { |
| break |
| } |
| return false |
| |
| // Discardable as long as we know it won't fail because of a bad size. |
| case OMAKECHAN, OMAKEMAP: |
| if Isconst(n.Left, CTINT) && n.Left.Val().U.(*Mpint).CmpInt64(0) == 0 { |
| break |
| } |
| return false |
| |
| // Difficult to tell what sizes are okay. |
| case OMAKESLICE: |
| return false |
| |
| case OMAKESLICECOPY: |
| return false |
| } |
| |
| if !candiscard(n.Left) || !candiscard(n.Right) || !candiscardlist(n.Ninit) || !candiscardlist(n.Nbody) || !candiscardlist(n.List) || !candiscardlist(n.Rlist) { |
| return false |
| } |
| |
| return true |
| } |
| |
| // Rewrite |
| // go builtin(x, y, z) |
| // into |
| // go func(a1, a2, a3) { |
| // builtin(a1, a2, a3) |
| // }(x, y, z) |
| // for print, println, and delete. |
| // |
| // Rewrite |
| // go f(x, y, uintptr(unsafe.Pointer(z))) |
| // into |
| // go func(a1, a2, a3) { |
| // builtin(a1, a2, uintptr(a3)) |
| // }(x, y, unsafe.Pointer(z)) |
| // for function contains unsafe-uintptr arguments. |
| |
| var wrapCall_prgen int |
| |
| // The result of wrapCall MUST be assigned back to n, e.g. |
| // n.Left = wrapCall(n.Left, init) |
| func wrapCall(n *Node, init *Nodes) *Node { |
| if n.Ninit.Len() != 0 { |
| walkstmtlist(n.Ninit.Slice()) |
| init.AppendNodes(&n.Ninit) |
| } |
| |
| isBuiltinCall := n.Op != OCALLFUNC && n.Op != OCALLMETH && n.Op != OCALLINTER |
| // origArgs keeps track of what argument is uintptr-unsafe/unsafe-uintptr conversion. |
| origArgs := make([]*Node, n.List.Len()) |
| t := nod(OTFUNC, nil, nil) |
| for i, arg := range n.List.Slice() { |
| s := lookupN("a", i) |
| if !isBuiltinCall && arg.Op == OCONVNOP && arg.Type.IsUintptr() && arg.Left.Type.IsUnsafePtr() { |
| origArgs[i] = arg |
| arg = arg.Left |
| n.List.SetIndex(i, arg) |
| } |
| t.List.Append(symfield(s, arg.Type)) |
| } |
| |
| wrapCall_prgen++ |
| sym := lookupN("wrap·", wrapCall_prgen) |
| fn := dclfunc(sym, t) |
| |
| args := paramNnames(t.Type) |
| for i, origArg := range origArgs { |
| if origArg == nil { |
| continue |
| } |
| arg := nod(origArg.Op, args[i], nil) |
| arg.Type = origArg.Type |
| args[i] = arg |
| } |
| call := nod(n.Op, nil, nil) |
| if !isBuiltinCall { |
| call.Op = OCALL |
| call.Left = n.Left |
| } |
| call.List.Set(args) |
| fn.Nbody.Set1(call) |
| |
| funcbody() |
| |
| fn = typecheck(fn, ctxStmt) |
| typecheckslice(fn.Nbody.Slice(), ctxStmt) |
| xtop = append(xtop, fn) |
| |
| call = nod(OCALL, nil, nil) |
| call.Left = fn.Func.Nname |
| call.List.Set(n.List.Slice()) |
| call = typecheck(call, ctxStmt) |
| call = walkexpr(call, init) |
| return call |
| } |
| |
| // substArgTypes substitutes the given list of types for |
| // successive occurrences of the "any" placeholder in the |
| // type syntax expression n.Type. |
| // The result of substArgTypes MUST be assigned back to old, e.g. |
| // n.Left = substArgTypes(n.Left, t1, t2) |
| func substArgTypes(old *Node, types_ ...*types.Type) *Node { |
| n := old.copy() |
| |
| for _, t := range types_ { |
| dowidth(t) |
| } |
| n.Type = types.SubstAny(n.Type, &types_) |
| if len(types_) > 0 { |
| Fatalf("substArgTypes: too many argument types") |
| } |
| return n |
| } |
| |
| // canMergeLoads reports whether the backend optimization passes for |
| // the current architecture can combine adjacent loads into a single |
| // larger, possibly unaligned, load. Note that currently the |
| // optimizations must be able to handle little endian byte order. |
| func canMergeLoads() bool { |
| switch thearch.LinkArch.Family { |
| case sys.ARM64, sys.AMD64, sys.I386, sys.S390X: |
| return true |
| case sys.PPC64: |
| // Load combining only supported on ppc64le. |
| return thearch.LinkArch.ByteOrder == binary.LittleEndian |
| } |
| return false |
| } |
| |
| // isRuneCount reports whether n is of the form len([]rune(string)). |
| // These are optimized into a call to runtime.countrunes. |
| func isRuneCount(n *Node) bool { |
| return Debug['N'] == 0 && !instrumenting && n.Op == OLEN && n.Left.Op == OSTR2RUNES |
| } |
| |
| func walkCheckPtrAlignment(n *Node, init *Nodes, count *Node) *Node { |
| if !n.Type.IsPtr() { |
| Fatalf("expected pointer type: %v", n.Type) |
| } |
| elem := n.Type.Elem() |
| if count != nil { |
| if !elem.IsArray() { |
| Fatalf("expected array type: %v", elem) |
| } |
| elem = elem.Elem() |
| } |
| |
| size := elem.Size() |
| if elem.Alignment() == 1 && (size == 0 || size == 1 && count == nil) { |
| return n |
| } |
| |
| if count == nil { |
| count = nodintconst(1) |
| } |
| |
| n.Left = cheapexpr(n.Left, init) |
| init.Append(mkcall("checkptrAlignment", nil, init, convnop(n.Left, types.Types[TUNSAFEPTR]), typename(elem), conv(count, types.Types[TUINTPTR]))) |
| return n |
| } |
| |
| var walkCheckPtrArithmeticMarker byte |
| |
| func walkCheckPtrArithmetic(n *Node, init *Nodes) *Node { |
| // Calling cheapexpr(n, init) below leads to a recursive call |
| // to walkexpr, which leads us back here again. Use n.Opt to |
| // prevent infinite loops. |
| if opt := n.Opt(); opt == &walkCheckPtrArithmeticMarker { |
| return n |
| } else if opt != nil { |
| // We use n.Opt() here because today it's not used for OCONVNOP. If that changes, |
| // there's no guarantee that temporarily replacing it is safe, so just hard fail here. |
| Fatalf("unexpected Opt: %v", opt) |
| } |
| n.SetOpt(&walkCheckPtrArithmeticMarker) |
| defer n.SetOpt(nil) |
| |
| // TODO(mdempsky): Make stricter. We only need to exempt |
| // reflect.Value.Pointer and reflect.Value.UnsafeAddr. |
| switch n.Left.Op { |
| case OCALLFUNC, OCALLMETH, OCALLINTER: |
| return n |
| } |
| |
| if n.Left.Op == ODOTPTR && isReflectHeaderDataField(n.Left) { |
| return n |
| } |
| |
| // Find original unsafe.Pointer operands involved in this |
| // arithmetic expression. |
| // |
| // "It is valid both to add and to subtract offsets from a |
| // pointer in this way. It is also valid to use &^ to round |
| // pointers, usually for alignment." |
| var originals []*Node |
| var walk func(n *Node) |
| walk = func(n *Node) { |
| switch n.Op { |
| case OADD: |
| walk(n.Left) |
| walk(n.Right) |
| case OSUB: |
| walk(n.Left) |
| case OAND: |
| if n.Implicit() { // was OANDNOT |
| walk(n.Left) |
| } |
| case OCONVNOP: |
| if n.Left.Type.IsUnsafePtr() { |
| n.Left = cheapexpr(n.Left, init) |
| originals = append(originals, convnop(n.Left, types.Types[TUNSAFEPTR])) |
| } |
| } |
| } |
| walk(n.Left) |
| |
| n = cheapexpr(n, init) |
| |
| slice := mkdotargslice(types.NewSlice(types.Types[TUNSAFEPTR]), originals) |
| slice.Esc = EscNone |
| |
| init.Append(mkcall("checkptrArithmetic", nil, init, convnop(n, types.Types[TUNSAFEPTR]), slice)) |
| // TODO(khr): Mark backing store of slice as dead. This will allow us to reuse |
| // the backing store for multiple calls to checkptrArithmetic. |
| |
| return n |
| } |
| |
| // checkPtr reports whether pointer checking should be enabled for |
| // function fn at a given level. See debugHelpFooter for defined |
| // levels. |
| func checkPtr(fn *Node, level int) bool { |
| return Debug_checkptr >= level && fn.Func.Pragma&NoCheckPtr == 0 |
| } |