| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Annotate Ref in Prog with C types by parsing gcc debug output. |
| // Conversion of debug output to Go types. |
| |
| package main |
| |
| import ( |
| "bytes" |
| "debug/dwarf" |
| "debug/elf" |
| "debug/macho" |
| "debug/pe" |
| "encoding/binary" |
| "errors" |
| "flag" |
| "fmt" |
| "go/ast" |
| "go/parser" |
| "go/token" |
| "internal/xcoff" |
| "math" |
| "os" |
| "strconv" |
| "strings" |
| "unicode" |
| "unicode/utf8" |
| ) |
| |
| var debugDefine = flag.Bool("debug-define", false, "print relevant #defines") |
| var debugGcc = flag.Bool("debug-gcc", false, "print gcc invocations") |
| |
| var nameToC = map[string]string{ |
| "schar": "signed char", |
| "uchar": "unsigned char", |
| "ushort": "unsigned short", |
| "uint": "unsigned int", |
| "ulong": "unsigned long", |
| "longlong": "long long", |
| "ulonglong": "unsigned long long", |
| "complexfloat": "float _Complex", |
| "complexdouble": "double _Complex", |
| } |
| |
| // cname returns the C name to use for C.s. |
| // The expansions are listed in nameToC and also |
| // struct_foo becomes "struct foo", and similarly for |
| // union and enum. |
| func cname(s string) string { |
| if t, ok := nameToC[s]; ok { |
| return t |
| } |
| |
| if strings.HasPrefix(s, "struct_") { |
| return "struct " + s[len("struct_"):] |
| } |
| if strings.HasPrefix(s, "union_") { |
| return "union " + s[len("union_"):] |
| } |
| if strings.HasPrefix(s, "enum_") { |
| return "enum " + s[len("enum_"):] |
| } |
| if strings.HasPrefix(s, "sizeof_") { |
| return "sizeof(" + cname(s[len("sizeof_"):]) + ")" |
| } |
| return s |
| } |
| |
| // DiscardCgoDirectives processes the import C preamble, and discards |
| // all #cgo CFLAGS and LDFLAGS directives, so they don't make their |
| // way into _cgo_export.h. |
| func (f *File) DiscardCgoDirectives() { |
| linesIn := strings.Split(f.Preamble, "\n") |
| linesOut := make([]string, 0, len(linesIn)) |
| for _, line := range linesIn { |
| l := strings.TrimSpace(line) |
| if len(l) < 5 || l[:4] != "#cgo" || !unicode.IsSpace(rune(l[4])) { |
| linesOut = append(linesOut, line) |
| } else { |
| linesOut = append(linesOut, "") |
| } |
| } |
| f.Preamble = strings.Join(linesOut, "\n") |
| } |
| |
| // addToFlag appends args to flag. All flags are later written out onto the |
| // _cgo_flags file for the build system to use. |
| func (p *Package) addToFlag(flag string, args []string) { |
| p.CgoFlags[flag] = append(p.CgoFlags[flag], args...) |
| if flag == "CFLAGS" { |
| // We'll also need these when preprocessing for dwarf information. |
| // However, discard any -g options: we need to be able |
| // to parse the debug info, so stick to what we expect. |
| for _, arg := range args { |
| if !strings.HasPrefix(arg, "-g") { |
| p.GccOptions = append(p.GccOptions, arg) |
| } |
| } |
| } |
| } |
| |
| // splitQuoted splits the string s around each instance of one or more consecutive |
| // white space characters while taking into account quotes and escaping, and |
| // returns an array of substrings of s or an empty list if s contains only white space. |
| // Single quotes and double quotes are recognized to prevent splitting within the |
| // quoted region, and are removed from the resulting substrings. If a quote in s |
| // isn't closed err will be set and r will have the unclosed argument as the |
| // last element. The backslash is used for escaping. |
| // |
| // For example, the following string: |
| // |
| // `a b:"c d" 'e''f' "g\""` |
| // |
| // Would be parsed as: |
| // |
| // []string{"a", "b:c d", "ef", `g"`} |
| // |
| func splitQuoted(s string) (r []string, err error) { |
| var args []string |
| arg := make([]rune, len(s)) |
| escaped := false |
| quoted := false |
| quote := '\x00' |
| i := 0 |
| for _, r := range s { |
| switch { |
| case escaped: |
| escaped = false |
| case r == '\\': |
| escaped = true |
| continue |
| case quote != 0: |
| if r == quote { |
| quote = 0 |
| continue |
| } |
| case r == '"' || r == '\'': |
| quoted = true |
| quote = r |
| continue |
| case unicode.IsSpace(r): |
| if quoted || i > 0 { |
| quoted = false |
| args = append(args, string(arg[:i])) |
| i = 0 |
| } |
| continue |
| } |
| arg[i] = r |
| i++ |
| } |
| if quoted || i > 0 { |
| args = append(args, string(arg[:i])) |
| } |
| if quote != 0 { |
| err = errors.New("unclosed quote") |
| } else if escaped { |
| err = errors.New("unfinished escaping") |
| } |
| return args, err |
| } |
| |
| // Translate rewrites f.AST, the original Go input, to remove |
| // references to the imported package C, replacing them with |
| // references to the equivalent Go types, functions, and variables. |
| func (p *Package) Translate(f *File) { |
| for _, cref := range f.Ref { |
| // Convert C.ulong to C.unsigned long, etc. |
| cref.Name.C = cname(cref.Name.Go) |
| } |
| |
| var conv typeConv |
| conv.Init(p.PtrSize, p.IntSize) |
| |
| p.loadDefines(f) |
| p.typedefs = map[string]bool{} |
| p.typedefList = nil |
| numTypedefs := -1 |
| for len(p.typedefs) > numTypedefs { |
| numTypedefs = len(p.typedefs) |
| // Also ask about any typedefs we've seen so far. |
| for _, info := range p.typedefList { |
| if f.Name[info.typedef] != nil { |
| continue |
| } |
| n := &Name{ |
| Go: info.typedef, |
| C: info.typedef, |
| } |
| f.Name[info.typedef] = n |
| f.NamePos[n] = info.pos |
| } |
| needType := p.guessKinds(f) |
| if len(needType) > 0 { |
| p.loadDWARF(f, &conv, needType) |
| } |
| |
| // In godefs mode we're OK with the typedefs, which |
| // will presumably also be defined in the file, we |
| // don't want to resolve them to their base types. |
| if *godefs { |
| break |
| } |
| } |
| p.prepareNames(f) |
| if p.rewriteCalls(f) { |
| // Add `import _cgo_unsafe "unsafe"` after the package statement. |
| f.Edit.Insert(f.offset(f.AST.Name.End()), "; import _cgo_unsafe \"unsafe\"") |
| } |
| p.rewriteRef(f) |
| } |
| |
| // loadDefines coerces gcc into spitting out the #defines in use |
| // in the file f and saves relevant renamings in f.Name[name].Define. |
| func (p *Package) loadDefines(f *File) { |
| var b bytes.Buffer |
| b.WriteString(builtinProlog) |
| b.WriteString(f.Preamble) |
| stdout := p.gccDefines(b.Bytes()) |
| |
| for _, line := range strings.Split(stdout, "\n") { |
| if len(line) < 9 || line[0:7] != "#define" { |
| continue |
| } |
| |
| line = strings.TrimSpace(line[8:]) |
| |
| var key, val string |
| spaceIndex := strings.Index(line, " ") |
| tabIndex := strings.Index(line, "\t") |
| |
| if spaceIndex == -1 && tabIndex == -1 { |
| continue |
| } else if tabIndex == -1 || (spaceIndex != -1 && spaceIndex < tabIndex) { |
| key = line[0:spaceIndex] |
| val = strings.TrimSpace(line[spaceIndex:]) |
| } else { |
| key = line[0:tabIndex] |
| val = strings.TrimSpace(line[tabIndex:]) |
| } |
| |
| if key == "__clang__" { |
| p.GccIsClang = true |
| } |
| |
| if n := f.Name[key]; n != nil { |
| if *debugDefine { |
| fmt.Fprintf(os.Stderr, "#define %s %s\n", key, val) |
| } |
| n.Define = val |
| } |
| } |
| } |
| |
| // guessKinds tricks gcc into revealing the kind of each |
| // name xxx for the references C.xxx in the Go input. |
| // The kind is either a constant, type, or variable. |
| func (p *Package) guessKinds(f *File) []*Name { |
| // Determine kinds for names we already know about, |
| // like #defines or 'struct foo', before bothering with gcc. |
| var names, needType []*Name |
| optional := map[*Name]bool{} |
| for _, key := range nameKeys(f.Name) { |
| n := f.Name[key] |
| // If we've already found this name as a #define |
| // and we can translate it as a constant value, do so. |
| if n.Define != "" { |
| if i, err := strconv.ParseInt(n.Define, 0, 64); err == nil { |
| n.Kind = "iconst" |
| // Turn decimal into hex, just for consistency |
| // with enum-derived constants. Otherwise |
| // in the cgo -godefs output half the constants |
| // are in hex and half are in whatever the #define used. |
| n.Const = fmt.Sprintf("%#x", i) |
| } else if n.Define[0] == '\'' { |
| if _, err := parser.ParseExpr(n.Define); err == nil { |
| n.Kind = "iconst" |
| n.Const = n.Define |
| } |
| } else if n.Define[0] == '"' { |
| if _, err := parser.ParseExpr(n.Define); err == nil { |
| n.Kind = "sconst" |
| n.Const = n.Define |
| } |
| } |
| |
| if n.IsConst() { |
| continue |
| } |
| } |
| |
| // If this is a struct, union, or enum type name, no need to guess the kind. |
| if strings.HasPrefix(n.C, "struct ") || strings.HasPrefix(n.C, "union ") || strings.HasPrefix(n.C, "enum ") { |
| n.Kind = "type" |
| needType = append(needType, n) |
| continue |
| } |
| |
| if goos == "darwin" && strings.HasSuffix(n.C, "Ref") { |
| // For FooRef, find out if FooGetTypeID exists. |
| s := n.C[:len(n.C)-3] + "GetTypeID" |
| n := &Name{Go: s, C: s} |
| names = append(names, n) |
| optional[n] = true |
| } |
| |
| // Otherwise, we'll need to find out from gcc. |
| names = append(names, n) |
| } |
| |
| // Bypass gcc if there's nothing left to find out. |
| if len(names) == 0 { |
| return needType |
| } |
| |
| // Coerce gcc into telling us whether each name is a type, a value, or undeclared. |
| // For names, find out whether they are integer constants. |
| // We used to look at specific warning or error messages here, but that tied the |
| // behavior too closely to specific versions of the compilers. |
| // Instead, arrange that we can infer what we need from only the presence or absence |
| // of an error on a specific line. |
| // |
| // For each name, we generate these lines, where xxx is the index in toSniff plus one. |
| // |
| // #line xxx "not-declared" |
| // void __cgo_f_xxx_1(void) { __typeof__(name) *__cgo_undefined__1; } |
| // #line xxx "not-type" |
| // void __cgo_f_xxx_2(void) { name *__cgo_undefined__2; } |
| // #line xxx "not-int-const" |
| // void __cgo_f_xxx_3(void) { enum { __cgo_undefined__3 = (name)*1 }; } |
| // #line xxx "not-num-const" |
| // void __cgo_f_xxx_4(void) { static const double __cgo_undefined__4 = (name); } |
| // #line xxx "not-str-lit" |
| // void __cgo_f_xxx_5(void) { static const char __cgo_undefined__5[] = (name); } |
| // |
| // If we see an error at not-declared:xxx, the corresponding name is not declared. |
| // If we see an error at not-type:xxx, the corresponding name is not a type. |
| // If we see an error at not-int-const:xxx, the corresponding name is not an integer constant. |
| // If we see an error at not-num-const:xxx, the corresponding name is not a number constant. |
| // If we see an error at not-str-lit:xxx, the corresponding name is not a string literal. |
| // |
| // The specific input forms are chosen so that they are valid C syntax regardless of |
| // whether name denotes a type or an expression. |
| |
| var b bytes.Buffer |
| b.WriteString(builtinProlog) |
| b.WriteString(f.Preamble) |
| |
| for i, n := range names { |
| fmt.Fprintf(&b, "#line %d \"not-declared\"\n"+ |
| "void __cgo_f_%d_1(void) { __typeof__(%s) *__cgo_undefined__1; }\n"+ |
| "#line %d \"not-type\"\n"+ |
| "void __cgo_f_%d_2(void) { %s *__cgo_undefined__2; }\n"+ |
| "#line %d \"not-int-const\"\n"+ |
| "void __cgo_f_%d_3(void) { enum { __cgo_undefined__3 = (%s)*1 }; }\n"+ |
| "#line %d \"not-num-const\"\n"+ |
| "void __cgo_f_%d_4(void) { static const double __cgo_undefined__4 = (%s); }\n"+ |
| "#line %d \"not-str-lit\"\n"+ |
| "void __cgo_f_%d_5(void) { static const char __cgo_undefined__5[] = (%s); }\n", |
| i+1, i+1, n.C, |
| i+1, i+1, n.C, |
| i+1, i+1, n.C, |
| i+1, i+1, n.C, |
| i+1, i+1, n.C, |
| ) |
| } |
| fmt.Fprintf(&b, "#line 1 \"completed\"\n"+ |
| "int __cgo__1 = __cgo__2;\n") |
| |
| // We need to parse the output from this gcc command, so ensure that it |
| // doesn't have any ANSI escape sequences in it. (TERM=dumb is |
| // insufficient; if the user specifies CGO_CFLAGS=-fdiagnostics-color, |
| // GCC will ignore TERM, and GCC can also be configured at compile-time |
| // to ignore TERM.) |
| stderr := p.gccErrors(b.Bytes(), "-fdiagnostics-color=never") |
| if strings.Contains(stderr, "unrecognized command line option") { |
| // We're using an old version of GCC that doesn't understand |
| // -fdiagnostics-color. Those versions can't print color anyway, |
| // so just rerun without that option. |
| stderr = p.gccErrors(b.Bytes()) |
| } |
| if stderr == "" { |
| fatalf("%s produced no output\non input:\n%s", p.gccBaseCmd()[0], b.Bytes()) |
| } |
| |
| completed := false |
| sniff := make([]int, len(names)) |
| const ( |
| notType = 1 << iota |
| notIntConst |
| notNumConst |
| notStrLiteral |
| notDeclared |
| ) |
| sawUnmatchedErrors := false |
| for _, line := range strings.Split(stderr, "\n") { |
| // Ignore warnings and random comments, with one |
| // exception: newer GCC versions will sometimes emit |
| // an error on a macro #define with a note referring |
| // to where the expansion occurs. We care about where |
| // the expansion occurs, so in that case treat the note |
| // as an error. |
| isError := strings.Contains(line, ": error:") |
| isErrorNote := strings.Contains(line, ": note:") && sawUnmatchedErrors |
| if !isError && !isErrorNote { |
| continue |
| } |
| |
| c1 := strings.Index(line, ":") |
| if c1 < 0 { |
| continue |
| } |
| c2 := strings.Index(line[c1+1:], ":") |
| if c2 < 0 { |
| continue |
| } |
| c2 += c1 + 1 |
| |
| filename := line[:c1] |
| i, _ := strconv.Atoi(line[c1+1 : c2]) |
| i-- |
| if i < 0 || i >= len(names) { |
| if isError { |
| sawUnmatchedErrors = true |
| } |
| continue |
| } |
| |
| switch filename { |
| case "completed": |
| // Strictly speaking, there is no guarantee that seeing the error at completed:1 |
| // (at the end of the file) means we've seen all the errors from earlier in the file, |
| // but usually it does. Certainly if we don't see the completed:1 error, we did |
| // not get all the errors we expected. |
| completed = true |
| |
| case "not-declared": |
| sniff[i] |= notDeclared |
| case "not-type": |
| sniff[i] |= notType |
| case "not-int-const": |
| sniff[i] |= notIntConst |
| case "not-num-const": |
| sniff[i] |= notNumConst |
| case "not-str-lit": |
| sniff[i] |= notStrLiteral |
| default: |
| if isError { |
| sawUnmatchedErrors = true |
| } |
| continue |
| } |
| |
| sawUnmatchedErrors = false |
| } |
| |
| if !completed { |
| fatalf("%s did not produce error at completed:1\non input:\n%s\nfull error output:\n%s", p.gccBaseCmd()[0], b.Bytes(), stderr) |
| } |
| |
| for i, n := range names { |
| switch sniff[i] { |
| default: |
| if sniff[i]¬Declared != 0 && optional[n] { |
| // Ignore optional undeclared identifiers. |
| // Don't report an error, and skip adding n to the needType array. |
| continue |
| } |
| error_(f.NamePos[n], "could not determine kind of name for C.%s", fixGo(n.Go)) |
| case notStrLiteral | notType: |
| n.Kind = "iconst" |
| case notIntConst | notStrLiteral | notType: |
| n.Kind = "fconst" |
| case notIntConst | notNumConst | notType: |
| n.Kind = "sconst" |
| case notIntConst | notNumConst | notStrLiteral: |
| n.Kind = "type" |
| case notIntConst | notNumConst | notStrLiteral | notType: |
| n.Kind = "not-type" |
| } |
| needType = append(needType, n) |
| } |
| if nerrors > 0 { |
| // Check if compiling the preamble by itself causes any errors, |
| // because the messages we've printed out so far aren't helpful |
| // to users debugging preamble mistakes. See issue 8442. |
| preambleErrors := p.gccErrors([]byte(f.Preamble)) |
| if len(preambleErrors) > 0 { |
| error_(token.NoPos, "\n%s errors for preamble:\n%s", p.gccBaseCmd()[0], preambleErrors) |
| } |
| |
| fatalf("unresolved names") |
| } |
| |
| return needType |
| } |
| |
| // loadDWARF parses the DWARF debug information generated |
| // by gcc to learn the details of the constants, variables, and types |
| // being referred to as C.xxx. |
| func (p *Package) loadDWARF(f *File, conv *typeConv, names []*Name) { |
| // Extract the types from the DWARF section of an object |
| // from a well-formed C program. Gcc only generates DWARF info |
| // for symbols in the object file, so it is not enough to print the |
| // preamble and hope the symbols we care about will be there. |
| // Instead, emit |
| // __typeof__(names[i]) *__cgo__i; |
| // for each entry in names and then dereference the type we |
| // learn for __cgo__i. |
| var b bytes.Buffer |
| b.WriteString(builtinProlog) |
| b.WriteString(f.Preamble) |
| b.WriteString("#line 1 \"cgo-dwarf-inference\"\n") |
| for i, n := range names { |
| fmt.Fprintf(&b, "__typeof__(%s) *__cgo__%d;\n", n.C, i) |
| if n.Kind == "iconst" { |
| fmt.Fprintf(&b, "enum { __cgo_enum__%d = %s };\n", i, n.C) |
| } |
| } |
| |
| // We create a data block initialized with the values, |
| // so we can read them out of the object file. |
| fmt.Fprintf(&b, "long long __cgodebug_ints[] = {\n") |
| for _, n := range names { |
| if n.Kind == "iconst" { |
| fmt.Fprintf(&b, "\t%s,\n", n.C) |
| } else { |
| fmt.Fprintf(&b, "\t0,\n") |
| } |
| } |
| // for the last entry, we cannot use 0, otherwise |
| // in case all __cgodebug_data is zero initialized, |
| // LLVM-based gcc will place the it in the __DATA.__common |
| // zero-filled section (our debug/macho doesn't support |
| // this) |
| fmt.Fprintf(&b, "\t1\n") |
| fmt.Fprintf(&b, "};\n") |
| |
| // do the same work for floats. |
| fmt.Fprintf(&b, "double __cgodebug_floats[] = {\n") |
| for _, n := range names { |
| if n.Kind == "fconst" { |
| fmt.Fprintf(&b, "\t%s,\n", n.C) |
| } else { |
| fmt.Fprintf(&b, "\t0,\n") |
| } |
| } |
| fmt.Fprintf(&b, "\t1\n") |
| fmt.Fprintf(&b, "};\n") |
| |
| // do the same work for strings. |
| for i, n := range names { |
| if n.Kind == "sconst" { |
| fmt.Fprintf(&b, "const char __cgodebug_str__%d[] = %s;\n", i, n.C) |
| fmt.Fprintf(&b, "const unsigned long long __cgodebug_strlen__%d = sizeof(%s)-1;\n", i, n.C) |
| } |
| } |
| |
| d, ints, floats, strs := p.gccDebug(b.Bytes(), len(names)) |
| |
| // Scan DWARF info for top-level TagVariable entries with AttrName __cgo__i. |
| types := make([]dwarf.Type, len(names)) |
| r := d.Reader() |
| for { |
| e, err := r.Next() |
| if err != nil { |
| fatalf("reading DWARF entry: %s", err) |
| } |
| if e == nil { |
| break |
| } |
| switch e.Tag { |
| case dwarf.TagVariable: |
| name, _ := e.Val(dwarf.AttrName).(string) |
| typOff, _ := e.Val(dwarf.AttrType).(dwarf.Offset) |
| if name == "" || typOff == 0 { |
| if e.Val(dwarf.AttrSpecification) != nil { |
| // Since we are reading all the DWARF, |
| // assume we will see the variable elsewhere. |
| break |
| } |
| fatalf("malformed DWARF TagVariable entry") |
| } |
| if !strings.HasPrefix(name, "__cgo__") { |
| break |
| } |
| typ, err := d.Type(typOff) |
| if err != nil { |
| fatalf("loading DWARF type: %s", err) |
| } |
| t, ok := typ.(*dwarf.PtrType) |
| if !ok || t == nil { |
| fatalf("internal error: %s has non-pointer type", name) |
| } |
| i, err := strconv.Atoi(name[7:]) |
| if err != nil { |
| fatalf("malformed __cgo__ name: %s", name) |
| } |
| types[i] = t.Type |
| p.recordTypedefs(t.Type, f.NamePos[names[i]]) |
| } |
| if e.Tag != dwarf.TagCompileUnit { |
| r.SkipChildren() |
| } |
| } |
| |
| // Record types and typedef information. |
| for i, n := range names { |
| if strings.HasSuffix(n.Go, "GetTypeID") && types[i].String() == "func() CFTypeID" { |
| conv.getTypeIDs[n.Go[:len(n.Go)-9]] = true |
| } |
| } |
| for i, n := range names { |
| if types[i] == nil { |
| continue |
| } |
| pos := f.NamePos[n] |
| f, fok := types[i].(*dwarf.FuncType) |
| if n.Kind != "type" && fok { |
| n.Kind = "func" |
| n.FuncType = conv.FuncType(f, pos) |
| } else { |
| n.Type = conv.Type(types[i], pos) |
| switch n.Kind { |
| case "iconst": |
| if i < len(ints) { |
| if _, ok := types[i].(*dwarf.UintType); ok { |
| n.Const = fmt.Sprintf("%#x", uint64(ints[i])) |
| } else { |
| n.Const = fmt.Sprintf("%#x", ints[i]) |
| } |
| } |
| case "fconst": |
| if i >= len(floats) { |
| break |
| } |
| switch base(types[i]).(type) { |
| case *dwarf.IntType, *dwarf.UintType: |
| // This has an integer type so it's |
| // not really a floating point |
| // constant. This can happen when the |
| // C compiler complains about using |
| // the value as an integer constant, |
| // but not as a general constant. |
| // Treat this as a variable of the |
| // appropriate type, not a constant, |
| // to get C-style type handling, |
| // avoiding the problem that C permits |
| // uint64(-1) but Go does not. |
| // See issue 26066. |
| n.Kind = "var" |
| default: |
| n.Const = fmt.Sprintf("%f", floats[i]) |
| } |
| case "sconst": |
| if i < len(strs) { |
| n.Const = fmt.Sprintf("%q", strs[i]) |
| } |
| } |
| } |
| conv.FinishType(pos) |
| } |
| } |
| |
| // recordTypedefs remembers in p.typedefs all the typedefs used in dtypes and its children. |
| func (p *Package) recordTypedefs(dtype dwarf.Type, pos token.Pos) { |
| p.recordTypedefs1(dtype, pos, map[dwarf.Type]bool{}) |
| } |
| |
| func (p *Package) recordTypedefs1(dtype dwarf.Type, pos token.Pos, visited map[dwarf.Type]bool) { |
| if dtype == nil { |
| return |
| } |
| if visited[dtype] { |
| return |
| } |
| visited[dtype] = true |
| switch dt := dtype.(type) { |
| case *dwarf.TypedefType: |
| if strings.HasPrefix(dt.Name, "__builtin") { |
| // Don't look inside builtin types. There be dragons. |
| return |
| } |
| if !p.typedefs[dt.Name] { |
| p.typedefs[dt.Name] = true |
| p.typedefList = append(p.typedefList, typedefInfo{dt.Name, pos}) |
| p.recordTypedefs1(dt.Type, pos, visited) |
| } |
| case *dwarf.PtrType: |
| p.recordTypedefs1(dt.Type, pos, visited) |
| case *dwarf.ArrayType: |
| p.recordTypedefs1(dt.Type, pos, visited) |
| case *dwarf.QualType: |
| p.recordTypedefs1(dt.Type, pos, visited) |
| case *dwarf.FuncType: |
| p.recordTypedefs1(dt.ReturnType, pos, visited) |
| for _, a := range dt.ParamType { |
| p.recordTypedefs1(a, pos, visited) |
| } |
| case *dwarf.StructType: |
| for _, f := range dt.Field { |
| p.recordTypedefs1(f.Type, pos, visited) |
| } |
| } |
| } |
| |
| // prepareNames finalizes the Kind field of not-type names and sets |
| // the mangled name of all names. |
| func (p *Package) prepareNames(f *File) { |
| for _, n := range f.Name { |
| if n.Kind == "not-type" { |
| if n.Define == "" { |
| n.Kind = "var" |
| } else { |
| n.Kind = "macro" |
| n.FuncType = &FuncType{ |
| Result: n.Type, |
| Go: &ast.FuncType{ |
| Results: &ast.FieldList{List: []*ast.Field{{Type: n.Type.Go}}}, |
| }, |
| } |
| } |
| } |
| p.mangleName(n) |
| if n.Kind == "type" && typedef[n.Mangle] == nil { |
| typedef[n.Mangle] = n.Type |
| } |
| } |
| } |
| |
| // mangleName does name mangling to translate names |
| // from the original Go source files to the names |
| // used in the final Go files generated by cgo. |
| func (p *Package) mangleName(n *Name) { |
| // When using gccgo variables have to be |
| // exported so that they become global symbols |
| // that the C code can refer to. |
| prefix := "_C" |
| if *gccgo && n.IsVar() { |
| prefix = "C" |
| } |
| n.Mangle = prefix + n.Kind + "_" + n.Go |
| } |
| |
| func (f *File) isMangledName(s string) bool { |
| prefix := "_C" |
| if strings.HasPrefix(s, prefix) { |
| t := s[len(prefix):] |
| for _, k := range nameKinds { |
| if strings.HasPrefix(t, k+"_") { |
| return true |
| } |
| } |
| } |
| return false |
| } |
| |
| // rewriteCalls rewrites all calls that pass pointers to check that |
| // they follow the rules for passing pointers between Go and C. |
| // This reports whether the package needs to import unsafe as _cgo_unsafe. |
| func (p *Package) rewriteCalls(f *File) bool { |
| needsUnsafe := false |
| // Walk backward so that in C.f1(C.f2()) we rewrite C.f2 first. |
| for _, call := range f.Calls { |
| if call.Done { |
| continue |
| } |
| start := f.offset(call.Call.Pos()) |
| end := f.offset(call.Call.End()) |
| str, nu := p.rewriteCall(f, call) |
| if str != "" { |
| f.Edit.Replace(start, end, str) |
| if nu { |
| needsUnsafe = true |
| } |
| } |
| } |
| return needsUnsafe |
| } |
| |
| // rewriteCall rewrites one call to add pointer checks. |
| // If any pointer checks are required, we rewrite the call into a |
| // function literal that calls _cgoCheckPointer for each pointer |
| // argument and then calls the original function. |
| // This returns the rewritten call and whether the package needs to |
| // import unsafe as _cgo_unsafe. |
| // If it returns the empty string, the call did not need to be rewritten. |
| func (p *Package) rewriteCall(f *File, call *Call) (string, bool) { |
| // This is a call to C.xxx; set goname to "xxx". |
| // It may have already been mangled by rewriteName. |
| var goname string |
| switch fun := call.Call.Fun.(type) { |
| case *ast.SelectorExpr: |
| goname = fun.Sel.Name |
| case *ast.Ident: |
| goname = strings.TrimPrefix(fun.Name, "_C2func_") |
| goname = strings.TrimPrefix(goname, "_Cfunc_") |
| } |
| if goname == "" || goname == "malloc" { |
| return "", false |
| } |
| name := f.Name[goname] |
| if name == nil || name.Kind != "func" { |
| // Probably a type conversion. |
| return "", false |
| } |
| |
| params := name.FuncType.Params |
| args := call.Call.Args |
| |
| // Avoid a crash if the number of arguments doesn't match |
| // the number of parameters. |
| // This will be caught when the generated file is compiled. |
| if len(args) != len(params) { |
| return "", false |
| } |
| |
| any := false |
| for i, param := range params { |
| if p.needsPointerCheck(f, param.Go, args[i]) { |
| any = true |
| break |
| } |
| } |
| if !any { |
| return "", false |
| } |
| |
| // We need to rewrite this call. |
| // |
| // Rewrite C.f(p) to |
| // func() { |
| // _cgo0 := p |
| // _cgoCheckPointer(_cgo0, nil) |
| // C.f(_cgo0) |
| // }() |
| // Using a function literal like this lets us evaluate the |
| // function arguments only once while doing pointer checks. |
| // This is particularly useful when passing additional arguments |
| // to _cgoCheckPointer, as done in checkIndex and checkAddr. |
| // |
| // When the function argument is a conversion to unsafe.Pointer, |
| // we unwrap the conversion before checking the pointer, |
| // and then wrap again when calling C.f. This lets us check |
| // the real type of the pointer in some cases. See issue #25941. |
| // |
| // When the call to C.f is deferred, we use an additional function |
| // literal to evaluate the arguments at the right time. |
| // defer func() func() { |
| // _cgo0 := p |
| // return func() { |
| // _cgoCheckPointer(_cgo0, nil) |
| // C.f(_cgo0) |
| // } |
| // }()() |
| // This works because the defer statement evaluates the first |
| // function literal in order to get the function to call. |
| |
| var sb bytes.Buffer |
| sb.WriteString("func() ") |
| if call.Deferred { |
| sb.WriteString("func() ") |
| } |
| |
| needsUnsafe := false |
| result := false |
| twoResults := false |
| if !call.Deferred { |
| // Check whether this call expects two results. |
| for _, ref := range f.Ref { |
| if ref.Expr != &call.Call.Fun { |
| continue |
| } |
| if ref.Context == ctxCall2 { |
| sb.WriteString("(") |
| result = true |
| twoResults = true |
| } |
| break |
| } |
| |
| // Add the result type, if any. |
| if name.FuncType.Result != nil { |
| rtype := p.rewriteUnsafe(name.FuncType.Result.Go) |
| if rtype != name.FuncType.Result.Go { |
| needsUnsafe = true |
| } |
| sb.WriteString(gofmtLine(rtype)) |
| result = true |
| } |
| |
| // Add the second result type, if any. |
| if twoResults { |
| if name.FuncType.Result == nil { |
| // An explicit void result looks odd but it |
| // seems to be how cgo has worked historically. |
| sb.WriteString("_Ctype_void") |
| } |
| sb.WriteString(", error)") |
| } |
| } |
| |
| sb.WriteString("{ ") |
| |
| // Define _cgoN for each argument value. |
| // Write _cgoCheckPointer calls to sbCheck. |
| var sbCheck bytes.Buffer |
| for i, param := range params { |
| origArg := args[i] |
| arg, nu := p.mangle(f, &args[i]) |
| if nu { |
| needsUnsafe = true |
| } |
| |
| // Use "var x T = ..." syntax to explicitly convert untyped |
| // constants to the parameter type, to avoid a type mismatch. |
| ptype := p.rewriteUnsafe(param.Go) |
| |
| if !p.needsPointerCheck(f, param.Go, args[i]) || param.BadPointer { |
| if ptype != param.Go { |
| needsUnsafe = true |
| } |
| fmt.Fprintf(&sb, "var _cgo%d %s = %s; ", i, |
| gofmtLine(ptype), gofmtPos(arg, origArg.Pos())) |
| continue |
| } |
| |
| // Check for &a[i]. |
| if p.checkIndex(&sb, &sbCheck, arg, i) { |
| continue |
| } |
| |
| // Check for &x. |
| if p.checkAddr(&sb, &sbCheck, arg, i) { |
| continue |
| } |
| |
| fmt.Fprintf(&sb, "_cgo%d := %s; ", i, gofmtPos(arg, origArg.Pos())) |
| fmt.Fprintf(&sbCheck, "_cgoCheckPointer(_cgo%d, nil); ", i) |
| } |
| |
| if call.Deferred { |
| sb.WriteString("return func() { ") |
| } |
| |
| // Write out the calls to _cgoCheckPointer. |
| sb.WriteString(sbCheck.String()) |
| |
| if result { |
| sb.WriteString("return ") |
| } |
| |
| m, nu := p.mangle(f, &call.Call.Fun) |
| if nu { |
| needsUnsafe = true |
| } |
| sb.WriteString(gofmtLine(m)) |
| |
| sb.WriteString("(") |
| for i := range params { |
| if i > 0 { |
| sb.WriteString(", ") |
| } |
| fmt.Fprintf(&sb, "_cgo%d", i) |
| } |
| sb.WriteString("); ") |
| if call.Deferred { |
| sb.WriteString("}") |
| } |
| sb.WriteString("}") |
| if call.Deferred { |
| sb.WriteString("()") |
| } |
| sb.WriteString("()") |
| |
| return sb.String(), needsUnsafe |
| } |
| |
| // needsPointerCheck reports whether the type t needs a pointer check. |
| // This is true if t is a pointer and if the value to which it points |
| // might contain a pointer. |
| func (p *Package) needsPointerCheck(f *File, t ast.Expr, arg ast.Expr) bool { |
| // An untyped nil does not need a pointer check, and when |
| // _cgoCheckPointer returns the untyped nil the type assertion we |
| // are going to insert will fail. Easier to just skip nil arguments. |
| // TODO: Note that this fails if nil is shadowed. |
| if id, ok := arg.(*ast.Ident); ok && id.Name == "nil" { |
| return false |
| } |
| |
| return p.hasPointer(f, t, true) |
| } |
| |
| // hasPointer is used by needsPointerCheck. If top is true it returns |
| // whether t is or contains a pointer that might point to a pointer. |
| // If top is false it reports whether t is or contains a pointer. |
| // f may be nil. |
| func (p *Package) hasPointer(f *File, t ast.Expr, top bool) bool { |
| switch t := t.(type) { |
| case *ast.ArrayType: |
| if t.Len == nil { |
| if !top { |
| return true |
| } |
| return p.hasPointer(f, t.Elt, false) |
| } |
| return p.hasPointer(f, t.Elt, top) |
| case *ast.StructType: |
| for _, field := range t.Fields.List { |
| if p.hasPointer(f, field.Type, top) { |
| return true |
| } |
| } |
| return false |
| case *ast.StarExpr: // Pointer type. |
| if !top { |
| return true |
| } |
| // Check whether this is a pointer to a C union (or class) |
| // type that contains a pointer. |
| if unionWithPointer[t.X] { |
| return true |
| } |
| return p.hasPointer(f, t.X, false) |
| case *ast.FuncType, *ast.InterfaceType, *ast.MapType, *ast.ChanType: |
| return true |
| case *ast.Ident: |
| // TODO: Handle types defined within function. |
| for _, d := range p.Decl { |
| gd, ok := d.(*ast.GenDecl) |
| if !ok || gd.Tok != token.TYPE { |
| continue |
| } |
| for _, spec := range gd.Specs { |
| ts, ok := spec.(*ast.TypeSpec) |
| if !ok { |
| continue |
| } |
| if ts.Name.Name == t.Name { |
| return p.hasPointer(f, ts.Type, top) |
| } |
| } |
| } |
| if def := typedef[t.Name]; def != nil { |
| return p.hasPointer(f, def.Go, top) |
| } |
| if t.Name == "string" { |
| return !top |
| } |
| if t.Name == "error" { |
| return true |
| } |
| if goTypes[t.Name] != nil { |
| return false |
| } |
| // We can't figure out the type. Conservative |
| // approach is to assume it has a pointer. |
| return true |
| case *ast.SelectorExpr: |
| if l, ok := t.X.(*ast.Ident); !ok || l.Name != "C" { |
| // Type defined in a different package. |
| // Conservative approach is to assume it has a |
| // pointer. |
| return true |
| } |
| if f == nil { |
| // Conservative approach: assume pointer. |
| return true |
| } |
| name := f.Name[t.Sel.Name] |
| if name != nil && name.Kind == "type" && name.Type != nil && name.Type.Go != nil { |
| return p.hasPointer(f, name.Type.Go, top) |
| } |
| // We can't figure out the type. Conservative |
| // approach is to assume it has a pointer. |
| return true |
| default: |
| error_(t.Pos(), "could not understand type %s", gofmt(t)) |
| return true |
| } |
| } |
| |
| // mangle replaces references to C names in arg with the mangled names, |
| // rewriting calls when it finds them. |
| // It removes the corresponding references in f.Ref and f.Calls, so that we |
| // don't try to do the replacement again in rewriteRef or rewriteCall. |
| func (p *Package) mangle(f *File, arg *ast.Expr) (ast.Expr, bool) { |
| needsUnsafe := false |
| f.walk(arg, ctxExpr, func(f *File, arg interface{}, context astContext) { |
| px, ok := arg.(*ast.Expr) |
| if !ok { |
| return |
| } |
| sel, ok := (*px).(*ast.SelectorExpr) |
| if ok { |
| if l, ok := sel.X.(*ast.Ident); !ok || l.Name != "C" { |
| return |
| } |
| |
| for _, r := range f.Ref { |
| if r.Expr == px { |
| *px = p.rewriteName(f, r) |
| r.Done = true |
| break |
| } |
| } |
| |
| return |
| } |
| |
| call, ok := (*px).(*ast.CallExpr) |
| if !ok { |
| return |
| } |
| |
| for _, c := range f.Calls { |
| if !c.Done && c.Call.Lparen == call.Lparen { |
| cstr, nu := p.rewriteCall(f, c) |
| if cstr != "" { |
| // Smuggle the rewritten call through an ident. |
| *px = ast.NewIdent(cstr) |
| if nu { |
| needsUnsafe = true |
| } |
| c.Done = true |
| } |
| } |
| } |
| }) |
| return *arg, needsUnsafe |
| } |
| |
| // checkIndex checks whether arg has the form &a[i], possibly inside |
| // type conversions. If so, then in the general case it writes |
| // _cgoIndexNN := a |
| // _cgoNN := &cgoIndexNN[i] // with type conversions, if any |
| // to sb, and writes |
| // _cgoCheckPointer(_cgoNN, _cgoIndexNN) |
| // to sbCheck, and returns true. If a is a simple variable or field reference, |
| // it writes |
| // _cgoIndexNN := &a |
| // and dereferences the uses of _cgoIndexNN. Taking the address avoids |
| // making a copy of an array. |
| // |
| // This tells _cgoCheckPointer to check the complete contents of the |
| // slice or array being indexed, but no other part of the memory allocation. |
| func (p *Package) checkIndex(sb, sbCheck *bytes.Buffer, arg ast.Expr, i int) bool { |
| // Strip type conversions. |
| x := arg |
| for { |
| c, ok := x.(*ast.CallExpr) |
| if !ok || len(c.Args) != 1 || !p.isType(c.Fun) { |
| break |
| } |
| x = c.Args[0] |
| } |
| u, ok := x.(*ast.UnaryExpr) |
| if !ok || u.Op != token.AND { |
| return false |
| } |
| index, ok := u.X.(*ast.IndexExpr) |
| if !ok { |
| return false |
| } |
| |
| addr := "" |
| deref := "" |
| if p.isVariable(index.X) { |
| addr = "&" |
| deref = "*" |
| } |
| |
| fmt.Fprintf(sb, "_cgoIndex%d := %s%s; ", i, addr, gofmtPos(index.X, index.X.Pos())) |
| origX := index.X |
| index.X = ast.NewIdent(fmt.Sprintf("_cgoIndex%d", i)) |
| if deref == "*" { |
| index.X = &ast.StarExpr{X: index.X} |
| } |
| fmt.Fprintf(sb, "_cgo%d := %s; ", i, gofmtPos(arg, arg.Pos())) |
| index.X = origX |
| |
| fmt.Fprintf(sbCheck, "_cgoCheckPointer(_cgo%d, %s_cgoIndex%d); ", i, deref, i) |
| |
| return true |
| } |
| |
| // checkAddr checks whether arg has the form &x, possibly inside type |
| // conversions. If so, it writes |
| // _cgoBaseNN := &x |
| // _cgoNN := _cgoBaseNN // with type conversions, if any |
| // to sb, and writes |
| // _cgoCheckPointer(_cgoBaseNN, true) |
| // to sbCheck, and returns true. This tells _cgoCheckPointer to check |
| // just the contents of the pointer being passed, not any other part |
| // of the memory allocation. This is run after checkIndex, which looks |
| // for the special case of &a[i], which requires different checks. |
| func (p *Package) checkAddr(sb, sbCheck *bytes.Buffer, arg ast.Expr, i int) bool { |
| // Strip type conversions. |
| px := &arg |
| for { |
| c, ok := (*px).(*ast.CallExpr) |
| if !ok || len(c.Args) != 1 || !p.isType(c.Fun) { |
| break |
| } |
| px = &c.Args[0] |
| } |
| if u, ok := (*px).(*ast.UnaryExpr); !ok || u.Op != token.AND { |
| return false |
| } |
| |
| fmt.Fprintf(sb, "_cgoBase%d := %s; ", i, gofmtPos(*px, (*px).Pos())) |
| |
| origX := *px |
| *px = ast.NewIdent(fmt.Sprintf("_cgoBase%d", i)) |
| fmt.Fprintf(sb, "_cgo%d := %s; ", i, gofmtPos(arg, arg.Pos())) |
| *px = origX |
| |
| // Use "0 == 0" to do the right thing in the unlikely event |
| // that "true" is shadowed. |
| fmt.Fprintf(sbCheck, "_cgoCheckPointer(_cgoBase%d, 0 == 0); ", i) |
| |
| return true |
| } |
| |
| // isType reports whether the expression is definitely a type. |
| // This is conservative--it returns false for an unknown identifier. |
| func (p *Package) isType(t ast.Expr) bool { |
| switch t := t.(type) { |
| case *ast.SelectorExpr: |
| id, ok := t.X.(*ast.Ident) |
| if !ok { |
| return false |
| } |
| if id.Name == "unsafe" && t.Sel.Name == "Pointer" { |
| return true |
| } |
| if id.Name == "C" && typedef["_Ctype_"+t.Sel.Name] != nil { |
| return true |
| } |
| return false |
| case *ast.Ident: |
| // TODO: This ignores shadowing. |
| switch t.Name { |
| case "unsafe.Pointer", "bool", "byte", |
| "complex64", "complex128", |
| "error", |
| "float32", "float64", |
| "int", "int8", "int16", "int32", "int64", |
| "rune", "string", |
| "uint", "uint8", "uint16", "uint32", "uint64", "uintptr": |
| |
| return true |
| } |
| if strings.HasPrefix(t.Name, "_Ctype_") { |
| return true |
| } |
| case *ast.ParenExpr: |
| return p.isType(t.X) |
| case *ast.StarExpr: |
| return p.isType(t.X) |
| case *ast.ArrayType, *ast.StructType, *ast.FuncType, *ast.InterfaceType, |
| *ast.MapType, *ast.ChanType: |
| |
| return true |
| } |
| return false |
| } |
| |
| // isVariable reports whether x is a variable, possibly with field references. |
| func (p *Package) isVariable(x ast.Expr) bool { |
| switch x := x.(type) { |
| case *ast.Ident: |
| return true |
| case *ast.SelectorExpr: |
| return p.isVariable(x.X) |
| case *ast.IndexExpr: |
| return true |
| } |
| return false |
| } |
| |
| // rewriteUnsafe returns a version of t with references to unsafe.Pointer |
| // rewritten to use _cgo_unsafe.Pointer instead. |
| func (p *Package) rewriteUnsafe(t ast.Expr) ast.Expr { |
| switch t := t.(type) { |
| case *ast.Ident: |
| // We don't see a SelectorExpr for unsafe.Pointer; |
| // this is created by code in this file. |
| if t.Name == "unsafe.Pointer" { |
| return ast.NewIdent("_cgo_unsafe.Pointer") |
| } |
| case *ast.ArrayType: |
| t1 := p.rewriteUnsafe(t.Elt) |
| if t1 != t.Elt { |
| r := *t |
| r.Elt = t1 |
| return &r |
| } |
| case *ast.StructType: |
| changed := false |
| fields := *t.Fields |
| fields.List = nil |
| for _, f := range t.Fields.List { |
| ft := p.rewriteUnsafe(f.Type) |
| if ft == f.Type { |
| fields.List = append(fields.List, f) |
| } else { |
| fn := *f |
| fn.Type = ft |
| fields.List = append(fields.List, &fn) |
| changed = true |
| } |
| } |
| if changed { |
| r := *t |
| r.Fields = &fields |
| return &r |
| } |
| case *ast.StarExpr: // Pointer type. |
| x1 := p.rewriteUnsafe(t.X) |
| if x1 != t.X { |
| r := *t |
| r.X = x1 |
| return &r |
| } |
| } |
| return t |
| } |
| |
| // rewriteRef rewrites all the C.xxx references in f.AST to refer to the |
| // Go equivalents, now that we have figured out the meaning of all |
| // the xxx. In *godefs mode, rewriteRef replaces the names |
| // with full definitions instead of mangled names. |
| func (p *Package) rewriteRef(f *File) { |
| // Keep a list of all the functions, to remove the ones |
| // only used as expressions and avoid generating bridge |
| // code for them. |
| functions := make(map[string]bool) |
| |
| for _, n := range f.Name { |
| if n.Kind == "func" { |
| functions[n.Go] = false |
| } |
| } |
| |
| // Now that we have all the name types filled in, |
| // scan through the Refs to identify the ones that |
| // are trying to do a ,err call. Also check that |
| // functions are only used in calls. |
| for _, r := range f.Ref { |
| if r.Name.IsConst() && r.Name.Const == "" { |
| error_(r.Pos(), "unable to find value of constant C.%s", fixGo(r.Name.Go)) |
| } |
| |
| if r.Name.Kind == "func" { |
| switch r.Context { |
| case ctxCall, ctxCall2: |
| functions[r.Name.Go] = true |
| } |
| } |
| |
| expr := p.rewriteName(f, r) |
| |
| if *godefs { |
| // Substitute definition for mangled type name. |
| if r.Name.Type != nil && r.Name.Kind == "type" { |
| expr = r.Name.Type.Go |
| } |
| if id, ok := expr.(*ast.Ident); ok { |
| if t := typedef[id.Name]; t != nil { |
| expr = t.Go |
| } |
| if id.Name == r.Name.Mangle && r.Name.Const != "" { |
| expr = ast.NewIdent(r.Name.Const) |
| } |
| } |
| } |
| |
| // Copy position information from old expr into new expr, |
| // in case expression being replaced is first on line. |
| // See golang.org/issue/6563. |
| pos := (*r.Expr).Pos() |
| if x, ok := expr.(*ast.Ident); ok { |
| expr = &ast.Ident{NamePos: pos, Name: x.Name} |
| } |
| |
| // Change AST, because some later processing depends on it, |
| // and also because -godefs mode still prints the AST. |
| old := *r.Expr |
| *r.Expr = expr |
| |
| // Record source-level edit for cgo output. |
| if !r.Done { |
| // Prepend a space in case the earlier code ends |
| // with '/', which would give us a "//" comment. |
| repl := " " + gofmtPos(expr, old.Pos()) |
| end := fset.Position(old.End()) |
| // Subtract 1 from the column if we are going to |
| // append a close parenthesis. That will set the |
| // correct column for the following characters. |
| sub := 0 |
| if r.Name.Kind != "type" { |
| sub = 1 |
| } |
| if end.Column > sub { |
| repl = fmt.Sprintf("%s /*line :%d:%d*/", repl, end.Line, end.Column-sub) |
| } |
| if r.Name.Kind != "type" { |
| repl = "(" + repl + ")" |
| } |
| f.Edit.Replace(f.offset(old.Pos()), f.offset(old.End()), repl) |
| } |
| } |
| |
| // Remove functions only used as expressions, so their respective |
| // bridge functions are not generated. |
| for name, used := range functions { |
| if !used { |
| delete(f.Name, name) |
| } |
| } |
| } |
| |
| // rewriteName returns the expression used to rewrite a reference. |
| func (p *Package) rewriteName(f *File, r *Ref) ast.Expr { |
| var expr ast.Expr = ast.NewIdent(r.Name.Mangle) // default |
| switch r.Context { |
| case ctxCall, ctxCall2: |
| if r.Name.Kind != "func" { |
| if r.Name.Kind == "type" { |
| r.Context = ctxType |
| if r.Name.Type == nil { |
| error_(r.Pos(), "invalid conversion to C.%s: undefined C type '%s'", fixGo(r.Name.Go), r.Name.C) |
| } |
| break |
| } |
| error_(r.Pos(), "call of non-function C.%s", fixGo(r.Name.Go)) |
| break |
| } |
| if r.Context == ctxCall2 { |
| if r.Name.Go == "_CMalloc" { |
| error_(r.Pos(), "no two-result form for C.malloc") |
| break |
| } |
| // Invent new Name for the two-result function. |
| n := f.Name["2"+r.Name.Go] |
| if n == nil { |
| n = new(Name) |
| *n = *r.Name |
| n.AddError = true |
| n.Mangle = "_C2func_" + n.Go |
| f.Name["2"+r.Name.Go] = n |
| } |
| expr = ast.NewIdent(n.Mangle) |
| r.Name = n |
| break |
| } |
| case ctxExpr: |
| switch r.Name.Kind { |
| case "func": |
| if builtinDefs[r.Name.C] != "" { |
| error_(r.Pos(), "use of builtin '%s' not in function call", fixGo(r.Name.C)) |
| } |
| |
| // Function is being used in an expression, to e.g. pass around a C function pointer. |
| // Create a new Name for this Ref which causes the variable to be declared in Go land. |
| fpName := "fp_" + r.Name.Go |
| name := f.Name[fpName] |
| if name == nil { |
| name = &Name{ |
| Go: fpName, |
| C: r.Name.C, |
| Kind: "fpvar", |
| Type: &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("void*"), Go: ast.NewIdent("unsafe.Pointer")}, |
| } |
| p.mangleName(name) |
| f.Name[fpName] = name |
| } |
| r.Name = name |
| // Rewrite into call to _Cgo_ptr to prevent assignments. The _Cgo_ptr |
| // function is defined in out.go and simply returns its argument. See |
| // issue 7757. |
| expr = &ast.CallExpr{ |
| Fun: &ast.Ident{NamePos: (*r.Expr).Pos(), Name: "_Cgo_ptr"}, |
| Args: []ast.Expr{ast.NewIdent(name.Mangle)}, |
| } |
| case "type": |
| // Okay - might be new(T) |
| if r.Name.Type == nil { |
| error_(r.Pos(), "expression C.%s: undefined C type '%s'", fixGo(r.Name.Go), r.Name.C) |
| } |
| case "var": |
| expr = &ast.StarExpr{Star: (*r.Expr).Pos(), X: expr} |
| case "macro": |
| expr = &ast.CallExpr{Fun: expr} |
| } |
| case ctxSelector: |
| if r.Name.Kind == "var" { |
| expr = &ast.StarExpr{Star: (*r.Expr).Pos(), X: expr} |
| } else { |
| error_(r.Pos(), "only C variables allowed in selector expression %s", fixGo(r.Name.Go)) |
| } |
| case ctxType: |
| if r.Name.Kind != "type" { |
| error_(r.Pos(), "expression C.%s used as type", fixGo(r.Name.Go)) |
| } else if r.Name.Type == nil { |
| // Use of C.enum_x, C.struct_x or C.union_x without C definition. |
| // GCC won't raise an error when using pointers to such unknown types. |
| error_(r.Pos(), "type C.%s: undefined C type '%s'", fixGo(r.Name.Go), r.Name.C) |
| } |
| default: |
| if r.Name.Kind == "func" { |
| error_(r.Pos(), "must call C.%s", fixGo(r.Name.Go)) |
| } |
| } |
| return expr |
| } |
| |
| // gofmtPos returns the gofmt-formatted string for an AST node, |
| // with a comment setting the position before the node. |
| func gofmtPos(n ast.Expr, pos token.Pos) string { |
| s := gofmtLine(n) |
| p := fset.Position(pos) |
| if p.Column == 0 { |
| return s |
| } |
| return fmt.Sprintf("/*line :%d:%d*/%s", p.Line, p.Column, s) |
| } |
| |
| // gccBaseCmd returns the start of the compiler command line. |
| // It uses $CC if set, or else $GCC, or else the compiler recorded |
| // during the initial build as defaultCC. |
| // defaultCC is defined in zdefaultcc.go, written by cmd/dist. |
| func (p *Package) gccBaseCmd() []string { |
| // Use $CC if set, since that's what the build uses. |
| if ret := strings.Fields(os.Getenv("CC")); len(ret) > 0 { |
| return ret |
| } |
| // Try $GCC if set, since that's what we used to use. |
| if ret := strings.Fields(os.Getenv("GCC")); len(ret) > 0 { |
| return ret |
| } |
| return strings.Fields(defaultCC(goos, goarch)) |
| } |
| |
| // gccMachine returns the gcc -m flag to use, either "-m32", "-m64" or "-marm". |
| func (p *Package) gccMachine() []string { |
| switch goarch { |
| case "amd64": |
| return []string{"-m64"} |
| case "386": |
| return []string{"-m32"} |
| case "arm": |
| return []string{"-marm"} // not thumb |
| case "s390": |
| return []string{"-m31"} |
| case "s390x": |
| return []string{"-m64"} |
| case "mips64", "mips64le": |
| return []string{"-mabi=64"} |
| case "mips", "mipsle": |
| return []string{"-mabi=32"} |
| } |
| return nil |
| } |
| |
| func gccTmp() string { |
| return *objDir + "_cgo_.o" |
| } |
| |
| // gccCmd returns the gcc command line to use for compiling |
| // the input. |
| func (p *Package) gccCmd() []string { |
| c := append(p.gccBaseCmd(), |
| "-w", // no warnings |
| "-Wno-error", // warnings are not errors |
| "-o"+gccTmp(), // write object to tmp |
| "-gdwarf-2", // generate DWARF v2 debugging symbols |
| "-c", // do not link |
| "-xc", // input language is C |
| ) |
| if p.GccIsClang { |
| c = append(c, |
| "-ferror-limit=0", |
| // Apple clang version 1.7 (tags/Apple/clang-77) (based on LLVM 2.9svn) |
| // doesn't have -Wno-unneeded-internal-declaration, so we need yet another |
| // flag to disable the warning. Yes, really good diagnostics, clang. |
| "-Wno-unknown-warning-option", |
| "-Wno-unneeded-internal-declaration", |
| "-Wno-unused-function", |
| "-Qunused-arguments", |
| // Clang embeds prototypes for some builtin functions, |
| // like malloc and calloc, but all size_t parameters are |
| // incorrectly typed unsigned long. We work around that |
| // by disabling the builtin functions (this is safe as |
| // it won't affect the actual compilation of the C code). |
| // See: https://golang.org/issue/6506. |
| "-fno-builtin", |
| ) |
| } |
| |
| c = append(c, p.GccOptions...) |
| c = append(c, p.gccMachine()...) |
| if goos == "aix" { |
| c = append(c, "-maix64") |
| c = append(c, "-mcmodel=large") |
| } |
| c = append(c, "-") //read input from standard input |
| return c |
| } |
| |
| // gccDebug runs gcc -gdwarf-2 over the C program stdin and |
| // returns the corresponding DWARF data and, if present, debug data block. |
| func (p *Package) gccDebug(stdin []byte, nnames int) (d *dwarf.Data, ints []int64, floats []float64, strs []string) { |
| runGcc(stdin, p.gccCmd()) |
| |
| isDebugInts := func(s string) bool { |
| // Some systems use leading _ to denote non-assembly symbols. |
| return s == "__cgodebug_ints" || s == "___cgodebug_ints" |
| } |
| isDebugFloats := func(s string) bool { |
| // Some systems use leading _ to denote non-assembly symbols. |
| return s == "__cgodebug_floats" || s == "___cgodebug_floats" |
| } |
| indexOfDebugStr := func(s string) int { |
| // Some systems use leading _ to denote non-assembly symbols. |
| if strings.HasPrefix(s, "___") { |
| s = s[1:] |
| } |
| if strings.HasPrefix(s, "__cgodebug_str__") { |
| if n, err := strconv.Atoi(s[len("__cgodebug_str__"):]); err == nil { |
| return n |
| } |
| } |
| return -1 |
| } |
| indexOfDebugStrlen := func(s string) int { |
| // Some systems use leading _ to denote non-assembly symbols. |
| if strings.HasPrefix(s, "___") { |
| s = s[1:] |
| } |
| if strings.HasPrefix(s, "__cgodebug_strlen__") { |
| if n, err := strconv.Atoi(s[len("__cgodebug_strlen__"):]); err == nil { |
| return n |
| } |
| } |
| return -1 |
| } |
| |
| strs = make([]string, nnames) |
| |
| strdata := make(map[int]string, nnames) |
| strlens := make(map[int]int, nnames) |
| |
| buildStrings := func() { |
| for n, strlen := range strlens { |
| data := strdata[n] |
| if len(data) <= strlen { |
| fatalf("invalid string literal") |
| } |
| strs[n] = data[:strlen] |
| } |
| } |
| |
| if f, err := macho.Open(gccTmp()); err == nil { |
| defer f.Close() |
| d, err := f.DWARF() |
| if err != nil { |
| fatalf("cannot load DWARF output from %s: %v", gccTmp(), err) |
| } |
| bo := f.ByteOrder |
| if f.Symtab != nil { |
| for i := range f.Symtab.Syms { |
| s := &f.Symtab.Syms[i] |
| switch { |
| case isDebugInts(s.Name): |
| // Found it. Now find data section. |
| if i := int(s.Sect) - 1; 0 <= i && i < len(f.Sections) { |
| sect := f.Sections[i] |
| if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size { |
| if sdat, err := sect.Data(); err == nil { |
| data := sdat[s.Value-sect.Addr:] |
| ints = make([]int64, len(data)/8) |
| for i := range ints { |
| ints[i] = int64(bo.Uint64(data[i*8:])) |
| } |
| } |
| } |
| } |
| case isDebugFloats(s.Name): |
| // Found it. Now find data section. |
| if i := int(s.Sect) - 1; 0 <= i && i < len(f.Sections) { |
| sect := f.Sections[i] |
| if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size { |
| if sdat, err := sect.Data(); err == nil { |
| data := sdat[s.Value-sect.Addr:] |
| floats = make([]float64, len(data)/8) |
| for i := range floats { |
| floats[i] = math.Float64frombits(bo.Uint64(data[i*8:])) |
| } |
| } |
| } |
| } |
| default: |
| if n := indexOfDebugStr(s.Name); n != -1 { |
| // Found it. Now find data section. |
| if i := int(s.Sect) - 1; 0 <= i && i < len(f.Sections) { |
| sect := f.Sections[i] |
| if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size { |
| if sdat, err := sect.Data(); err == nil { |
| data := sdat[s.Value-sect.Addr:] |
| strdata[n] = string(data) |
| } |
| } |
| } |
| break |
| } |
| if n := indexOfDebugStrlen(s.Name); n != -1 { |
| // Found it. Now find data section. |
| if i := int(s.Sect) - 1; 0 <= i && i < len(f.Sections) { |
| sect := f.Sections[i] |
| if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size { |
| if sdat, err := sect.Data(); err == nil { |
| data := sdat[s.Value-sect.Addr:] |
| strlen := bo.Uint64(data[:8]) |
| if strlen > (1<<(uint(p.IntSize*8)-1) - 1) { // greater than MaxInt? |
| fatalf("string literal too big") |
| } |
| strlens[n] = int(strlen) |
| } |
| } |
| } |
| break |
| } |
| } |
| } |
| |
| buildStrings() |
| } |
| return d, ints, floats, strs |
| } |
| |
| if f, err := elf.Open(gccTmp()); err == nil { |
| defer f.Close() |
| d, err := f.DWARF() |
| if err != nil { |
| fatalf("cannot load DWARF output from %s: %v", gccTmp(), err) |
| } |
| bo := f.ByteOrder |
| symtab, err := f.Symbols() |
| if err == nil { |
| for i := range symtab { |
| s := &symtab[i] |
| switch { |
| case isDebugInts(s.Name): |
| // Found it. Now find data section. |
| if i := int(s.Section); 0 <= i && i < len(f.Sections) { |
| sect := f.Sections[i] |
| if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size { |
| if sdat, err := sect.Data(); err == nil { |
| data := sdat[s.Value-sect.Addr:] |
| ints = make([]int64, len(data)/8) |
| for i := range ints { |
| ints[i] = int64(bo.Uint64(data[i*8:])) |
| } |
| } |
| } |
| } |
| case isDebugFloats(s.Name): |
| // Found it. Now find data section. |
| if i := int(s.Section); 0 <= i && i < len(f.Sections) { |
| sect := f.Sections[i] |
| if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size { |
| if sdat, err := sect.Data(); err == nil { |
| data := sdat[s.Value-sect.Addr:] |
| floats = make([]float64, len(data)/8) |
| for i := range floats { |
| floats[i] = math.Float64frombits(bo.Uint64(data[i*8:])) |
| } |
| } |
| } |
| } |
| default: |
| if n := indexOfDebugStr(s.Name); n != -1 { |
| // Found it. Now find data section. |
| if i := int(s.Section); 0 <= i && i < len(f.Sections) { |
| sect := f.Sections[i] |
| if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size { |
| if sdat, err := sect.Data(); err == nil { |
| data := sdat[s.Value-sect.Addr:] |
| strdata[n] = string(data) |
| } |
| } |
| } |
| break |
| } |
| if n := indexOfDebugStrlen(s.Name); n != -1 { |
| // Found it. Now find data section. |
| if i := int(s.Section); 0 <= i && i < len(f.Sections) { |
| sect := f.Sections[i] |
| if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size { |
| if sdat, err := sect.Data(); err == nil { |
| data := sdat[s.Value-sect.Addr:] |
| strlen := bo.Uint64(data[:8]) |
| if strlen > (1<<(uint(p.IntSize*8)-1) - 1) { // greater than MaxInt? |
| fatalf("string literal too big") |
| } |
| strlens[n] = int(strlen) |
| } |
| } |
| } |
| break |
| } |
| } |
| } |
| |
| buildStrings() |
| } |
| return d, ints, floats, strs |
| } |
| |
| if f, err := pe.Open(gccTmp()); err == nil { |
| defer f.Close() |
| d, err := f.DWARF() |
| if err != nil { |
| fatalf("cannot load DWARF output from %s: %v", gccTmp(), err) |
| } |
| bo := binary.LittleEndian |
| for _, s := range f.Symbols { |
| switch { |
| case isDebugInts(s.Name): |
| if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) { |
| sect := f.Sections[i] |
| if s.Value < sect.Size { |
| if sdat, err := sect.Data(); err == nil { |
| data := sdat[s.Value:] |
| ints = make([]int64, len(data)/8) |
| for i := range ints { |
| ints[i] = int64(bo.Uint64(data[i*8:])) |
| } |
| } |
| } |
| } |
| case isDebugFloats(s.Name): |
| if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) { |
| sect := f.Sections[i] |
| if s.Value < sect.Size { |
| if sdat, err := sect.Data(); err == nil { |
| data := sdat[s.Value:] |
| floats = make([]float64, len(data)/8) |
| for i := range floats { |
| floats[i] = math.Float64frombits(bo.Uint64(data[i*8:])) |
| } |
| } |
| } |
| } |
| default: |
| if n := indexOfDebugStr(s.Name); n != -1 { |
| if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) { |
| sect := f.Sections[i] |
| if s.Value < sect.Size { |
| if sdat, err := sect.Data(); err == nil { |
| data := sdat[s.Value:] |
| strdata[n] = string(data) |
| } |
| } |
| } |
| break |
| } |
| if n := indexOfDebugStrlen(s.Name); n != -1 { |
| if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) { |
| sect := f.Sections[i] |
| if s.Value < sect.Size { |
| if sdat, err := sect.Data(); err == nil { |
| data := sdat[s.Value:] |
| strlen := bo.Uint64(data[:8]) |
| if strlen > (1<<(uint(p.IntSize*8)-1) - 1) { // greater than MaxInt? |
| fatalf("string literal too big") |
| } |
| strlens[n] = int(strlen) |
| } |
| } |
| } |
| break |
| } |
| } |
| } |
| |
| buildStrings() |
| |
| return d, ints, floats, strs |
| } |
| |
| if f, err := xcoff.Open(gccTmp()); err == nil { |
| defer f.Close() |
| d, err := f.DWARF() |
| if err != nil { |
| fatalf("cannot load DWARF output from %s: %v", gccTmp(), err) |
| } |
| bo := binary.BigEndian |
| for _, s := range f.Symbols { |
| switch { |
| case isDebugInts(s.Name): |
| if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) { |
| sect := f.Sections[i] |
| if s.Value < sect.Size { |
| if sdat, err := sect.Data(); err == nil { |
| data := sdat[s.Value:] |
| ints = make([]int64, len(data)/8) |
| for i := range ints { |
| ints[i] = int64(bo.Uint64(data[i*8:])) |
| } |
| } |
| } |
| } |
| case isDebugFloats(s.Name): |
| if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) { |
| sect := f.Sections[i] |
| if s.Value < sect.Size { |
| if sdat, err := sect.Data(); err == nil { |
| data := sdat[s.Value:] |
| floats = make([]float64, len(data)/8) |
| for i := range floats { |
| floats[i] = math.Float64frombits(bo.Uint64(data[i*8:])) |
| } |
| } |
| } |
| } |
| default: |
| if n := indexOfDebugStr(s.Name); n != -1 { |
| if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) { |
| sect := f.Sections[i] |
| if s.Value < sect.Size { |
| if sdat, err := sect.Data(); err == nil { |
| data := sdat[s.Value:] |
| strdata[n] = string(data) |
| } |
| } |
| } |
| break |
| } |
| if n := indexOfDebugStrlen(s.Name); n != -1 { |
| if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) { |
| sect := f.Sections[i] |
| if s.Value < sect.Size { |
| if sdat, err := sect.Data(); err == nil { |
| data := sdat[s.Value:] |
| strlen := bo.Uint64(data[:8]) |
| if strlen > (1<<(uint(p.IntSize*8)-1) - 1) { // greater than MaxInt? |
| fatalf("string literal too big") |
| } |
| strlens[n] = int(strlen) |
| } |
| } |
| } |
| break |
| } |
| } |
| } |
| |
| buildStrings() |
| return d, ints, floats, strs |
| } |
| fatalf("cannot parse gcc output %s as ELF, Mach-O, PE, XCOFF object", gccTmp()) |
| panic("not reached") |
| } |
| |
| // gccDefines runs gcc -E -dM -xc - over the C program stdin |
| // and returns the corresponding standard output, which is the |
| // #defines that gcc encountered while processing the input |
| // and its included files. |
| func (p *Package) gccDefines(stdin []byte) string { |
| base := append(p.gccBaseCmd(), "-E", "-dM", "-xc") |
| base = append(base, p.gccMachine()...) |
| stdout, _ := runGcc(stdin, append(append(base, p.GccOptions...), "-")) |
| return stdout |
| } |
| |
| // gccErrors runs gcc over the C program stdin and returns |
| // the errors that gcc prints. That is, this function expects |
| // gcc to fail. |
| func (p *Package) gccErrors(stdin []byte, extraArgs ...string) string { |
| // TODO(rsc): require failure |
| args := p.gccCmd() |
| |
| // Optimization options can confuse the error messages; remove them. |
| nargs := make([]string, 0, len(args)+len(extraArgs)) |
| for _, arg := range args { |
| if !strings.HasPrefix(arg, "-O") { |
| nargs = append(nargs, arg) |
| } |
| } |
| |
| // Force -O0 optimization and append extra arguments, but keep the |
| // trailing "-" at the end. |
| li := len(nargs) - 1 |
| last := nargs[li] |
| nargs[li] = "-O0" |
| nargs = append(nargs, extraArgs...) |
| nargs = append(nargs, last) |
| |
| if *debugGcc { |
| fmt.Fprintf(os.Stderr, "$ %s <<EOF\n", strings.Join(nargs, " ")) |
| os.Stderr.Write(stdin) |
| fmt.Fprint(os.Stderr, "EOF\n") |
| } |
| stdout, stderr, _ := run(stdin, nargs) |
| if *debugGcc { |
| os.Stderr.Write(stdout) |
| os.Stderr.Write(stderr) |
| } |
| return string(stderr) |
| } |
| |
| // runGcc runs the gcc command line args with stdin on standard input. |
| // If the command exits with a non-zero exit status, runGcc prints |
| // details about what was run and exits. |
| // Otherwise runGcc returns the data written to standard output and standard error. |
| // Note that for some of the uses we expect useful data back |
| // on standard error, but for those uses gcc must still exit 0. |
| func runGcc(stdin []byte, args []string) (string, string) { |
| if *debugGcc { |
| fmt.Fprintf(os.Stderr, "$ %s <<EOF\n", strings.Join(args, " ")) |
| os.Stderr.Write(stdin) |
| fmt.Fprint(os.Stderr, "EOF\n") |
| } |
| stdout, stderr, ok := run(stdin, args) |
| if *debugGcc { |
| os.Stderr.Write(stdout) |
| os.Stderr.Write(stderr) |
| } |
| if !ok { |
| os.Stderr.Write(stderr) |
| os.Exit(2) |
| } |
| return string(stdout), string(stderr) |
| } |
| |
| // A typeConv is a translator from dwarf types to Go types |
| // with equivalent memory layout. |
| type typeConv struct { |
| // Cache of already-translated or in-progress types. |
| m map[string]*Type |
| |
| // Map from types to incomplete pointers to those types. |
| ptrs map[string][]*Type |
| // Keys of ptrs in insertion order (deterministic worklist) |
| // ptrKeys contains exactly the keys in ptrs. |
| ptrKeys []dwarf.Type |
| |
| // Type names X for which there exists an XGetTypeID function with type func() CFTypeID. |
| getTypeIDs map[string]bool |
| |
| // Predeclared types. |
| bool ast.Expr |
| byte ast.Expr // denotes padding |
| int8, int16, int32, int64 ast.Expr |
| uint8, uint16, uint32, uint64, uintptr ast.Expr |
| float32, float64 ast.Expr |
| complex64, complex128 ast.Expr |
| void ast.Expr |
| string ast.Expr |
| goVoid ast.Expr // _Ctype_void, denotes C's void |
| goVoidPtr ast.Expr // unsafe.Pointer or *byte |
| |
| ptrSize int64 |
| intSize int64 |
| } |
| |
| var tagGen int |
| var typedef = make(map[string]*Type) |
| var goIdent = make(map[string]*ast.Ident) |
| |
| // unionWithPointer is true for a Go type that represents a C union (or class) |
| // that may contain a pointer. This is used for cgo pointer checking. |
| var unionWithPointer = make(map[ast.Expr]bool) |
| |
| // anonymousStructTag provides a consistent tag for an anonymous struct. |
| // The same dwarf.StructType pointer will always get the same tag. |
| var anonymousStructTag = make(map[*dwarf.StructType]string) |
| |
| func (c *typeConv) Init(ptrSize, intSize int64) { |
| c.ptrSize = ptrSize |
| c.intSize = intSize |
| c.m = make(map[string]*Type) |
| c.ptrs = make(map[string][]*Type) |
| c.getTypeIDs = make(map[string]bool) |
| c.bool = c.Ident("bool") |
| c.byte = c.Ident("byte") |
| c.int8 = c.Ident("int8") |
| c.int16 = c.Ident("int16") |
| c.int32 = c.Ident("int32") |
| c.int64 = c.Ident("int64") |
| c.uint8 = c.Ident("uint8") |
| c.uint16 = c.Ident("uint16") |
| c.uint32 = c.Ident("uint32") |
| c.uint64 = c.Ident("uint64") |
| c.uintptr = c.Ident("uintptr") |
| c.float32 = c.Ident("float32") |
| c.float64 = c.Ident("float64") |
| c.complex64 = c.Ident("complex64") |
| c.complex128 = c.Ident("complex128") |
| c.void = c.Ident("void") |
| c.string = c.Ident("string") |
| c.goVoid = c.Ident("_Ctype_void") |
| |
| // Normally cgo translates void* to unsafe.Pointer, |
| // but for historical reasons -godefs uses *byte instead. |
| if *godefs { |
| c.goVoidPtr = &ast.StarExpr{X: c.byte} |
| } else { |
| c.goVoidPtr = c.Ident("unsafe.Pointer") |
| } |
| } |
| |
| // base strips away qualifiers and typedefs to get the underlying type |
| func base(dt dwarf.Type) dwarf.Type { |
| for { |
| if d, ok := dt.(*dwarf.QualType); ok { |
| dt = d.Type |
| continue |
| } |
| if d, ok := dt.(*dwarf.TypedefType); ok { |
| dt = d.Type |
| continue |
| } |
| break |
| } |
| return dt |
| } |
| |
| // unqual strips away qualifiers from a DWARF type. |
| // In general we don't care about top-level qualifiers. |
| func unqual(dt dwarf.Type) dwarf.Type { |
| for { |
| if d, ok := dt.(*dwarf.QualType); ok { |
| dt = d.Type |
| } else { |
| break |
| } |
| } |
| return dt |
| } |
| |
| // Map from dwarf text names to aliases we use in package "C". |
| var dwarfToName = map[string]string{ |
| "long int": "long", |
| "long unsigned int": "ulong", |
| "unsigned int": "uint", |
| "short unsigned int": "ushort", |
| "unsigned short": "ushort", // Used by Clang; issue 13129. |
| "short int": "short", |
| "long long int": "longlong", |
| "long long unsigned int": "ulonglong", |
| "signed char": "schar", |
| "unsigned char": "uchar", |
| } |
| |
| const signedDelta = 64 |
| |
| // String returns the current type representation. Format arguments |
| // are assembled within this method so that any changes in mutable |
| // values are taken into account. |
| func (tr *TypeRepr) String() string { |
| if len(tr.Repr) == 0 { |
| return "" |
| } |
| if len(tr.FormatArgs) == 0 { |
| return tr.Repr |
| } |
| return fmt.Sprintf(tr.Repr, tr.FormatArgs...) |
| } |
| |
| // Empty reports whether the result of String would be "". |
| func (tr *TypeRepr) Empty() bool { |
| return len(tr.Repr) == 0 |
| } |
| |
| // Set modifies the type representation. |
| // If fargs are provided, repr is used as a format for fmt.Sprintf. |
| // Otherwise, repr is used unprocessed as the type representation. |
| func (tr *TypeRepr) Set(repr string, fargs ...interface{}) { |
| tr.Repr = repr |
| tr.FormatArgs = fargs |
| } |
| |
| // FinishType completes any outstanding type mapping work. |
| // In particular, it resolves incomplete pointer types. |
| func (c *typeConv) FinishType(pos token.Pos) { |
| // Completing one pointer type might produce more to complete. |
| // Keep looping until they're all done. |
| for len(c.ptrKeys) > 0 { |
| dtype := c.ptrKeys[0] |
| dtypeKey := dtype.String() |
| c.ptrKeys = c.ptrKeys[1:] |
| ptrs := c.ptrs[dtypeKey] |
| delete(c.ptrs, dtypeKey) |
| |
| // Note Type might invalidate c.ptrs[dtypeKey]. |
| t := c.Type(dtype, pos) |
| for _, ptr := range ptrs { |
| ptr.Go.(*ast.StarExpr).X = t.Go |
| ptr.C.Set("%s*", t.C) |
| } |
| } |
| } |
| |
| // Type returns a *Type with the same memory layout as |
| // dtype when used as the type of a variable or a struct field. |
| func (c *typeConv) Type(dtype dwarf.Type, pos token.Pos) *Type { |
| return c.loadType(dtype, pos, "") |
| } |
| |
| // loadType recursively loads the requested dtype and its dependency graph. |
| func (c *typeConv) loadType(dtype dwarf.Type, pos token.Pos, parent string) *Type { |
| // Always recompute bad pointer typedefs, as the set of such |
| // typedefs changes as we see more types. |
| checkCache := true |
| if dtt, ok := dtype.(*dwarf.TypedefType); ok && c.badPointerTypedef(dtt) { |
| checkCache = false |
| } |
| |
| // The cache key should be relative to its parent. |
| // See issue https://golang.org/issue/31891 |
| key := parent + " > " + dtype.String() |
| |
| if checkCache { |
| if t, ok := c.m[key]; ok { |
| if t.Go == nil { |
| fatalf("%s: type conversion loop at %s", lineno(pos), dtype) |
| } |
| return t |
| } |
| } |
| |
| t := new(Type) |
| t.Size = dtype.Size() // note: wrong for array of pointers, corrected below |
| t.Align = -1 |
| t.C = &TypeRepr{Repr: dtype.Common().Name} |
| c.m[key] = t |
| |
| switch dt := dtype.(type) { |
| default: |
| fatalf("%s: unexpected type: %s", lineno(pos), dtype) |
| |
| case *dwarf.AddrType: |
| if t.Size != c.ptrSize { |
| fatalf("%s: unexpected: %d-byte address type - %s", lineno(pos), t.Size, dtype) |
| } |
| t.Go = c.uintptr |
| t.Align = t.Size |
| |
| case *dwarf.ArrayType: |
| if dt.StrideBitSize > 0 { |
| // Cannot represent bit-sized elements in Go. |
| t.Go = c.Opaque(t.Size) |
| break |
| } |
| count := dt.Count |
| if count == -1 { |
| // Indicates flexible array member, which Go doesn't support. |
| // Translate to zero-length array instead. |
| count = 0 |
| } |
| sub := c.Type(dt.Type, pos) |
| t.Align = sub.Align |
| t.Go = &ast.ArrayType{ |
| Len: c.intExpr(count), |
| Elt: sub.Go, |
| } |
| // Recalculate t.Size now that we know sub.Size. |
| t.Size = count * sub.Size |
| t.C.Set("__typeof__(%s[%d])", sub.C, dt.Count) |
| |
| case *dwarf.BoolType: |
| t.Go = c.bool |
| t.Align = 1 |
| |
| case *dwarf.CharType: |
| if t.Size != 1 { |
| fatalf("%s: unexpected: %d-byte char type - %s", lineno(pos), t.Size, dtype) |
| } |
| t.Go = c.int8 |
| t.Align = 1 |
| |
| case *dwarf.EnumType: |
| if t.Align = t.Size; t.Align >= c.ptrSize { |
| t.Align = c.ptrSize |
| } |
| t.C.Set("enum " + dt.EnumName) |
| signed := 0 |
| t.EnumValues = make(map[string]int64) |
| for _, ev := range dt.Val { |
| t.EnumValues[ev.Name] = ev.Val |
| if ev.Val < 0 { |
| signed = signedDelta |
| } |
| } |
| switch t.Size + int64(signed) { |
| default: |
| fatalf("%s: unexpected: %d-byte enum type - %s", lineno(pos), t.Size, dtype) |
| case 1: |
| t.Go = c.uint8 |
| case 2: |
| t.Go = c.uint16 |
| case 4: |
| t.Go = c.uint32 |
| case 8: |
| t.Go = c.uint64 |
| case 1 + signedDelta: |
| t.Go = c.int8 |
| case 2 + signedDelta: |
| t.Go = c.int16 |
| case 4 + signedDelta: |
| t.Go = c.int32 |
| case 8 + signedDelta: |
| t.Go = c.int64 |
| } |
| |
| case *dwarf.FloatType: |
| switch t.Size { |
| default: |
| fatalf("%s: unexpected: %d-byte float type - %s", lineno(pos), t.Size, dtype) |
| case 4: |
| t.Go = c.float32 |
| case 8: |
| t.Go = c.float64 |
| } |
| if t.Align = t.Size; t.Align >= c.ptrSize { |
| t.Align = c.ptrSize |
| } |
| |
| case *dwarf.ComplexType: |
| switch t.Size { |
| default: |
| fatalf("%s: unexpected: %d-byte complex type - %s", lineno(pos), t.Size, dtype) |
| case 8: |
| t.Go = c.complex64 |
| case 16: |
| t.Go = c.complex128 |
| } |
| if t.Align = t.Size / 2; t.Align >= c.ptrSize { |
| t.Align = c.ptrSize |
| } |
| |
| case *dwarf.FuncType: |
| // No attempt at translation: would enable calls |
| // directly between worlds, but we need to moderate those. |
| t.Go = c.uintptr |
| t.Align = c.ptrSize |
| |
| case *dwarf.IntType: |
| if dt.BitSize > 0 { |
| fatalf("%s: unexpected: %d-bit int type - %s", lineno(pos), dt.BitSize, dtype) |
| } |
| switch t.Size { |
| default: |
| fatalf("%s: unexpected: %d-byte int type - %s", lineno(pos), t.Size, dtype) |
| case 1: |
| t.Go = c.int8 |
| case 2: |
| t.Go = c.int16 |
| case 4: |
| t.Go = c.int32 |
| case 8: |
| t.Go = c.int64 |
| case 16: |
| t.Go = &ast.ArrayType{ |
| Len: c.intExpr(t.Size), |
| Elt: c.uint8, |
| } |
| } |
| if t.Align = t.Size; t.Align >= c.ptrSize { |
| t.Align = c.ptrSize |
| } |
| |
| case *dwarf.PtrType: |
| // Clang doesn't emit DW_AT_byte_size for pointer types. |
| if t.Size != c.ptrSize && t.Size != -1 { |
| fatalf("%s: unexpected: %d-byte pointer type - %s", lineno(pos), t.Size, dtype) |
| } |
| t.Size = c.ptrSize |
| t.Align = c.ptrSize |
| |
| if _, ok := base(dt.Type).(*dwarf.VoidType); ok { |
| t.Go = c.goVoidPtr |
| t.C.Set("void*") |
| dq := dt.Type |
| for { |
| if d, ok := dq.(*dwarf.QualType); ok { |
| t.C.Set(d.Qual + " " + t.C.String()) |
| dq = d.Type |
| } else { |
| break |
| } |
| } |
| break |
| } |
| |
| // Placeholder initialization; completed in FinishType. |
| t.Go = &ast.StarExpr{} |
| t.C.Set("<incomplete>*") |
| key := dt.Type.String() |
| if _, ok := c.ptrs[key]; !ok { |
| c.ptrKeys = append(c.ptrKeys, dt.Type) |
| } |
| c.ptrs[key] = append(c.ptrs[key], t) |
| |
| case *dwarf.QualType: |
| t1 := c.Type(dt.Type, pos) |
| t.Size = t1.Size |
| t.Align = t1.Align |
| t.Go = t1.Go |
| if unionWithPointer[t1.Go] { |
| unionWithPointer[t.Go] = true |
| } |
| t.EnumValues = nil |
| t.Typedef = "" |
| t.C.Set("%s "+dt.Qual, t1.C) |
| return t |
| |
| case *dwarf.StructType: |
| // Convert to Go struct, being careful about alignment. |
| // Have to give it a name to simulate C "struct foo" references. |
| tag := dt.StructName |
| if dt.ByteSize < 0 && tag == "" { // opaque unnamed struct - should not be possible |
| break |
| } |
| if tag == "" { |
| tag = anonymousStructTag[dt] |
| if tag == "" { |
| tag = "__" + strconv.Itoa(tagGen) |
| tagGen++ |
| anonymousStructTag[dt] = tag |
| } |
| } else if t.C.Empty() { |
| t.C.Set(dt.Kind + " " + tag) |
| } |
| name := c.Ident("_Ctype_" + dt.Kind + "_" + tag) |
| t.Go = name // publish before recursive calls |
| goIdent[name.Name] = name |
| if dt.ByteSize < 0 { |
| // Size calculation in c.Struct/c.Opaque will die with size=-1 (unknown), |
| // so execute the basic things that the struct case would do |
| // other than try to determine a Go representation. |
| tt := *t |
| tt.C = &TypeRepr{"%s %s", []interface{}{dt.Kind, tag}} |
| tt.Go = c.Ident("struct{}") |
| if dt.Kind == "struct" { |
| // We don't know what the representation of this struct is, so don't let |
| // anyone allocate one on the Go side. As a side effect of this annotation, |
| // pointers to this type will not be considered pointers in Go. They won't |
| // get writebarrier-ed or adjusted during a stack copy. This should handle |
| // all the cases badPointerTypedef used to handle, but hopefully will |
| // continue to work going forward without any more need for cgo changes. |
| tt.NotInHeap = true |
| // TODO: we should probably do the same for unions. Unions can't live |
| // on the Go heap, right? It currently doesn't work for unions because |
| // they are defined as a type alias for struct{}, not a defined type. |
| } |
| typedef[name.Name] = &tt |
| break |
| } |
| switch dt.Kind { |
| case "class", "union": |
| t.Go = c.Opaque(t.Size) |
| if c.dwarfHasPointer(dt, pos) { |
| unionWithPointer[t.Go] = true |
| } |
| if t.C.Empty() { |
| t.C.Set("__typeof__(unsigned char[%d])", t.Size) |
| } |
| t.Align = 1 // TODO: should probably base this on field alignment. |
| typedef[name.Name] = t |
| case "struct": |
| g, csyntax, align := c.Struct(dt, pos) |
| if t.C.Empty() { |
| t.C.Set(csyntax) |
| } |
| t.Align = align |
| tt := *t |
| if tag != "" { |
| tt.C = &TypeRepr{"struct %s", []interface{}{tag}} |
| } |
| tt.Go = g |
| typedef[name.Name] = &tt |
| } |
| |
| case *dwarf.TypedefType: |
| // Record typedef for printing. |
| if dt.Name == "_GoString_" { |
| // Special C name for Go string type. |
| // Knows string layout used by compilers: pointer plus length, |
| // which rounds up to 2 pointers after alignment. |
| t.Go = c.string |
| t.Size = c.ptrSize * 2 |
| t.Align = c.ptrSize |
| break |
| } |
| if dt.Name == "_GoBytes_" { |
| // Special C name for Go []byte type. |
| // Knows slice layout used by compilers: pointer, length, cap. |
| t.Go = c.Ident("[]byte") |
| t.Size = c.ptrSize + 4 + 4 |
| t.Align = c.ptrSize |
| break |
| } |
| name := c.Ident("_Ctype_" + dt.Name) |
| goIdent[name.Name] = name |
| akey := "" |
| if c.anonymousStructTypedef(dt) { |
| // only load type recursively for typedefs of anonymous |
| // structs, see issues 37479 and 37621. |
| akey = key |
| } |
| sub := c.loadType(dt.Type, pos, akey) |
| if c.badPointerTypedef(dt) { |
| // Treat this typedef as a uintptr. |
| s := *sub |
| s.Go = c.uintptr |
| s.BadPointer = true |
| sub = &s |
| // Make sure we update any previously computed type. |
| if oldType := typedef[name.Name]; oldType != nil { |
| oldType.Go = sub.Go |
| oldType.BadPointer = true |
| } |
| } |
| t.Go = name |
| t.BadPointer = sub.BadPointer |
| t.NotInHeap = sub.NotInHeap |
| if unionWithPointer[sub.Go] { |
| unionWithPointer[t.Go] = true |
| } |
| t.Size = sub.Size |
| t.Align = sub.Align |
| oldType := typedef[name.Name] |
| if oldType == nil { |
| tt := *t |
| tt.Go = sub.Go |
| tt.BadPointer = sub.BadPointer |
| tt.NotInHeap = sub.NotInHeap |
| typedef[name.Name] = &tt |
| } |
| |
| // If sub.Go.Name is "_Ctype_struct_foo" or "_Ctype_union_foo" or "_Ctype_class_foo", |
| // use that as the Go form for this typedef too, so that the typedef will be interchangeable |
| // with the base type. |
| // In -godefs mode, do this for all typedefs. |
| if isStructUnionClass(sub.Go) || *godefs { |
| t.Go = sub.Go |
| |
| if isStructUnionClass(sub.Go) { |
| // Use the typedef name for C code. |
| typedef[sub.Go.(*ast.Ident).Name].C = t.C |
| } |
| |
| // If we've seen this typedef before, and it |
| // was an anonymous struct/union/class before |
| // too, use the old definition. |
| // TODO: it would be safer to only do this if |
| // we verify that the types are the same. |
| if oldType != nil && isStructUnionClass(oldType.Go) { |
| t.Go = oldType.Go |
| } |
| } |
| |
| case *dwarf.UcharType: |
| if t.Size != 1 { |
| fatalf("%s: unexpected: %d-byte uchar type - %s", lineno(pos), t.Size, dtype) |
| } |
| t.Go = c.uint8 |
| t.Align = 1 |
| |
| case *dwarf.UintType: |
| if dt.BitSize > 0 { |
| fatalf("%s: unexpected: %d-bit uint type - %s", lineno(pos), dt.BitSize, dtype) |
| } |
| switch t.Size { |
| default: |
| fatalf("%s: unexpected: %d-byte uint type - %s", lineno(pos), t.Size, dtype) |
| case 1: |
| t.Go = c.uint8 |
| case 2: |
| t.Go = c.uint16 |
| case 4: |
| t.Go = c.uint32 |
| case 8: |
| t.Go = c.uint64 |
| case 16: |
| t.Go = &ast.ArrayType{ |
| Len: c.intExpr(t.Size), |
| Elt: c.uint8, |
| } |
| } |
| if t.Align = t.Size; t.Align >= c.ptrSize { |
| t.Align = c.ptrSize |
| } |
| |
| case *dwarf.VoidType: |
| t.Go = c.goVoid |
| t.C.Set("void") |
| t.Align = 1 |
| } |
| |
| switch dtype.(type) { |
| case *dwarf.AddrType, *dwarf.BoolType, *dwarf.CharType, *dwarf.ComplexType, *dwarf.IntType, *dwarf.FloatType, *dwarf.UcharType, *dwarf.UintType: |
| s := dtype.Common().Name |
| if s != "" { |
| if ss, ok := dwarfToName[s]; ok { |
| s = ss |
| } |
| s = strings.Replace(s, " ", "", -1) |
| name := c.Ident("_Ctype_" + s) |
| tt := *t |
| typedef[name.Name] = &tt |
| if !*godefs { |
| t.Go = name |
| } |
| } |
| } |
| |
| if t.Size < 0 { |
| // Unsized types are [0]byte, unless they're typedefs of other types |
| // or structs with tags. |
| // if so, use the name we've already defined. |
| t.Size = 0 |
| switch dt := dtype.(type) { |
| case *dwarf.TypedefType: |
| // ok |
| case *dwarf.StructType: |
| if dt.StructName != "" { |
| break |
| } |
| t.Go = c.Opaque(0) |
| default: |
| t.Go = c.Opaque(0) |
| } |
| if t.C.Empty() { |
| t.C.Set("void") |
| } |
| } |
| |
| if t.C.Empty() { |
| fatalf("%s: internal error: did not create C name for %s", lineno(pos), dtype) |
| } |
| |
| return t |
| } |
| |
| // isStructUnionClass reports whether the type described by the Go syntax x |
| // is a struct, union, or class with a tag. |
| func isStructUnionClass(x ast.Expr) bool { |
| id, ok := x.(*ast.Ident) |
| if !ok { |
| return false |
| } |
| name := id.Name |
| return strings.HasPrefix(name, "_Ctype_struct_") || |
| strings.HasPrefix(name, "_Ctype_union_") || |
| strings.HasPrefix(name, "_Ctype_class_") |
| } |
| |
| // FuncArg returns a Go type with the same memory layout as |
| // dtype when used as the type of a C function argument. |
| func (c *typeConv) FuncArg(dtype dwarf.Type, pos token.Pos) *Type { |
| t := c.Type(unqual(dtype), pos) |
| switch dt := dtype.(type) { |
| case *dwarf.ArrayType: |
| // Arrays are passed implicitly as pointers in C. |
| // In Go, we must be explicit. |
| tr := &TypeRepr{} |
| tr.Set("%s*", t.C) |
| return &Type{ |
| Size: c.ptrSize, |
| Align: c.ptrSize, |
| Go: &ast.StarExpr{X: t.Go}, |
| C: tr, |
| } |
| case *dwarf.TypedefType: |
| // C has much more relaxed rules than Go for |
| // implicit type conversions. When the parameter |
| // is type T defined as *X, simulate a little of the |
| // laxness of C by making the argument *X instead of T. |
| if ptr, ok := base(dt.Type).(*dwarf.PtrType); ok { |
| // Unless the typedef happens to point to void* since |
| // Go has special rules around using unsafe.Pointer. |
| if _, void := base(ptr.Type).(*dwarf.VoidType); void { |
| break |
| } |
| // ...or the typedef is one in which we expect bad pointers. |
| // It will be a uintptr instead of *X. |
| if c.baseBadPointerTypedef(dt) { |
| break |
| } |
| |
| t = c.Type(ptr, pos) |
| if t == nil { |
| return nil |
| } |
| |
| // For a struct/union/class, remember the C spelling, |
| // in case it has __attribute__((unavailable)). |
| // See issue 2888. |
| if isStructUnionClass(t.Go) { |
| t.Typedef = dt.Name |
| } |
| } |
| } |
| return t |
| } |
| |
| // FuncType returns the Go type analogous to dtype. |
| // There is no guarantee about matching memory layout. |
| func (c *typeConv) FuncType(dtype *dwarf.FuncType, pos token.Pos) *FuncType { |
| p := make([]*Type, len(dtype.ParamType)) |
| gp := make([]*ast.Field, len(dtype.ParamType)) |
| for i, f := range dtype.ParamType { |
| // gcc's DWARF generator outputs a single DotDotDotType parameter for |
| // function pointers that specify no parameters (e.g. void |
| // (*__cgo_0)()). Treat this special case as void. This case is |
| // invalid according to ISO C anyway (i.e. void (*__cgo_1)(...) is not |
| // legal). |
| if _, ok := f.(*dwarf.DotDotDotType); ok && i == 0 { |
| p, gp = nil, nil |
| break |
| } |
| p[i] = c.FuncArg(f, pos) |
| gp[i] = &ast.Field{Type: p[i].Go} |
| } |
| var r *Type |
| var gr []*ast.Field |
| if _, ok := base(dtype.ReturnType).(*dwarf.VoidType); ok { |
| gr = []*ast.Field{{Type: c.goVoid}} |
| } else if dtype.ReturnType != nil { |
| r = c.Type(unqual(dtype.ReturnType), pos) |
| gr = []*ast.Field{{Type: r.Go}} |
| } |
| return &FuncType{ |
| Params: p, |
| Result: r, |
| Go: &ast.FuncType{ |
| Params: &ast.FieldList{List: gp}, |
| Results: &ast.FieldList{List: gr}, |
| }, |
| } |
| } |
| |
| // Identifier |
| func (c *typeConv) Ident(s string) *ast.Ident { |
| return ast.NewIdent(s) |
| } |
| |
| // Opaque type of n bytes. |
| func (c *typeConv) Opaque(n int64) ast.Expr { |
| return &ast.ArrayType{ |
| Len: c.intExpr(n), |
| Elt: c.byte, |
| } |
| } |
| |
| // Expr for integer n. |
| func (c *typeConv) intExpr(n int64) ast.Expr { |
| return &ast.BasicLit{ |
| Kind: token.INT, |
| Value: strconv.FormatInt(n, 10), |
| } |
| } |
| |
| // Add padding of given size to fld. |
| func (c *typeConv) pad(fld []*ast.Field, sizes []int64, size int64) ([]*ast.Field, []int64) { |
| n := len(fld) |
| fld = fld[0 : n+1] |
| fld[n] = &ast.Field{Names: []*ast.Ident{c.Ident("_")}, Type: c.Opaque(size)} |
| sizes = sizes[0 : n+1] |
| sizes[n] = size |
| return fld, sizes |
| } |
| |
| // Struct conversion: return Go and (gc) C syntax for type. |
| func (c *typeConv) Struct(dt *dwarf.StructType, pos token.Pos) (expr *ast.StructType, csyntax string, align int64) { |
| // Minimum alignment for a struct is 1 byte. |
| align = 1 |
| |
| var buf bytes.Buffer |
| buf.WriteString("struct {") |
| fld := make([]*ast.Field, 0, 2*len(dt.Field)+1) // enough for padding around every field |
| sizes := make([]int64, 0, 2*len(dt.Field)+1) |
| off := int64(0) |
| |
| // Rename struct fields that happen to be named Go keywords into |
| // _{keyword}. Create a map from C ident -> Go ident. The Go ident will |
| // be mangled. Any existing identifier that already has the same name on |
| // the C-side will cause the Go-mangled version to be prefixed with _. |
| // (e.g. in a struct with fields '_type' and 'type', the latter would be |
| // rendered as '__type' in Go). |
| ident := make(map[string]string) |
| used := make(map[string]bool) |
| for _, f := range dt.Field { |
| ident[f.Name] = f.Name |
| used[f.Name] = true |
| } |
| |
| if !*godefs { |
| for cid, goid := range ident { |
| if token.Lookup(goid).IsKeyword() { |
| // Avoid keyword |
| goid = "_" + goid |
| |
| // Also avoid existing fields |
| for _, exist := used[goid]; exist; _, exist = used[goid] { |
| goid = "_" + goid |
| } |
| |
| used[goid] = true |
| ident[cid] = goid |
| } |
| } |
| } |
| |
| anon := 0 |
| for _, f := range dt.Field { |
| name := f.Name |
| ft := f.Type |
| |
| // In godefs mode, if this field is a C11 |
| // anonymous union then treat the first field in the |
| // union as the field in the struct. This handles |
| // cases like the glibc <sys/resource.h> file; see |
| // issue 6677. |
| if *godefs { |
| if st, ok := f.Type.(*dwarf.StructType); ok && name == "" && st.Kind == "union" && len(st.Field) > 0 && !used[st.Field[0].Name] { |
| name = st.Field[0].Name |
| ident[name] = name |
| ft = st.Field[0].Type |
| } |
| } |
| |
| // TODO: Handle fields that are anonymous structs by |
| // promoting the fields of the inner struct. |
| |
| t := c.Type(ft, pos) |
| tgo := t.Go |
| size := t.Size |
| talign := t.Align |
| if f.BitOffset > 0 || f.BitSize > 0 { |
| // The layout of bitfields is implementation defined, |
| // so we don't know how they correspond to Go fields |
| // even if they are aligned at byte boundaries. |
| continue |
| } |
| |
| if talign > 0 && f.ByteOffset%talign != 0 { |
| // Drop misaligned fields, the same way we drop integer bit fields. |
| // The goal is to make available what can be made available. |
| // Otherwise one bad and unneeded field in an otherwise okay struct |
| // makes the whole program not compile. Much of the time these |
| // structs are in system headers that cannot be corrected. |
| continue |
| } |
| |
| // Round off up to talign, assumed to be a power of 2. |
| off = (off + talign - 1) &^ (talign - 1) |
| |
| if f.ByteOffset > off { |
| fld, sizes = c.pad(fld, sizes, f.ByteOffset-off) |
| off = f.ByteOffset |
| } |
| if f.ByteOffset < off { |
| // Drop a packed field that we can't represent. |
| continue |
| } |
| |
| n := len(fld) |
| fld = fld[0 : n+1] |
| if name == "" { |
| name = fmt.Sprintf("anon%d", anon) |
| anon++ |
| ident[name] = name |
| } |
| fld[n] = &ast.Field{Names: []*ast.Ident{c.Ident(ident[name])}, Type: tgo} |
| sizes = sizes[0 : n+1] |
| sizes[n] = size |
| off += size |
| buf.WriteString(t.C.String()) |
| buf.WriteString(" ") |
| buf.WriteString(name) |
| buf.WriteString("; ") |
| if talign > align { |
| align = talign |
| } |
| } |
| if off < dt.ByteSize { |
| fld, sizes = c.pad(fld, sizes, dt.ByteSize-off) |
| off = dt.ByteSize |
| } |
| |
| // If the last field in a non-zero-sized struct is zero-sized |
| // the compiler is going to pad it by one (see issue 9401). |
| // We can't permit that, because then the size of the Go |
| // struct will not be the same as the size of the C struct. |
| // Our only option in such a case is to remove the field, |
| // which means that it cannot be referenced from Go. |
| for off > 0 && sizes[len(sizes)-1] == 0 { |
| n := len(sizes) |
| fld = fld[0 : n-1] |
| sizes = sizes[0 : n-1] |
| } |
| |
| if off != dt.ByteSize { |
| fatalf("%s: struct size calculation error off=%d bytesize=%d", lineno(pos), off, dt.ByteSize) |
| } |
| buf.WriteString("}") |
| csyntax = buf.String() |
| |
| if *godefs { |
| godefsFields(fld) |
| } |
| expr = &ast.StructType{Fields: &ast.FieldList{List: fld}} |
| return |
| } |
| |
| // dwarfHasPointer reports whether the DWARF type dt contains a pointer. |
| func (c *typeConv) dwarfHasPointer(dt dwarf.Type, pos token.Pos) bool { |
| switch dt := dt.(type) { |
| default: |
| fatalf("%s: unexpected type: %s", lineno(pos), dt) |
| return false |
| |
| case *dwarf.AddrType, *dwarf.BoolType, *dwarf.CharType, *dwarf.EnumType, |
| *dwarf.FloatType, *dwarf.ComplexType, *dwarf.FuncType, |
| *dwarf.IntType, *dwarf.UcharType, *dwarf.UintType, *dwarf.VoidType: |
| |
| return false |
| |
| case *dwarf.ArrayType: |
| return c.dwarfHasPointer(dt.Type, pos) |
| |
| case *dwarf.PtrType: |
| return true |
| |
| case *dwarf.QualType: |
| return c.dwarfHasPointer(dt.Type, pos) |
| |
| case *dwarf.StructType: |
| for _, f := range dt.Field { |
| if c.dwarfHasPointer(f.Type, pos) { |
| return true |
| } |
| } |
| return false |
| |
| case *dwarf.TypedefType: |
| if dt.Name == "_GoString_" || dt.Name == "_GoBytes_" { |
| return true |
| } |
| return c.dwarfHasPointer(dt.Type, pos) |
| } |
| } |
| |
| func upper(s string) string { |
| if s == "" { |
| return "" |
| } |
| r, size := utf8.DecodeRuneInString(s) |
| if r == '_' { |
| return "X" + s |
| } |
| return string(unicode.ToUpper(r)) + s[size:] |
| } |
| |
| // godefsFields rewrites field names for use in Go or C definitions. |
| // It strips leading common prefixes (like tv_ in tv_sec, tv_usec) |
| // converts names to upper case, and rewrites _ into Pad_godefs_n, |
| // so that all fields are exported. |
| func godefsFields(fld []*ast.Field) { |
| prefix := fieldPrefix(fld) |
| npad := 0 |
| for _, f := range fld { |
| for _, n := range f.Names { |
| if n.Name != prefix { |
| n.Name = strings.TrimPrefix(n.Name, prefix) |
| } |
| if n.Name == "_" { |
| // Use exported name instead. |
| n.Name = "Pad_cgo_" + strconv.Itoa(npad) |
| npad++ |
| } |
| n.Name = upper(n.Name) |
| } |
| } |
| } |
| |
| // fieldPrefix returns the prefix that should be removed from all the |
| // field names when generating the C or Go code. For generated |
| // C, we leave the names as is (tv_sec, tv_usec), since that's what |
| // people are used to seeing in C. For generated Go code, such as |
| // package syscall's data structures, we drop a common prefix |
| // (so sec, usec, which will get turned into Sec, Usec for exporting). |
| func fieldPrefix(fld []*ast.Field) string { |
| prefix := "" |
| for _, f := range fld { |
| for _, n := range f.Names { |
| // Ignore field names that don't have the prefix we're |
| // looking for. It is common in C headers to have fields |
| // named, say, _pad in an otherwise prefixed header. |
| // If the struct has 3 fields tv_sec, tv_usec, _pad1, then we |
| // still want to remove the tv_ prefix. |
| // The check for "orig_" here handles orig_eax in the |
| // x86 ptrace register sets, which otherwise have all fields |
| // with reg_ prefixes. |
| if strings.HasPrefix(n.Name, "orig_") || strings.HasPrefix(n.Name, "_") { |
| continue |
| } |
| i := strings.Index(n.Name, "_") |
| if i < 0 { |
| continue |
| } |
| if prefix == "" { |
| prefix = n.Name[:i+1] |
| } else if prefix != n.Name[:i+1] { |
| return "" |
| } |
| } |
| } |
| return prefix |
| } |
| |
| // anonymousStructTypedef reports whether dt is a C typedef for an anonymous |
| // struct. |
| func (c *typeConv) anonymousStructTypedef(dt *dwarf.TypedefType) bool { |
| st, ok := dt.Type.(*dwarf.StructType) |
| return ok && st.StructName == "" |
| } |
| |
| // badPointerTypedef reports whether dt is a C typedef that should not be |
| // considered a pointer in Go. A typedef is bad if C code sometimes stores |
| // non-pointers in this type. |
| // TODO: Currently our best solution is to find these manually and list them as |
| // they come up. A better solution is desired. |
| // Note: DEPRECATED. There is now a better solution. Search for NotInHeap in this file. |
| func (c *typeConv) badPointerTypedef(dt *dwarf.TypedefType) bool { |
| if c.badCFType(dt) { |
| return true |
| } |
| if c.badJNI(dt) { |
| return true |
| } |
| if c.badEGLType(dt) { |
| return true |
| } |
| return false |
| } |
| |
| // baseBadPointerTypedef reports whether the base of a chain of typedefs is a bad typedef |
| // as badPointerTypedef reports. |
| func (c *typeConv) baseBadPointerTypedef(dt *dwarf.TypedefType) bool { |
| for { |
| if t, ok := dt.Type.(*dwarf.TypedefType); ok { |
| dt = t |
| continue |
| } |
| break |
| } |
| return c.badPointerTypedef(dt) |
| } |
| |
| func (c *typeConv) badCFType(dt *dwarf.TypedefType) bool { |
| // The real bad types are CFNumberRef and CFDateRef. |
| // Sometimes non-pointers are stored in these types. |
| // CFTypeRef is a supertype of those, so it can have bad pointers in it as well. |
| // We return true for the other *Ref types just so casting between them is easier. |
| // We identify the correct set of types as those ending in Ref and for which |
| // there exists a corresponding GetTypeID function. |
| // See comment below for details about the bad pointers. |
| if goos != "darwin" { |
| return false |
| } |
| s := dt.Name |
| if !strings.HasSuffix(s, "Ref") { |
| return false |
| } |
| s = s[:len(s)-3] |
| if s == "CFType" { |
| return true |
| } |
| if c.getTypeIDs[s] { |
| return true |
| } |
| if i := strings.Index(s, "Mutable"); i >= 0 && c.getTypeIDs[s[:i]+s[i+7:]] { |
| // Mutable and immutable variants share a type ID. |
| return true |
| } |
| return false |
| } |
| |
| // Comment from Darwin's CFInternal.h |
| /* |
| // Tagged pointer support |
| // Low-bit set means tagged object, next 3 bits (currently) |
| // define the tagged object class, next 4 bits are for type |
| // information for the specific tagged object class. Thus, |
| // the low byte is for type info, and the rest of a pointer |
| // (32 or 64-bit) is for payload, whatever the tagged class. |
| // |
| // Note that the specific integers used to identify the |
| // specific tagged classes can and will change from release |
| // to release (that's why this stuff is in CF*Internal*.h), |
| // as can the definition of type info vs payload above. |
| // |
| #if __LP64__ |
| #define CF_IS_TAGGED_OBJ(PTR) ((uintptr_t)(PTR) & 0x1) |
| #define CF_TAGGED_OBJ_TYPE(PTR) ((uintptr_t)(PTR) & 0xF) |
| #else |
| #define CF_IS_TAGGED_OBJ(PTR) 0 |
| #define CF_TAGGED_OBJ_TYPE(PTR) 0 |
| #endif |
| |
| enum { |
| kCFTaggedObjectID_Invalid = 0, |
| kCFTaggedObjectID_Atom = (0 << 1) + 1, |
| kCFTaggedObjectID_Undefined3 = (1 << 1) + 1, |
| kCFTaggedObjectID_Undefined2 = (2 << 1) + 1, |
| kCFTaggedObjectID_Integer = (3 << 1) + 1, |
| kCFTaggedObjectID_DateTS = (4 << 1) + 1, |
| kCFTaggedObjectID_ManagedObjectID = (5 << 1) + 1, // Core Data |
| kCFTaggedObjectID_Date = (6 << 1) + 1, |
| kCFTaggedObjectID_Undefined7 = (7 << 1) + 1, |
| }; |
| */ |
| |
| func (c *typeConv) badJNI(dt *dwarf.TypedefType) bool { |
| // In Dalvik and ART, the jobject type in the JNI interface of the JVM has the |
| // property that it is sometimes (always?) a small integer instead of a real pointer. |
| // Note: although only the android JVMs are bad in this respect, we declare the JNI types |
| // bad regardless of platform, so the same Go code compiles on both android and non-android. |
| if parent, ok := jniTypes[dt.Name]; ok { |
| // Try to make sure we're talking about a JNI type, not just some random user's |
| // type that happens to use the same name. |
| // C doesn't have the notion of a package, so it's hard to be certain. |
| |
| // Walk up to jobject, checking each typedef on the way. |
| w := dt |
| for parent != "" { |
| t, ok := w.Type.(*dwarf.TypedefType) |
| if !ok || t.Name != parent { |
| return false |
| } |
| w = t |
| parent, ok = jniTypes[w.Name] |
| if !ok { |
| return false |
| } |
| } |
| |
| // Check that the typedef is either: |
| // 1: |
| // struct _jobject; |
| // typedef struct _jobject *jobject; |
| // 2: (in NDK16 in C++) |
| // class _jobject {}; |
| // typedef _jobject* jobject; |
| // 3: (in NDK16 in C) |
| // typedef void* jobject; |
| if ptr, ok := w.Type.(*dwarf.PtrType); ok { |
| switch v := ptr.Type.(type) { |
| case *dwarf.VoidType: |
| return true |
| case *dwarf.StructType: |
| if v.StructName == "_jobject" && len(v.Field) == 0 { |
| switch v.Kind { |
| case "struct": |
| if v.Incomplete { |
| return true |
| } |
| case "class": |
| if !v.Incomplete { |
| return true |
| } |
| } |
| } |
| } |
| } |
| } |
| return false |
| } |
| |
| func (c *typeConv) badEGLType(dt *dwarf.TypedefType) bool { |
| if dt.Name != "EGLDisplay" && dt.Name != "EGLConfig" { |
| return false |
| } |
| // Check that the typedef is "typedef void *<name>". |
| if ptr, ok := dt.Type.(*dwarf.PtrType); ok { |
| if _, ok := ptr.Type.(*dwarf.VoidType); ok { |
| return true |
| } |
| } |
| return false |
| } |
| |
| // jniTypes maps from JNI types that we want to be uintptrs, to the underlying type to which |
| // they are mapped. The base "jobject" maps to the empty string. |
| var jniTypes = map[string]string{ |
| "jobject": "", |
| "jclass": "jobject", |
| "jthrowable": "jobject", |
| "jstring": "jobject", |
| "jarray": "jobject", |
| "jbooleanArray": "jarray", |
| "jbyteArray": "jarray", |
| "jcharArray": "jarray", |
| "jshortArray": "jarray", |
| "jintArray": "jarray", |
| "jlongArray": "jarray", |
| "jfloatArray": "jarray", |
| "jdoubleArray": "jarray", |
| "jobjectArray": "jarray", |
| "jweak": "jobject", |
| } |