blob: 70a11f6f65a52d578e4b8ca4b82f97781802731d [file] [log] [blame]
/*
* ELF constants and data structures
*
* Derived from:
* $FreeBSD: src/sys/sys/elf32.h,v 1.8.14.1 2005/12/30 22:13:58 marcel Exp $
* $FreeBSD: src/sys/sys/elf64.h,v 1.10.14.1 2005/12/30 22:13:58 marcel Exp $
* $FreeBSD: src/sys/sys/elf_common.h,v 1.15.8.1 2005/12/30 22:13:58 marcel Exp $
* $FreeBSD: src/sys/alpha/include/elf.h,v 1.14 2003/09/25 01:10:22 peter Exp $
* $FreeBSD: src/sys/amd64/include/elf.h,v 1.18 2004/08/03 08:21:48 dfr Exp $
* $FreeBSD: src/sys/arm/include/elf.h,v 1.5.2.1 2006/06/30 21:42:52 cognet Exp $
* $FreeBSD: src/sys/i386/include/elf.h,v 1.16 2004/08/02 19:12:17 dfr Exp $
* $FreeBSD: src/sys/powerpc/include/elf.h,v 1.7 2004/11/02 09:47:01 ssouhlal Exp $
* $FreeBSD: src/sys/sparc64/include/elf.h,v 1.12 2003/09/25 01:10:26 peter Exp $
*
* Copyright (c) 1996-1998 John D. Polstra. All rights reserved.
* Copyright (c) 2001 David E. O'Brien
* Portions Copyright 2009 The Go Authors. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
package elf
import "strconv"
/*
* Constants
*/
// Indexes into the Header.Ident array.
const (
EI_CLASS = 4; /* Class of machine. */
EI_DATA = 5; /* Data format. */
EI_VERSION = 6; /* ELF format version. */
EI_OSABI = 7; /* Operating system / ABI identification */
EI_ABIVERSION = 8; /* ABI version */
EI_PAD = 9; /* Start of padding (per SVR4 ABI). */
EI_NIDENT = 16; /* Size of e_ident array. */
)
// Initial magic number for ELF files.
const ELFMAG = "\177ELF"
// Version is found in Header.Ident[EI_VERSION] and Header.Version.
type Version byte
const (
EV_NONE Version = 0;
EV_CURRENT Version = 1;
)
var versionStrings = []intName{
intName{0, "EV_NONE"},
intName{1, "EV_CURRENT"},
}
func (i Version) String() string { return stringName(uint32(i), versionStrings, false) }
func (i Version) GoString() string { return stringName(uint32(i), versionStrings, true) }
// Class is found in Header.Ident[EI_CLASS] and Header.Class.
type Class byte
const (
ELFCLASSNONE Class = 0; /* Unknown class. */
ELFCLASS32 Class = 1; /* 32-bit architecture. */
ELFCLASS64 Class = 2; /* 64-bit architecture. */
)
var classStrings = []intName{
intName{0, "ELFCLASSNONE"},
intName{1, "ELFCLASS32"},
intName{2, "ELFCLASS64"},
}
func (i Class) String() string { return stringName(uint32(i), classStrings, false) }
func (i Class) GoString() string { return stringName(uint32(i), classStrings, true) }
// Data is found in Header.Ident[EI_DATA] and Header.Data.
type Data byte
const (
ELFDATANONE Data = 0; /* Unknown data format. */
ELFDATA2LSB Data = 1; /* 2's complement little-endian. */
ELFDATA2MSB Data = 2; /* 2's complement big-endian. */
)
var dataStrings = []intName{
intName{0, "ELFDATANONE"},
intName{1, "ELFDATA2LSB"},
intName{2, "ELFDATA2MSB"},
}
func (i Data) String() string { return stringName(uint32(i), dataStrings, false) }
func (i Data) GoString() string { return stringName(uint32(i), dataStrings, true) }
// OSABI is found in Header.Ident[EI_OSABI] and Header.OSABI.
type OSABI byte
const (
ELFOSABI_NONE OSABI = 0; /* UNIX System V ABI */
ELFOSABI_HPUX OSABI = 1; /* HP-UX operating system */
ELFOSABI_NETBSD OSABI = 2; /* NetBSD */
ELFOSABI_LINUX OSABI = 3; /* GNU/Linux */
ELFOSABI_HURD OSABI = 4; /* GNU/Hurd */
ELFOSABI_86OPEN OSABI = 5; /* 86Open common IA32 ABI */
ELFOSABI_SOLARIS OSABI = 6; /* Solaris */
ELFOSABI_AIX OSABI = 7; /* AIX */
ELFOSABI_IRIX OSABI = 8; /* IRIX */
ELFOSABI_FREEBSD OSABI = 9; /* FreeBSD */
ELFOSABI_TRU64 OSABI = 10; /* TRU64 UNIX */
ELFOSABI_MODESTO OSABI = 11; /* Novell Modesto */
ELFOSABI_OPENBSD OSABI = 12; /* OpenBSD */
ELFOSABI_OPENVMS OSABI = 13; /* Open VMS */
ELFOSABI_NSK OSABI = 14; /* HP Non-Stop Kernel */
ELFOSABI_ARM OSABI = 97; /* ARM */
ELFOSABI_STANDALONE OSABI = 255; /* Standalone (embedded) application */
)
var osabiStrings = []intName{
intName{0, "ELFOSABI_NONE"},
intName{1, "ELFOSABI_HPUX"},
intName{2, "ELFOSABI_NETBSD"},
intName{3, "ELFOSABI_LINUX"},
intName{4, "ELFOSABI_HURD"},
intName{5, "ELFOSABI_86OPEN"},
intName{6, "ELFOSABI_SOLARIS"},
intName{7, "ELFOSABI_AIX"},
intName{8, "ELFOSABI_IRIX"},
intName{9, "ELFOSABI_FREEBSD"},
intName{10, "ELFOSABI_TRU64"},
intName{11, "ELFOSABI_MODESTO"},
intName{12, "ELFOSABI_OPENBSD"},
intName{13, "ELFOSABI_OPENVMS"},
intName{14, "ELFOSABI_NSK"},
intName{97, "ELFOSABI_ARM"},
intName{255, "ELFOSABI_STANDALONE"},
}
func (i OSABI) String() string { return stringName(uint32(i), osabiStrings, false) }
func (i OSABI) GoString() string { return stringName(uint32(i), osabiStrings, true) }
// Type is found in Header.Type.
type Type uint16
const (
ET_NONE Type = 0; /* Unknown type. */
ET_REL Type = 1; /* Relocatable. */
ET_EXEC Type = 2; /* Executable. */
ET_DYN Type = 3; /* Shared object. */
ET_CORE Type = 4; /* Core file. */
ET_LOOS Type = 0xfe00; /* First operating system specific. */
ET_HIOS Type = 0xfeff; /* Last operating system-specific. */
ET_LOPROC Type = 0xff00; /* First processor-specific. */
ET_HIPROC Type = 0xffff; /* Last processor-specific. */
)
var typeStrings = []intName{
intName{0, "ET_NONE"},
intName{1, "ET_REL"},
intName{2, "ET_EXEC"},
intName{3, "ET_DYN"},
intName{4, "ET_CORE"},
intName{0xfe00, "ET_LOOS"},
intName{0xfeff, "ET_HIOS"},
intName{0xff00, "ET_LOPROC"},
intName{0xffff, "ET_HIPROC"},
}
func (i Type) String() string { return stringName(uint32(i), typeStrings, false) }
func (i Type) GoString() string { return stringName(uint32(i), typeStrings, true) }
// Machine is found in Header.Machine.
type Machine uint16
const (
EM_NONE Machine = 0; /* Unknown machine. */
EM_M32 Machine = 1; /* AT&T WE32100. */
EM_SPARC Machine = 2; /* Sun SPARC. */
EM_386 Machine = 3; /* Intel i386. */
EM_68K Machine = 4; /* Motorola 68000. */
EM_88K Machine = 5; /* Motorola 88000. */
EM_860 Machine = 7; /* Intel i860. */
EM_MIPS Machine = 8; /* MIPS R3000 Big-Endian only. */
EM_S370 Machine = 9; /* IBM System/370. */
EM_MIPS_RS3_LE Machine = 10; /* MIPS R3000 Little-Endian. */
EM_PARISC Machine = 15; /* HP PA-RISC. */
EM_VPP500 Machine = 17; /* Fujitsu VPP500. */
EM_SPARC32PLUS Machine = 18; /* SPARC v8plus. */
EM_960 Machine = 19; /* Intel 80960. */
EM_PPC Machine = 20; /* PowerPC 32-bit. */
EM_PPC64 Machine = 21; /* PowerPC 64-bit. */
EM_S390 Machine = 22; /* IBM System/390. */
EM_V800 Machine = 36; /* NEC V800. */
EM_FR20 Machine = 37; /* Fujitsu FR20. */
EM_RH32 Machine = 38; /* TRW RH-32. */
EM_RCE Machine = 39; /* Motorola RCE. */
EM_ARM Machine = 40; /* ARM. */
EM_SH Machine = 42; /* Hitachi SH. */
EM_SPARCV9 Machine = 43; /* SPARC v9 64-bit. */
EM_TRICORE Machine = 44; /* Siemens TriCore embedded processor. */
EM_ARC Machine = 45; /* Argonaut RISC Core. */
EM_H8_300 Machine = 46; /* Hitachi H8/300. */
EM_H8_300H Machine = 47; /* Hitachi H8/300H. */
EM_H8S Machine = 48; /* Hitachi H8S. */
EM_H8_500 Machine = 49; /* Hitachi H8/500. */
EM_IA_64 Machine = 50; /* Intel IA-64 Processor. */
EM_MIPS_X Machine = 51; /* Stanford MIPS-X. */
EM_COLDFIRE Machine = 52; /* Motorola ColdFire. */
EM_68HC12 Machine = 53; /* Motorola M68HC12. */
EM_MMA Machine = 54; /* Fujitsu MMA. */
EM_PCP Machine = 55; /* Siemens PCP. */
EM_NCPU Machine = 56; /* Sony nCPU. */
EM_NDR1 Machine = 57; /* Denso NDR1 microprocessor. */
EM_STARCORE Machine = 58; /* Motorola Star*Core processor. */
EM_ME16 Machine = 59; /* Toyota ME16 processor. */
EM_ST100 Machine = 60; /* STMicroelectronics ST100 processor. */
EM_TINYJ Machine = 61; /* Advanced Logic Corp. TinyJ processor. */
EM_X86_64 Machine = 62; /* Advanced Micro Devices x86-64 */
/* Non-standard or deprecated. */
EM_486 Machine = 6; /* Intel i486. */
EM_MIPS_RS4_BE Machine = 10; /* MIPS R4000 Big-Endian */
EM_ALPHA_STD Machine = 41; /* Digital Alpha (standard value). */
EM_ALPHA Machine = 0x9026; /* Alpha (written in the absence of an ABI) */
)
var machineStrings = []intName{
intName{0, "EM_NONE"},
intName{1, "EM_M32"},
intName{2, "EM_SPARC"},
intName{3, "EM_386"},
intName{4, "EM_68K"},
intName{5, "EM_88K"},
intName{7, "EM_860"},
intName{8, "EM_MIPS"},
intName{9, "EM_S370"},
intName{10, "EM_MIPS_RS3_LE"},
intName{15, "EM_PARISC"},
intName{17, "EM_VPP500"},
intName{18, "EM_SPARC32PLUS"},
intName{19, "EM_960"},
intName{20, "EM_PPC"},
intName{21, "EM_PPC64"},
intName{22, "EM_S390"},
intName{36, "EM_V800"},
intName{37, "EM_FR20"},
intName{38, "EM_RH32"},
intName{39, "EM_RCE"},
intName{40, "EM_ARM"},
intName{42, "EM_SH"},
intName{43, "EM_SPARCV9"},
intName{44, "EM_TRICORE"},
intName{45, "EM_ARC"},
intName{46, "EM_H8_300"},
intName{47, "EM_H8_300H"},
intName{48, "EM_H8S"},
intName{49, "EM_H8_500"},
intName{50, "EM_IA_64"},
intName{51, "EM_MIPS_X"},
intName{52, "EM_COLDFIRE"},
intName{53, "EM_68HC12"},
intName{54, "EM_MMA"},
intName{55, "EM_PCP"},
intName{56, "EM_NCPU"},
intName{57, "EM_NDR1"},
intName{58, "EM_STARCORE"},
intName{59, "EM_ME16"},
intName{60, "EM_ST100"},
intName{61, "EM_TINYJ"},
intName{62, "EM_X86_64"},
/* Non-standard or deprecated. */
intName{6, "EM_486"},
intName{10, "EM_MIPS_RS4_BE"},
intName{41, "EM_ALPHA_STD"},
intName{0x9026, "EM_ALPHA"},
}
func (i Machine) String() string { return stringName(uint32(i), machineStrings, false) }
func (i Machine) GoString() string { return stringName(uint32(i), machineStrings, true) }
// Special section indices.
type SectionIndex int
const (
SHN_UNDEF SectionIndex = 0; /* Undefined, missing, irrelevant. */
SHN_LORESERVE SectionIndex = 0xff00; /* First of reserved range. */
SHN_LOPROC SectionIndex = 0xff00; /* First processor-specific. */
SHN_HIPROC SectionIndex = 0xff1f; /* Last processor-specific. */
SHN_LOOS SectionIndex = 0xff20; /* First operating system-specific. */
SHN_HIOS SectionIndex = 0xff3f; /* Last operating system-specific. */
SHN_ABS SectionIndex = 0xfff1; /* Absolute values. */
SHN_COMMON SectionIndex = 0xfff2; /* Common data. */
SHN_XINDEX SectionIndex = 0xffff; /* Escape -- index stored elsewhere. */
SHN_HIRESERVE SectionIndex = 0xffff; /* Last of reserved range. */
)
var shnStrings = []intName{
intName{0, "SHN_UNDEF"},
intName{0xff00, "SHN_LOPROC"},
intName{0xff20, "SHN_LOOS"},
intName{0xfff1, "SHN_ABS"},
intName{0xfff2, "SHN_COMMON"},
intName{0xffff, "SHN_XINDEX"},
}
func (i SectionIndex) String() string { return stringName(uint32(i), shnStrings, false) }
func (i SectionIndex) GoString() string { return stringName(uint32(i), shnStrings, true) }
// Section type.
type SectionType uint32
const (
SHT_NULL SectionType = 0; /* inactive */
SHT_PROGBITS SectionType = 1; /* program defined information */
SHT_SYMTAB SectionType = 2; /* symbol table section */
SHT_STRTAB SectionType = 3; /* string table section */
SHT_RELA SectionType = 4; /* relocation section with addends */
SHT_HASH SectionType = 5; /* symbol hash table section */
SHT_DYNAMIC SectionType = 6; /* dynamic section */
SHT_NOTE SectionType = 7; /* note section */
SHT_NOBITS SectionType = 8; /* no space section */
SHT_REL SectionType = 9; /* relocation section - no addends */
SHT_SHLIB SectionType = 10; /* reserved - purpose unknown */
SHT_DYNSYM SectionType = 11; /* dynamic symbol table section */
SHT_INIT_ARRAY SectionType = 14; /* Initialization function pointers. */
SHT_FINI_ARRAY SectionType = 15; /* Termination function pointers. */
SHT_PREINIT_ARRAY SectionType = 16; /* Pre-initialization function ptrs. */
SHT_GROUP SectionType = 17; /* Section group. */
SHT_SYMTAB_SHNDX SectionType = 18; /* Section indexes (see SHN_XINDEX). */
SHT_LOOS SectionType = 0x60000000; /* First of OS specific semantics */
SHT_HIOS SectionType = 0x6fffffff; /* Last of OS specific semantics */
SHT_LOPROC SectionType = 0x70000000; /* reserved range for processor */
SHT_HIPROC SectionType = 0x7fffffff; /* specific section header types */
SHT_LOUSER SectionType = 0x80000000; /* reserved range for application */
SHT_HIUSER SectionType = 0xffffffff; /* specific indexes */
)
var shtStrings = []intName{
intName{0, "SHT_NULL"},
intName{1, "SHT_PROGBITS"},
intName{2, "SHT_SYMTAB"},
intName{3, "SHT_STRTAB"},
intName{4, "SHT_RELA"},
intName{5, "SHT_HASH"},
intName{6, "SHT_DYNAMIC"},
intName{7, "SHT_NOTE"},
intName{8, "SHT_NOBITS"},
intName{9, "SHT_REL"},
intName{10, "SHT_SHLIB"},
intName{11, "SHT_DYNSYM"},
intName{14, "SHT_INIT_ARRAY"},
intName{15, "SHT_FINI_ARRAY"},
intName{16, "SHT_PREINIT_ARRAY"},
intName{17, "SHT_GROUP"},
intName{18, "SHT_SYMTAB_SHNDX"},
intName{0x60000000, "SHT_LOOS"},
intName{0x6fffffff, "SHT_HIOS"},
intName{0x70000000, "SHT_LOPROC"},
intName{0x7fffffff, "SHT_HIPROC"},
intName{0x80000000, "SHT_LOUSER"},
intName{0xffffffff, "SHT_HIUSER"},
}
func (i SectionType) String() string { return stringName(uint32(i), shtStrings, false) }
func (i SectionType) GoString() string { return stringName(uint32(i), shtStrings, true) }
// Section flags.
type SectionFlag uint32
const (
SHF_WRITE SectionFlag = 0x1; /* Section contains writable data. */
SHF_ALLOC SectionFlag = 0x2; /* Section occupies memory. */
SHF_EXECINSTR SectionFlag = 0x4; /* Section contains instructions. */
SHF_MERGE SectionFlag = 0x10; /* Section may be merged. */
SHF_STRINGS SectionFlag = 0x20; /* Section contains strings. */
SHF_INFO_LINK SectionFlag = 0x40; /* sh_info holds section index. */
SHF_LINK_ORDER SectionFlag = 0x80; /* Special ordering requirements. */
SHF_OS_NONCONFORMING SectionFlag = 0x100; /* OS-specific processing required. */
SHF_GROUP SectionFlag = 0x200; /* Member of section group. */
SHF_TLS SectionFlag = 0x400; /* Section contains TLS data. */
SHF_MASKOS SectionFlag = 0x0ff00000; /* OS-specific semantics. */
SHF_MASKPROC SectionFlag = 0xf0000000; /* Processor-specific semantics. */
)
var shfStrings = []intName{
intName{0x1, "SHF_WRITE"},
intName{0x2, "SHF_ALLOC"},
intName{0x4, "SHF_EXECINSTR"},
intName{0x10, "SHF_MERGE"},
intName{0x20, "SHF_STRINGS"},
intName{0x40, "SHF_INFO_LINK"},
intName{0x80, "SHF_LINK_ORDER"},
intName{0x100, "SHF_OS_NONCONFORMING"},
intName{0x200, "SHF_GROUP"},
intName{0x400, "SHF_TLS"},
}
func (i SectionFlag) String() string { return flagName(uint32(i), shfStrings, false) }
func (i SectionFlag) GoString() string { return flagName(uint32(i), shfStrings, true) }
// Prog.Type
type ProgType int
const (
PT_NULL ProgType = 0; /* Unused entry. */
PT_LOAD ProgType = 1; /* Loadable segment. */
PT_DYNAMIC ProgType = 2; /* Dynamic linking information segment. */
PT_INTERP ProgType = 3; /* Pathname of interpreter. */
PT_NOTE ProgType = 4; /* Auxiliary information. */
PT_SHLIB ProgType = 5; /* Reserved (not used). */
PT_PHDR ProgType = 6; /* Location of program header itself. */
PT_TLS ProgType = 7; /* Thread local storage segment */
PT_LOOS ProgType = 0x60000000; /* First OS-specific. */
PT_HIOS ProgType = 0x6fffffff; /* Last OS-specific. */
PT_LOPROC ProgType = 0x70000000; /* First processor-specific type. */
PT_HIPROC ProgType = 0x7fffffff; /* Last processor-specific type. */
)
var ptStrings = []intName{
intName{0, "PT_NULL"},
intName{1, "PT_LOAD"},
intName{2, "PT_DYNAMIC"},
intName{3, "PT_INTERP"},
intName{4, "PT_NOTE"},
intName{5, "PT_SHLIB"},
intName{6, "PT_PHDR"},
intName{7, "PT_TLS"},
intName{0x60000000, "PT_LOOS"},
intName{0x6fffffff, "PT_HIOS"},
intName{0x70000000, "PT_LOPROC"},
intName{0x7fffffff, "PT_HIPROC"},
}
func (i ProgType) String() string { return stringName(uint32(i), ptStrings, false) }
func (i ProgType) GoString() string { return stringName(uint32(i), ptStrings, true) }
// Prog.Flag
type ProgFlag uint32
const (
PF_X ProgFlag = 0x1; /* Executable. */
PF_W ProgFlag = 0x2; /* Writable. */
PF_R ProgFlag = 0x4; /* Readable. */
PF_MASKOS ProgFlag = 0x0ff00000; /* Operating system-specific. */
PF_MASKPROC ProgFlag = 0xf0000000; /* Processor-specific. */
)
var pfStrings = []intName{
intName{0x1, "PF_X"},
intName{0x2, "PF_W"},
intName{0x4, "PF_R"},
}
func (i ProgFlag) String() string { return flagName(uint32(i), pfStrings, false) }
func (i ProgFlag) GoString() string { return flagName(uint32(i), pfStrings, true) }
// Dyn.Tag
type DynTag int
const (
DT_NULL DynTag = 0; /* Terminating entry. */
DT_NEEDED DynTag = 1; /* String table offset of a needed shared library. */
DT_PLTRELSZ DynTag = 2; /* Total size in bytes of PLT relocations. */
DT_PLTGOT DynTag = 3; /* Processor-dependent address. */
DT_HASH DynTag = 4; /* Address of symbol hash table. */
DT_STRTAB DynTag = 5; /* Address of string table. */
DT_SYMTAB DynTag = 6; /* Address of symbol table. */
DT_RELA DynTag = 7; /* Address of ElfNN_Rela relocations. */
DT_RELASZ DynTag = 8; /* Total size of ElfNN_Rela relocations. */
DT_RELAENT DynTag = 9; /* Size of each ElfNN_Rela relocation entry. */
DT_STRSZ DynTag = 10; /* Size of string table. */
DT_SYMENT DynTag = 11; /* Size of each symbol table entry. */
DT_INIT DynTag = 12; /* Address of initialization function. */
DT_FINI DynTag = 13; /* Address of finalization function. */
DT_SONAME DynTag = 14; /* String table offset of shared object name. */
DT_RPATH DynTag = 15; /* String table offset of library path. [sup] */
DT_SYMBOLIC DynTag = 16; /* Indicates "symbolic" linking. [sup] */
DT_REL DynTag = 17; /* Address of ElfNN_Rel relocations. */
DT_RELSZ DynTag = 18; /* Total size of ElfNN_Rel relocations. */
DT_RELENT DynTag = 19; /* Size of each ElfNN_Rel relocation. */
DT_PLTREL DynTag = 20; /* Type of relocation used for PLT. */
DT_DEBUG DynTag = 21; /* Reserved (not used). */
DT_TEXTREL DynTag = 22; /* Indicates there may be relocations in non-writable segments. [sup] */
DT_JMPREL DynTag = 23; /* Address of PLT relocations. */
DT_BIND_NOW DynTag = 24; /* [sup] */
DT_INIT_ARRAY DynTag = 25; /* Address of the array of pointers to initialization functions */
DT_FINI_ARRAY DynTag = 26; /* Address of the array of pointers to termination functions */
DT_INIT_ARRAYSZ DynTag = 27; /* Size in bytes of the array of initialization functions. */
DT_FINI_ARRAYSZ DynTag = 28; /* Size in bytes of the array of terminationfunctions. */
DT_RUNPATH DynTag = 29; /* String table offset of a null-terminated library search path string. */
DT_FLAGS DynTag = 30; /* Object specific flag values. */
DT_ENCODING DynTag = 32; /* Values greater than or equal to DT_ENCODING
and less than DT_LOOS follow the rules for
the interpretation of the d_un union
as follows: even == 'd_ptr', even == 'd_val'
or none */
DT_PREINIT_ARRAY DynTag = 32; /* Address of the array of pointers to pre-initialization functions. */
DT_PREINIT_ARRAYSZ DynTag = 33; /* Size in bytes of the array of pre-initialization functions. */
DT_LOOS DynTag = 0x6000000d; /* First OS-specific */
DT_HIOS DynTag = 0x6ffff000; /* Last OS-specific */
DT_LOPROC DynTag = 0x70000000; /* First processor-specific type. */
DT_HIPROC DynTag = 0x7fffffff; /* Last processor-specific type. */
)
var dtStrings = []intName{
intName{0, "DT_NULL"},
intName{1, "DT_NEEDED"},
intName{2, "DT_PLTRELSZ"},
intName{3, "DT_PLTGOT"},
intName{4, "DT_HASH"},
intName{5, "DT_STRTAB"},
intName{6, "DT_SYMTAB"},
intName{7, "DT_RELA"},
intName{8, "DT_RELASZ"},
intName{9, "DT_RELAENT"},
intName{10, "DT_STRSZ"},
intName{11, "DT_SYMENT"},
intName{12, "DT_INIT"},
intName{13, "DT_FINI"},
intName{14, "DT_SONAME"},
intName{15, "DT_RPATH"},
intName{16, "DT_SYMBOLIC"},
intName{17, "DT_REL"},
intName{18, "DT_RELSZ"},
intName{19, "DT_RELENT"},
intName{20, "DT_PLTREL"},
intName{21, "DT_DEBUG"},
intName{22, "DT_TEXTREL"},
intName{23, "DT_JMPREL"},
intName{24, "DT_BIND_NOW"},
intName{25, "DT_INIT_ARRAY"},
intName{26, "DT_FINI_ARRAY"},
intName{27, "DT_INIT_ARRAYSZ"},
intName{28, "DT_FINI_ARRAYSZ"},
intName{29, "DT_RUNPATH"},
intName{30, "DT_FLAGS"},
intName{32, "DT_ENCODING"},
intName{32, "DT_PREINIT_ARRAY"},
intName{33, "DT_PREINIT_ARRAYSZ"},
intName{0x6000000d, "DT_LOOS"},
intName{0x6ffff000, "DT_HIOS"},
intName{0x70000000, "DT_LOPROC"},
intName{0x7fffffff, "DT_HIPROC"},
}
func (i DynTag) String() string { return stringName(uint32(i), dtStrings, false) }
func (i DynTag) GoString() string { return stringName(uint32(i), dtStrings, true) }
// DT_FLAGS values.
type DynFlag int
const (
DF_ORIGIN DynFlag = 0x0001; /* Indicates that the object being loaded may
make reference to the
$ORIGIN substitution string */
DF_SYMBOLIC DynFlag = 0x0002; /* Indicates "symbolic" linking. */
DF_TEXTREL DynFlag = 0x0004; /* Indicates there may be relocations in non-writable segments. */
DF_BIND_NOW DynFlag = 0x0008; /* Indicates that the dynamic linker should
process all relocations for the object
containing this entry before transferring
control to the program. */
DF_STATIC_TLS DynFlag = 0x0010; /* Indicates that the shared object or
executable contains code using a static
thread-local storage scheme. */
)
var dflagStrings = []intName{
intName{0x0001, "DF_ORIGIN"},
intName{0x0002, "DF_SYMBOLIC"},
intName{0x0004, "DF_TEXTREL"},
intName{0x0008, "DF_BIND_NOW"},
intName{0x0010, "DF_STATIC_TLS"},
}
func (i DynFlag) String() string { return flagName(uint32(i), dflagStrings, false) }
func (i DynFlag) GoString() string { return flagName(uint32(i), dflagStrings, true) }
// NType values; used in core files.
type NType int
const (
NT_PRSTATUS NType = 1; /* Process status. */
NT_FPREGSET NType = 2; /* Floating point registers. */
NT_PRPSINFO NType = 3; /* Process state info. */
)
var ntypeStrings = []intName{
intName{1, "NT_PRSTATUS"},
intName{2, "NT_FPREGSET"},
intName{3, "NT_PRPSINFO"},
}
func (i NType) String() string { return stringName(uint32(i), ntypeStrings, false) }
func (i NType) GoString() string { return stringName(uint32(i), ntypeStrings, true) }
/* Symbol Binding - ELFNN_ST_BIND - st_info */
type SymBind int
const (
STB_LOCAL SymBind = 0; /* Local symbol */
STB_GLOBAL SymBind = 1; /* Global symbol */
STB_WEAK SymBind = 2; /* like global - lower precedence */
STB_LOOS SymBind = 10; /* Reserved range for operating system */
STB_HIOS SymBind = 12; /* specific semantics. */
STB_LOPROC SymBind = 13; /* reserved range for processor */
STB_HIPROC SymBind = 15; /* specific semantics. */
)
var stbStrings = []intName{
intName{0, "STB_LOCAL"},
intName{1, "STB_GLOBAL"},
intName{2, "STB_WEAK"},
intName{10, "STB_LOOS"},
intName{12, "STB_HIOS"},
intName{13, "STB_LOPROC"},
intName{15, "STB_HIPROC"},
}
func (i SymBind) String() string { return stringName(uint32(i), stbStrings, false) }
func (i SymBind) GoString() string { return stringName(uint32(i), stbStrings, true) }
/* Symbol type - ELFNN_ST_TYPE - st_info */
type SymType int
const (
STT_NOTYPE SymType = 0; /* Unspecified type. */
STT_OBJECT SymType = 1; /* Data object. */
STT_FUNC SymType = 2; /* Function. */
STT_SECTION SymType = 3; /* Section. */
STT_FILE SymType = 4; /* Source file. */
STT_COMMON SymType = 5; /* Uninitialized common block. */
STT_TLS SymType = 6; /* TLS object. */
STT_LOOS SymType = 10; /* Reserved range for operating system */
STT_HIOS SymType = 12; /* specific semantics. */
STT_LOPROC SymType = 13; /* reserved range for processor */
STT_HIPROC SymType = 15; /* specific semantics. */
)
var sttStrings = []intName{
intName{0, "STT_NOTYPE"},
intName{1, "STT_OBJECT"},
intName{2, "STT_FUNC"},
intName{3, "STT_SECTION"},
intName{4, "STT_FILE"},
intName{5, "STT_COMMON"},
intName{6, "STT_TLS"},
intName{10, "STT_LOOS"},
intName{12, "STT_HIOS"},
intName{13, "STT_LOPROC"},
intName{15, "STT_HIPROC"},
}
func (i SymType) String() string { return stringName(uint32(i), sttStrings, false) }
func (i SymType) GoString() string { return stringName(uint32(i), sttStrings, true) }
/* Symbol visibility - ELFNN_ST_VISIBILITY - st_other */
type SymVis int
const (
STV_DEFAULT SymVis = 0x0; /* Default visibility (see binding). */
STV_INTERNAL SymVis = 0x1; /* Special meaning in relocatable objects. */
STV_HIDDEN SymVis = 0x2; /* Not visible. */
STV_PROTECTED SymVis = 0x3; /* Visible but not preemptible. */
)
var stvStrings = []intName{
intName{0x0, "STV_DEFAULT"},
intName{0x1, "STV_INTERNAL"},
intName{0x2, "STV_HIDDEN"},
intName{0x3, "STV_PROTECTED"},
}
func (i SymVis) String() string { return stringName(uint32(i), stvStrings, false) }
func (i SymVis) GoString() string { return stringName(uint32(i), stvStrings, true) }
/*
* Relocation types.
*/
// Relocation types for x86-64.
type R_X86_64 int
const (
R_X86_64_NONE R_X86_64 = 0; /* No relocation. */
R_X86_64_64 R_X86_64 = 1; /* Add 64 bit symbol value. */
R_X86_64_PC32 R_X86_64 = 2; /* PC-relative 32 bit signed sym value. */
R_X86_64_GOT32 R_X86_64 = 3; /* PC-relative 32 bit GOT offset. */
R_X86_64_PLT32 R_X86_64 = 4; /* PC-relative 32 bit PLT offset. */
R_X86_64_COPY R_X86_64 = 5; /* Copy data from shared object. */
R_X86_64_GLOB_DAT R_X86_64 = 6; /* Set GOT entry to data address. */
R_X86_64_JMP_SLOT R_X86_64 = 7; /* Set GOT entry to code address. */
R_X86_64_RELATIVE R_X86_64 = 8; /* Add load address of shared object. */
R_X86_64_GOTPCREL R_X86_64 = 9; /* Add 32 bit signed pcrel offset to GOT. */
R_X86_64_32 R_X86_64 = 10; /* Add 32 bit zero extended symbol value */
R_X86_64_32S R_X86_64 = 11; /* Add 32 bit sign extended symbol value */
R_X86_64_16 R_X86_64 = 12; /* Add 16 bit zero extended symbol value */
R_X86_64_PC16 R_X86_64 = 13; /* Add 16 bit signed extended pc relative symbol value */
R_X86_64_8 R_X86_64 = 14; /* Add 8 bit zero extended symbol value */
R_X86_64_PC8 R_X86_64 = 15; /* Add 8 bit signed extended pc relative symbol value */
R_X86_64_DTPMOD64 R_X86_64 = 16; /* ID of module containing symbol */
R_X86_64_DTPOFF64 R_X86_64 = 17; /* Offset in TLS block */
R_X86_64_TPOFF64 R_X86_64 = 18; /* Offset in static TLS block */
R_X86_64_TLSGD R_X86_64 = 19; /* PC relative offset to GD GOT entry */
R_X86_64_TLSLD R_X86_64 = 20; /* PC relative offset to LD GOT entry */
R_X86_64_DTPOFF32 R_X86_64 = 21; /* Offset in TLS block */
R_X86_64_GOTTPOFF R_X86_64 = 22; /* PC relative offset to IE GOT entry */
R_X86_64_TPOFF32 R_X86_64 = 23; /* Offset in static TLS block */
)
var rx86_64Strings = []intName{
intName{0, "R_X86_64_NONE"},
intName{1, "R_X86_64_64"},
intName{2, "R_X86_64_PC32"},
intName{3, "R_X86_64_GOT32"},
intName{4, "R_X86_64_PLT32"},
intName{5, "R_X86_64_COPY"},
intName{6, "R_X86_64_GLOB_DAT"},
intName{7, "R_X86_64_JMP_SLOT"},
intName{8, "R_X86_64_RELATIVE"},
intName{9, "R_X86_64_GOTPCREL"},
intName{10, "R_X86_64_32"},
intName{11, "R_X86_64_32S"},
intName{12, "R_X86_64_16"},
intName{13, "R_X86_64_PC16"},
intName{14, "R_X86_64_8"},
intName{15, "R_X86_64_PC8"},
intName{16, "R_X86_64_DTPMOD64"},
intName{17, "R_X86_64_DTPOFF64"},
intName{18, "R_X86_64_TPOFF64"},
intName{19, "R_X86_64_TLSGD"},
intName{20, "R_X86_64_TLSLD"},
intName{21, "R_X86_64_DTPOFF32"},
intName{22, "R_X86_64_GOTTPOFF"},
intName{23, "R_X86_64_TPOFF32"},
}
func (i R_X86_64) String() string { return stringName(uint32(i), rx86_64Strings, false) }
func (i R_X86_64) GoString() string { return stringName(uint32(i), rx86_64Strings, true) }
// Relocation types for Alpha.
type R_ALPHA int
const (
R_ALPHA_NONE R_ALPHA = 0; /* No reloc */
R_ALPHA_REFLONG R_ALPHA = 1; /* Direct 32 bit */
R_ALPHA_REFQUAD R_ALPHA = 2; /* Direct 64 bit */
R_ALPHA_GPREL32 R_ALPHA = 3; /* GP relative 32 bit */
R_ALPHA_LITERAL R_ALPHA = 4; /* GP relative 16 bit w/optimization */
R_ALPHA_LITUSE R_ALPHA = 5; /* Optimization hint for LITERAL */
R_ALPHA_GPDISP R_ALPHA = 6; /* Add displacement to GP */
R_ALPHA_BRADDR R_ALPHA = 7; /* PC+4 relative 23 bit shifted */
R_ALPHA_HINT R_ALPHA = 8; /* PC+4 relative 16 bit shifted */
R_ALPHA_SREL16 R_ALPHA = 9; /* PC relative 16 bit */
R_ALPHA_SREL32 R_ALPHA = 10; /* PC relative 32 bit */
R_ALPHA_SREL64 R_ALPHA = 11; /* PC relative 64 bit */
R_ALPHA_OP_PUSH R_ALPHA = 12; /* OP stack push */
R_ALPHA_OP_STORE R_ALPHA = 13; /* OP stack pop and store */
R_ALPHA_OP_PSUB R_ALPHA = 14; /* OP stack subtract */
R_ALPHA_OP_PRSHIFT R_ALPHA = 15; /* OP stack right shift */
R_ALPHA_GPVALUE R_ALPHA = 16;
R_ALPHA_GPRELHIGH R_ALPHA = 17;
R_ALPHA_GPRELLOW R_ALPHA = 18;
R_ALPHA_IMMED_GP_16 R_ALPHA = 19;
R_ALPHA_IMMED_GP_HI32 R_ALPHA = 20;
R_ALPHA_IMMED_SCN_HI32 R_ALPHA = 21;
R_ALPHA_IMMED_BR_HI32 R_ALPHA = 22;
R_ALPHA_IMMED_LO32 R_ALPHA = 23;
R_ALPHA_COPY R_ALPHA = 24; /* Copy symbol at runtime */
R_ALPHA_GLOB_DAT R_ALPHA = 25; /* Create GOT entry */
R_ALPHA_JMP_SLOT R_ALPHA = 26; /* Create PLT entry */
R_ALPHA_RELATIVE R_ALPHA = 27; /* Adjust by program base */
)
var ralphaStrings = []intName{
intName{0, "R_ALPHA_NONE"},
intName{1, "R_ALPHA_REFLONG"},
intName{2, "R_ALPHA_REFQUAD"},
intName{3, "R_ALPHA_GPREL32"},
intName{4, "R_ALPHA_LITERAL"},
intName{5, "R_ALPHA_LITUSE"},
intName{6, "R_ALPHA_GPDISP"},
intName{7, "R_ALPHA_BRADDR"},
intName{8, "R_ALPHA_HINT"},
intName{9, "R_ALPHA_SREL16"},
intName{10, "R_ALPHA_SREL32"},
intName{11, "R_ALPHA_SREL64"},
intName{12, "R_ALPHA_OP_PUSH"},
intName{13, "R_ALPHA_OP_STORE"},
intName{14, "R_ALPHA_OP_PSUB"},
intName{15, "R_ALPHA_OP_PRSHIFT"},
intName{16, "R_ALPHA_GPVALUE"},
intName{17, "R_ALPHA_GPRELHIGH"},
intName{18, "R_ALPHA_GPRELLOW"},
intName{19, "R_ALPHA_IMMED_GP_16"},
intName{20, "R_ALPHA_IMMED_GP_HI32"},
intName{21, "R_ALPHA_IMMED_SCN_HI32"},
intName{22, "R_ALPHA_IMMED_BR_HI32"},
intName{23, "R_ALPHA_IMMED_LO32"},
intName{24, "R_ALPHA_COPY"},
intName{25, "R_ALPHA_GLOB_DAT"},
intName{26, "R_ALPHA_JMP_SLOT"},
intName{27, "R_ALPHA_RELATIVE"},
}
func (i R_ALPHA) String() string { return stringName(uint32(i), ralphaStrings, false) }
func (i R_ALPHA) GoString() string { return stringName(uint32(i), ralphaStrings, true) }
// Relocation types for ARM.
type R_ARM int
const (
R_ARM_NONE R_ARM = 0; /* No relocation. */
R_ARM_PC24 R_ARM = 1;
R_ARM_ABS32 R_ARM = 2;
R_ARM_REL32 R_ARM = 3;
R_ARM_PC13 R_ARM = 4;
R_ARM_ABS16 R_ARM = 5;
R_ARM_ABS12 R_ARM = 6;
R_ARM_THM_ABS5 R_ARM = 7;
R_ARM_ABS8 R_ARM = 8;
R_ARM_SBREL32 R_ARM = 9;
R_ARM_THM_PC22 R_ARM = 10;
R_ARM_THM_PC8 R_ARM = 11;
R_ARM_AMP_VCALL9 R_ARM = 12;
R_ARM_SWI24 R_ARM = 13;
R_ARM_THM_SWI8 R_ARM = 14;
R_ARM_XPC25 R_ARM = 15;
R_ARM_THM_XPC22 R_ARM = 16;
R_ARM_COPY R_ARM = 20; /* Copy data from shared object. */
R_ARM_GLOB_DAT R_ARM = 21; /* Set GOT entry to data address. */
R_ARM_JUMP_SLOT R_ARM = 22; /* Set GOT entry to code address. */
R_ARM_RELATIVE R_ARM = 23; /* Add load address of shared object. */
R_ARM_GOTOFF R_ARM = 24; /* Add GOT-relative symbol address. */
R_ARM_GOTPC R_ARM = 25; /* Add PC-relative GOT table address. */
R_ARM_GOT32 R_ARM = 26; /* Add PC-relative GOT offset. */
R_ARM_PLT32 R_ARM = 27; /* Add PC-relative PLT offset. */
R_ARM_GNU_VTENTRY R_ARM = 100;
R_ARM_GNU_VTINHERIT R_ARM = 101;
R_ARM_RSBREL32 R_ARM = 250;
R_ARM_THM_RPC22 R_ARM = 251;
R_ARM_RREL32 R_ARM = 252;
R_ARM_RABS32 R_ARM = 253;
R_ARM_RPC24 R_ARM = 254;
R_ARM_RBASE R_ARM = 255;
)
var rarmStrings = []intName{
intName{0, "R_ARM_NONE"},
intName{1, "R_ARM_PC24"},
intName{2, "R_ARM_ABS32"},
intName{3, "R_ARM_REL32"},
intName{4, "R_ARM_PC13"},
intName{5, "R_ARM_ABS16"},
intName{6, "R_ARM_ABS12"},
intName{7, "R_ARM_THM_ABS5"},
intName{8, "R_ARM_ABS8"},
intName{9, "R_ARM_SBREL32"},
intName{10, "R_ARM_THM_PC22"},
intName{11, "R_ARM_THM_PC8"},
intName{12, "R_ARM_AMP_VCALL9"},
intName{13, "R_ARM_SWI24"},
intName{14, "R_ARM_THM_SWI8"},
intName{15, "R_ARM_XPC25"},
intName{16, "R_ARM_THM_XPC22"},
intName{20, "R_ARM_COPY"},
intName{21, "R_ARM_GLOB_DAT"},
intName{22, "R_ARM_JUMP_SLOT"},
intName{23, "R_ARM_RELATIVE"},
intName{24, "R_ARM_GOTOFF"},
intName{25, "R_ARM_GOTPC"},
intName{26, "R_ARM_GOT32"},
intName{27, "R_ARM_PLT32"},
intName{100, "R_ARM_GNU_VTENTRY"},
intName{101, "R_ARM_GNU_VTINHERIT"},
intName{250, "R_ARM_RSBREL32"},
intName{251, "R_ARM_THM_RPC22"},
intName{252, "R_ARM_RREL32"},
intName{253, "R_ARM_RABS32"},
intName{254, "R_ARM_RPC24"},
intName{255, "R_ARM_RBASE"},
}
func (i R_ARM) String() string { return stringName(uint32(i), rarmStrings, false) }
func (i R_ARM) GoString() string { return stringName(uint32(i), rarmStrings, true) }
// Relocation types for 386.
type R_386 int
const (
R_386_NONE R_386 = 0; /* No relocation. */
R_386_32 R_386 = 1; /* Add symbol value. */
R_386_PC32 R_386 = 2; /* Add PC-relative symbol value. */
R_386_GOT32 R_386 = 3; /* Add PC-relative GOT offset. */
R_386_PLT32 R_386 = 4; /* Add PC-relative PLT offset. */
R_386_COPY R_386 = 5; /* Copy data from shared object. */
R_386_GLOB_DAT R_386 = 6; /* Set GOT entry to data address. */
R_386_JMP_SLOT R_386 = 7; /* Set GOT entry to code address. */
R_386_RELATIVE R_386 = 8; /* Add load address of shared object. */
R_386_GOTOFF R_386 = 9; /* Add GOT-relative symbol address. */
R_386_GOTPC R_386 = 10; /* Add PC-relative GOT table address. */
R_386_TLS_TPOFF R_386 = 14; /* Negative offset in static TLS block */
R_386_TLS_IE R_386 = 15; /* Absolute address of GOT for -ve static TLS */
R_386_TLS_GOTIE R_386 = 16; /* GOT entry for negative static TLS block */
R_386_TLS_LE R_386 = 17; /* Negative offset relative to static TLS */
R_386_TLS_GD R_386 = 18; /* 32 bit offset to GOT (index,off) pair */
R_386_TLS_LDM R_386 = 19; /* 32 bit offset to GOT (index,zero) pair */
R_386_TLS_GD_32 R_386 = 24; /* 32 bit offset to GOT (index,off) pair */
R_386_TLS_GD_PUSH R_386 = 25; /* pushl instruction for Sun ABI GD sequence */
R_386_TLS_GD_CALL R_386 = 26; /* call instruction for Sun ABI GD sequence */
R_386_TLS_GD_POP R_386 = 27; /* popl instruction for Sun ABI GD sequence */
R_386_TLS_LDM_32 R_386 = 28; /* 32 bit offset to GOT (index,zero) pair */
R_386_TLS_LDM_PUSH R_386 = 29; /* pushl instruction for Sun ABI LD sequence */
R_386_TLS_LDM_CALL R_386 = 30; /* call instruction for Sun ABI LD sequence */
R_386_TLS_LDM_POP R_386 = 31; /* popl instruction for Sun ABI LD sequence */
R_386_TLS_LDO_32 R_386 = 32; /* 32 bit offset from start of TLS block */
R_386_TLS_IE_32 R_386 = 33; /* 32 bit offset to GOT static TLS offset entry */
R_386_TLS_LE_32 R_386 = 34; /* 32 bit offset within static TLS block */
R_386_TLS_DTPMOD32 R_386 = 35; /* GOT entry containing TLS index */
R_386_TLS_DTPOFF32 R_386 = 36; /* GOT entry containing TLS offset */
R_386_TLS_TPOFF32 R_386 = 37; /* GOT entry of -ve static TLS offset */
)
var r386Strings = []intName{
intName{0, "R_386_NONE"},
intName{1, "R_386_32"},
intName{2, "R_386_PC32"},
intName{3, "R_386_GOT32"},
intName{4, "R_386_PLT32"},
intName{5, "R_386_COPY"},
intName{6, "R_386_GLOB_DAT"},
intName{7, "R_386_JMP_SLOT"},
intName{8, "R_386_RELATIVE"},
intName{9, "R_386_GOTOFF"},
intName{10, "R_386_GOTPC"},
intName{14, "R_386_TLS_TPOFF"},
intName{15, "R_386_TLS_IE"},
intName{16, "R_386_TLS_GOTIE"},
intName{17, "R_386_TLS_LE"},
intName{18, "R_386_TLS_GD"},
intName{19, "R_386_TLS_LDM"},
intName{24, "R_386_TLS_GD_32"},
intName{25, "R_386_TLS_GD_PUSH"},
intName{26, "R_386_TLS_GD_CALL"},
intName{27, "R_386_TLS_GD_POP"},
intName{28, "R_386_TLS_LDM_32"},
intName{29, "R_386_TLS_LDM_PUSH"},
intName{30, "R_386_TLS_LDM_CALL"},
intName{31, "R_386_TLS_LDM_POP"},
intName{32, "R_386_TLS_LDO_32"},
intName{33, "R_386_TLS_IE_32"},
intName{34, "R_386_TLS_LE_32"},
intName{35, "R_386_TLS_DTPMOD32"},
intName{36, "R_386_TLS_DTPOFF32"},
intName{37, "R_386_TLS_TPOFF32"},
}
func (i R_386) String() string { return stringName(uint32(i), r386Strings, false) }
func (i R_386) GoString() string { return stringName(uint32(i), r386Strings, true) }
// Relocation types for PowerPC.
type R_PPC int
const (
R_PPC_NONE R_PPC = 0; /* No relocation. */
R_PPC_ADDR32 R_PPC = 1;
R_PPC_ADDR24 R_PPC = 2;
R_PPC_ADDR16 R_PPC = 3;
R_PPC_ADDR16_LO R_PPC = 4;
R_PPC_ADDR16_HI R_PPC = 5;
R_PPC_ADDR16_HA R_PPC = 6;
R_PPC_ADDR14 R_PPC = 7;
R_PPC_ADDR14_BRTAKEN R_PPC = 8;
R_PPC_ADDR14_BRNTAKEN R_PPC = 9;
R_PPC_REL24 R_PPC = 10;
R_PPC_REL14 R_PPC = 11;
R_PPC_REL14_BRTAKEN R_PPC = 12;
R_PPC_REL14_BRNTAKEN R_PPC = 13;
R_PPC_GOT16 R_PPC = 14;
R_PPC_GOT16_LO R_PPC = 15;
R_PPC_GOT16_HI R_PPC = 16;
R_PPC_GOT16_HA R_PPC = 17;
R_PPC_PLTREL24 R_PPC = 18;
R_PPC_COPY R_PPC = 19;
R_PPC_GLOB_DAT R_PPC = 20;
R_PPC_JMP_SLOT R_PPC = 21;
R_PPC_RELATIVE R_PPC = 22;
R_PPC_LOCAL24PC R_PPC = 23;
R_PPC_UADDR32 R_PPC = 24;
R_PPC_UADDR16 R_PPC = 25;
R_PPC_REL32 R_PPC = 26;
R_PPC_PLT32 R_PPC = 27;
R_PPC_PLTREL32 R_PPC = 28;
R_PPC_PLT16_LO R_PPC = 29;
R_PPC_PLT16_HI R_PPC = 30;
R_PPC_PLT16_HA R_PPC = 31;
R_PPC_SDAREL16 R_PPC = 32;
R_PPC_SECTOFF R_PPC = 33;
R_PPC_SECTOFF_LO R_PPC = 34;
R_PPC_SECTOFF_HI R_PPC = 35;
R_PPC_SECTOFF_HA R_PPC = 36;
R_PPC_TLS R_PPC = 67;
R_PPC_DTPMOD32 R_PPC = 68;
R_PPC_TPREL16 R_PPC = 69;
R_PPC_TPREL16_LO R_PPC = 70;
R_PPC_TPREL16_HI R_PPC = 71;
R_PPC_TPREL16_HA R_PPC = 72;
R_PPC_TPREL32 R_PPC = 73;
R_PPC_DTPREL16 R_PPC = 74;
R_PPC_DTPREL16_LO R_PPC = 75;
R_PPC_DTPREL16_HI R_PPC = 76;
R_PPC_DTPREL16_HA R_PPC = 77;
R_PPC_DTPREL32 R_PPC = 78;
R_PPC_GOT_TLSGD16 R_PPC = 79;
R_PPC_GOT_TLSGD16_LO R_PPC = 80;
R_PPC_GOT_TLSGD16_HI R_PPC = 81;
R_PPC_GOT_TLSGD16_HA R_PPC = 82;
R_PPC_GOT_TLSLD16 R_PPC = 83;
R_PPC_GOT_TLSLD16_LO R_PPC = 84;
R_PPC_GOT_TLSLD16_HI R_PPC = 85;
R_PPC_GOT_TLSLD16_HA R_PPC = 86;
R_PPC_GOT_TPREL16 R_PPC = 87;
R_PPC_GOT_TPREL16_LO R_PPC = 88;
R_PPC_GOT_TPREL16_HI R_PPC = 89;
R_PPC_GOT_TPREL16_HA R_PPC = 90;
R_PPC_EMB_NADDR32 R_PPC = 101;
R_PPC_EMB_NADDR16 R_PPC = 102;
R_PPC_EMB_NADDR16_LO R_PPC = 103;
R_PPC_EMB_NADDR16_HI R_PPC = 104;
R_PPC_EMB_NADDR16_HA R_PPC = 105;
R_PPC_EMB_SDAI16 R_PPC = 106;
R_PPC_EMB_SDA2I16 R_PPC = 107;
R_PPC_EMB_SDA2REL R_PPC = 108;
R_PPC_EMB_SDA21 R_PPC = 109;
R_PPC_EMB_MRKREF R_PPC = 110;
R_PPC_EMB_RELSEC16 R_PPC = 111;
R_PPC_EMB_RELST_LO R_PPC = 112;
R_PPC_EMB_RELST_HI R_PPC = 113;
R_PPC_EMB_RELST_HA R_PPC = 114;
R_PPC_EMB_BIT_FLD R_PPC = 115;
R_PPC_EMB_RELSDA R_PPC = 116;
)
var rppcStrings = []intName{
intName{0, "R_PPC_NONE"},
intName{1, "R_PPC_ADDR32"},
intName{2, "R_PPC_ADDR24"},
intName{3, "R_PPC_ADDR16"},
intName{4, "R_PPC_ADDR16_LO"},
intName{5, "R_PPC_ADDR16_HI"},
intName{6, "R_PPC_ADDR16_HA"},
intName{7, "R_PPC_ADDR14"},
intName{8, "R_PPC_ADDR14_BRTAKEN"},
intName{9, "R_PPC_ADDR14_BRNTAKEN"},
intName{10, "R_PPC_REL24"},
intName{11, "R_PPC_REL14"},
intName{12, "R_PPC_REL14_BRTAKEN"},
intName{13, "R_PPC_REL14_BRNTAKEN"},
intName{14, "R_PPC_GOT16"},
intName{15, "R_PPC_GOT16_LO"},
intName{16, "R_PPC_GOT16_HI"},
intName{17, "R_PPC_GOT16_HA"},
intName{18, "R_PPC_PLTREL24"},
intName{19, "R_PPC_COPY"},
intName{20, "R_PPC_GLOB_DAT"},
intName{21, "R_PPC_JMP_SLOT"},
intName{22, "R_PPC_RELATIVE"},
intName{23, "R_PPC_LOCAL24PC"},
intName{24, "R_PPC_UADDR32"},
intName{25, "R_PPC_UADDR16"},
intName{26, "R_PPC_REL32"},
intName{27, "R_PPC_PLT32"},
intName{28, "R_PPC_PLTREL32"},
intName{29, "R_PPC_PLT16_LO"},
intName{30, "R_PPC_PLT16_HI"},
intName{31, "R_PPC_PLT16_HA"},
intName{32, "R_PPC_SDAREL16"},
intName{33, "R_PPC_SECTOFF"},
intName{34, "R_PPC_SECTOFF_LO"},
intName{35, "R_PPC_SECTOFF_HI"},
intName{36, "R_PPC_SECTOFF_HA"},
intName{67, "R_PPC_TLS"},
intName{68, "R_PPC_DTPMOD32"},
intName{69, "R_PPC_TPREL16"},
intName{70, "R_PPC_TPREL16_LO"},
intName{71, "R_PPC_TPREL16_HI"},
intName{72, "R_PPC_TPREL16_HA"},
intName{73, "R_PPC_TPREL32"},
intName{74, "R_PPC_DTPREL16"},
intName{75, "R_PPC_DTPREL16_LO"},
intName{76, "R_PPC_DTPREL16_HI"},
intName{77, "R_PPC_DTPREL16_HA"},
intName{78, "R_PPC_DTPREL32"},
intName{79, "R_PPC_GOT_TLSGD16"},
intName{80, "R_PPC_GOT_TLSGD16_LO"},
intName{81, "R_PPC_GOT_TLSGD16_HI"},
intName{82, "R_PPC_GOT_TLSGD16_HA"},
intName{83, "R_PPC_GOT_TLSLD16"},
intName{84, "R_PPC_GOT_TLSLD16_LO"},
intName{85, "R_PPC_GOT_TLSLD16_HI"},
intName{86, "R_PPC_GOT_TLSLD16_HA"},
intName{87, "R_PPC_GOT_TPREL16"},
intName{88, "R_PPC_GOT_TPREL16_LO"},
intName{89, "R_PPC_GOT_TPREL16_HI"},
intName{90, "R_PPC_GOT_TPREL16_HA"},
intName{101, "R_PPC_EMB_NADDR32"},
intName{102, "R_PPC_EMB_NADDR16"},
intName{103, "R_PPC_EMB_NADDR16_LO"},
intName{104, "R_PPC_EMB_NADDR16_HI"},
intName{105, "R_PPC_EMB_NADDR16_HA"},
intName{106, "R_PPC_EMB_SDAI16"},
intName{107, "R_PPC_EMB_SDA2I16"},
intName{108, "R_PPC_EMB_SDA2REL"},
intName{109, "R_PPC_EMB_SDA21"},
intName{110, "R_PPC_EMB_MRKREF"},
intName{111, "R_PPC_EMB_RELSEC16"},
intName{112, "R_PPC_EMB_RELST_LO"},
intName{113, "R_PPC_EMB_RELST_HI"},
intName{114, "R_PPC_EMB_RELST_HA"},
intName{115, "R_PPC_EMB_BIT_FLD"},
intName{116, "R_PPC_EMB_RELSDA"},
}
func (i R_PPC) String() string { return stringName(uint32(i), rppcStrings, false) }
func (i R_PPC) GoString() string { return stringName(uint32(i), rppcStrings, true) }
// Relocation types for SPARC.
type R_SPARC int
const (
R_SPARC_NONE R_SPARC = 0;
R_SPARC_8 R_SPARC = 1;
R_SPARC_16 R_SPARC = 2;
R_SPARC_32 R_SPARC = 3;
R_SPARC_DISP8 R_SPARC = 4;
R_SPARC_DISP16 R_SPARC = 5;
R_SPARC_DISP32 R_SPARC = 6;
R_SPARC_WDISP30 R_SPARC = 7;
R_SPARC_WDISP22 R_SPARC = 8;
R_SPARC_HI22 R_SPARC = 9;
R_SPARC_22 R_SPARC = 10;
R_SPARC_13 R_SPARC = 11;
R_SPARC_LO10 R_SPARC = 12;
R_SPARC_GOT10 R_SPARC = 13;
R_SPARC_GOT13 R_SPARC = 14;
R_SPARC_GOT22 R_SPARC = 15;
R_SPARC_PC10 R_SPARC = 16;
R_SPARC_PC22 R_SPARC = 17;
R_SPARC_WPLT30 R_SPARC = 18;
R_SPARC_COPY R_SPARC = 19;
R_SPARC_GLOB_DAT R_SPARC = 20;
R_SPARC_JMP_SLOT R_SPARC = 21;
R_SPARC_RELATIVE R_SPARC = 22;
R_SPARC_UA32 R_SPARC = 23;
R_SPARC_PLT32 R_SPARC = 24;
R_SPARC_HIPLT22 R_SPARC = 25;
R_SPARC_LOPLT10 R_SPARC = 26;
R_SPARC_PCPLT32 R_SPARC = 27;
R_SPARC_PCPLT22 R_SPARC = 28;
R_SPARC_PCPLT10 R_SPARC = 29;
R_SPARC_10 R_SPARC = 30;
R_SPARC_11 R_SPARC = 31;
R_SPARC_64 R_SPARC = 32;
R_SPARC_OLO10 R_SPARC = 33;
R_SPARC_HH22 R_SPARC = 34;
R_SPARC_HM10 R_SPARC = 35;
R_SPARC_LM22 R_SPARC = 36;
R_SPARC_PC_HH22 R_SPARC = 37;
R_SPARC_PC_HM10 R_SPARC = 38;
R_SPARC_PC_LM22 R_SPARC = 39;
R_SPARC_WDISP16 R_SPARC = 40;
R_SPARC_WDISP19 R_SPARC = 41;
R_SPARC_GLOB_JMP R_SPARC = 42;
R_SPARC_7 R_SPARC = 43;
R_SPARC_5 R_SPARC = 44;
R_SPARC_6 R_SPARC = 45;
R_SPARC_DISP64 R_SPARC = 46;
R_SPARC_PLT64 R_SPARC = 47;
R_SPARC_HIX22 R_SPARC = 48;
R_SPARC_LOX10 R_SPARC = 49;
R_SPARC_H44 R_SPARC = 50;
R_SPARC_M44 R_SPARC = 51;
R_SPARC_L44 R_SPARC = 52;
R_SPARC_REGISTER R_SPARC = 53;
R_SPARC_UA64 R_SPARC = 54;
R_SPARC_UA16 R_SPARC = 55;
)
var rsparcStrings = []intName{
intName{0, "R_SPARC_NONE"},
intName{1, "R_SPARC_8"},
intName{2, "R_SPARC_16"},
intName{3, "R_SPARC_32"},
intName{4, "R_SPARC_DISP8"},
intName{5, "R_SPARC_DISP16"},
intName{6, "R_SPARC_DISP32"},
intName{7, "R_SPARC_WDISP30"},
intName{8, "R_SPARC_WDISP22"},
intName{9, "R_SPARC_HI22"},
intName{10, "R_SPARC_22"},
intName{11, "R_SPARC_13"},
intName{12, "R_SPARC_LO10"},
intName{13, "R_SPARC_GOT10"},
intName{14, "R_SPARC_GOT13"},
intName{15, "R_SPARC_GOT22"},
intName{16, "R_SPARC_PC10"},
intName{17, "R_SPARC_PC22"},
intName{18, "R_SPARC_WPLT30"},
intName{19, "R_SPARC_COPY"},
intName{20, "R_SPARC_GLOB_DAT"},
intName{21, "R_SPARC_JMP_SLOT"},
intName{22, "R_SPARC_RELATIVE"},
intName{23, "R_SPARC_UA32"},
intName{24, "R_SPARC_PLT32"},
intName{25, "R_SPARC_HIPLT22"},
intName{26, "R_SPARC_LOPLT10"},
intName{27, "R_SPARC_PCPLT32"},
intName{28, "R_SPARC_PCPLT22"},
intName{29, "R_SPARC_PCPLT10"},
intName{30, "R_SPARC_10"},
intName{31, "R_SPARC_11"},
intName{32, "R_SPARC_64"},
intName{33, "R_SPARC_OLO10"},
intName{34, "R_SPARC_HH22"},
intName{35, "R_SPARC_HM10"},
intName{36, "R_SPARC_LM22"},
intName{37, "R_SPARC_PC_HH22"},
intName{38, "R_SPARC_PC_HM10"},
intName{39, "R_SPARC_PC_LM22"},
intName{40, "R_SPARC_WDISP16"},
intName{41, "R_SPARC_WDISP19"},
intName{42, "R_SPARC_GLOB_JMP"},
intName{43, "R_SPARC_7"},
intName{44, "R_SPARC_5"},
intName{45, "R_SPARC_6"},
intName{46, "R_SPARC_DISP64"},
intName{47, "R_SPARC_PLT64"},
intName{48, "R_SPARC_HIX22"},
intName{49, "R_SPARC_LOX10"},
intName{50, "R_SPARC_H44"},
intName{51, "R_SPARC_M44"},
intName{52, "R_SPARC_L44"},
intName{53, "R_SPARC_REGISTER"},
intName{54, "R_SPARC_UA64"},
intName{55, "R_SPARC_UA16"},
}
func (i R_SPARC) String() string { return stringName(uint32(i), rsparcStrings, false) }
func (i R_SPARC) GoString() string { return stringName(uint32(i), rsparcStrings, true) }
/*
* Magic number for the elf trampoline, chosen wisely to be an immediate
* value.
*/
const ARM_MAGIC_TRAMP_NUMBER = 0x5c000003
/*
* ELF32 File header.
*/
type Header32 struct {
Ident [EI_NIDENT]byte; /* File identification. */
Type uint16; /* File type. */
Machine uint16; /* Machine architecture. */
Version uint32; /* ELF format version. */
Entry uint32; /* Entry point. */
Phoff uint32; /* Program header file offset. */
Shoff uint32; /* Section header file offset. */
Flags uint32; /* Architecture-specific flags. */
Ehsize uint16; /* Size of ELF header in bytes. */
Phentsize uint16; /* Size of program header entry. */
Phnum uint16; /* Number of program header entries. */
Shentsize uint16; /* Size of section header entry. */
Shnum uint16; /* Number of section header entries. */
Shstrndx uint16; /* Section name strings section. */
}
/*
* ELF32 Section header.
*/
type Section32 struct {
Name uint32; /* Section name (index into the section header string table). */
Type uint32; /* Section type. */
Flags uint32; /* Section flags. */
Addr uint32; /* Address in memory image. */
Off uint32; /* Offset in file. */
Size uint32; /* Size in bytes. */
Link uint32; /* Index of a related section. */
Info uint32; /* Depends on section type. */
Addralign uint32; /* Alignment in bytes. */
Entsize uint32; /* Size of each entry in section. */
}
/*
* ELF32 Program header.
*/
type Prog32 struct {
Type uint32; /* Entry type. */
Off uint32; /* File offset of contents. */
Vaddr uint32; /* Virtual address in memory image. */
Paddr uint32; /* Physical address (not used). */
Filesz uint32; /* Size of contents in file. */
Memsz uint32; /* Size of contents in memory. */
Flags uint32; /* Access permission flags. */
Align uint32; /* Alignment in memory and file. */
}
/*
* ELF32 Dynamic structure. The ".dynamic" section contains an array of them.
*/
type Dyn32 struct {
Tag int32; /* Entry type. */
Val uint32; /* Integer/Address value. */
}
/*
* Relocation entries.
*/
// ELF32 Relocations that don't need an addend field.
type Rel32 struct {
Off uint32; /* Location to be relocated. */
Info uint32; /* Relocation type and symbol index. */
}
// ELF32 Relocations that need an addend field.
type Rela32 struct {
Off uint32; /* Location to be relocated. */
Info uint32; /* Relocation type and symbol index. */
Addend int32; /* Addend. */
}
func R_SYM32(info uint32) uint32 { return uint32(info >> 8) }
func R_TYPE32(info uint32) uint32 { return uint32(info & 0xff) }
func R_INFO32(sym, typ uint32) uint32 { return sym<<8 | typ }
// ELF32 Symbol.
type Sym32 struct {
Name uint32;
Value uint32;
Size uint32;
Info uint8;
Other uint8;
Shndx uint16;
}
const Sym32Size = 16
func ST_BIND(info uint8) SymBind { return SymBind(info >> 4) }
func ST_TYPE(bind SymBind, typ SymType) uint8 { return uint8(bind)<<4 | uint8(typ)&0xf }
func ST_VISIBILITY(other uint8) SymVis { return SymVis(other & 3) }
/*
* ELF64
*/
/*
* ELF64 file header.
*/
type Header64 struct {
Ident [EI_NIDENT]byte; /* File identification. */
Type uint16; /* File type. */
Machine uint16; /* Machine architecture. */
Version uint32; /* ELF format version. */
Entry uint64; /* Entry point. */
Phoff uint64; /* Program header file offset. */
Shoff uint64; /* Section header file offset. */
Flags uint32; /* Architecture-specific flags. */
Ehsize uint16; /* Size of ELF header in bytes. */
Phentsize uint16; /* Size of program header entry. */
Phnum uint16; /* Number of program header entries. */
Shentsize uint16; /* Size of section header entry. */
Shnum uint16; /* Number of section header entries. */
Shstrndx uint16; /* Section name strings section. */
}
/*
* ELF64 Section header.
*/
type Section64 struct {
Name uint32; /* Section name (index into the section header string table). */
Type uint32; /* Section type. */
Flags uint64; /* Section flags. */
Addr uint64; /* Address in memory image. */
Off uint64; /* Offset in file. */
Size uint64; /* Size in bytes. */
Link uint32; /* Index of a related section. */
Info uint32; /* Depends on section type. */
Addralign uint64; /* Alignment in bytes. */
Entsize uint64; /* Size of each entry in section. */
}
/*
* ELF64 Program header.
*/
type Prog64 struct {
Type uint32; /* Entry type. */
Flags uint32; /* Access permission flags. */
Off uint64; /* File offset of contents. */
Vaddr uint64; /* Virtual address in memory image. */
Paddr uint64; /* Physical address (not used). */
Filesz uint64; /* Size of contents in file. */
Memsz uint64; /* Size of contents in memory. */
Align uint64; /* Alignment in memory and file. */
}
/*
* ELF64 Dynamic structure. The ".dynamic" section contains an array of them.
*/
type Dyn64 struct {
Tag int64; /* Entry type. */
Val uint64; /* Integer/address value */
}
/*
* Relocation entries.
*/
/* ELF64 relocations that don't need an addend field. */
type Rel64 struct {
Off uint64; /* Location to be relocated. */
Info uint64; /* Relocation type and symbol index. */
}
/* ELF64 relocations that need an addend field. */
type Rela64 struct {
Off uint64; /* Location to be relocated. */
Info uint64; /* Relocation type and symbol index. */
Addend int64; /* Addend. */
}
func R_SYM64(info uint64) uint32 { return uint32(info >> 32) }
func R_TYPE64(info uint64) uint32 { return uint32(info) }
func R_INFO(sym, typ uint32) uint64 { return uint64(sym)<<32 | uint64(typ) }
/*
* ELF64 symbol table entries.
*/
type Sym64 struct {
Name uint32; /* String table index of name. */
Info uint8; /* Type and binding information. */
Other uint8; /* Reserved (not used). */
Shndx uint16; /* Section index of symbol. */
Value uint64; /* Symbol value. */
Size uint64; /* Size of associated object. */
}
const Sym64Size = 24
type intName struct {
i uint32;
s string;
}
func stringName(i uint32, names []intName, goSyntax bool) string {
for _, n := range names {
if n.i == i {
if goSyntax {
return "elf." + n.s
}
return n.s;
}
}
// second pass - look for smaller to add with.
// assume sorted already
for j := len(names) - 1; j >= 0; j-- {
n := names[j];
if n.i < i {
s := n.s;
if goSyntax {
s = "elf." + s
}
return s + "+" + strconv.Uitoa64(uint64(i-n.i));
}
}
return strconv.Uitoa64(uint64(i));
}
func flagName(i uint32, names []intName, goSyntax bool) string {
s := "";
for _, n := range names {
if n.i&i == n.i {
if len(s) > 0 {
s += "+"
}
if goSyntax {
s += "elf."
}
s += n.s;
i -= n.i;
}
}
if len(s) == 0 {
return "0x" + strconv.Uitob64(uint64(i), 16)
}
if i != 0 {
s += "+0x" + strconv.Uitob64(uint64(i), 16)
}
return s;
}