| // Copyright 2011 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package jpeg |
| |
| import ( |
| "bufio" |
| "errors" |
| "image" |
| "image/color" |
| "io" |
| ) |
| |
| // min returns the minimum of two integers. |
| func min(x, y int) int { |
| if x < y { |
| return x |
| } |
| return y |
| } |
| |
| // div returns a/b rounded to the nearest integer, instead of rounded to zero. |
| func div(a, b int32) int32 { |
| if a >= 0 { |
| return (a + (b >> 1)) / b |
| } |
| return -((-a + (b >> 1)) / b) |
| } |
| |
| // bitCount counts the number of bits needed to hold an integer. |
| var bitCount = [256]byte{ |
| 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, |
| 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, |
| 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, |
| 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, |
| 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
| 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
| 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
| 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
| 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
| 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
| 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
| 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
| 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
| 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
| 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
| 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
| } |
| |
| type quantIndex int |
| |
| const ( |
| quantIndexLuminance quantIndex = iota |
| quantIndexChrominance |
| nQuantIndex |
| ) |
| |
| // unscaledQuant are the unscaled quantization tables in zig-zag order. Each |
| // encoder copies and scales the tables according to its quality parameter. |
| // The values are derived from section K.1 after converting from natural to |
| // zig-zag order. |
| var unscaledQuant = [nQuantIndex][blockSize]byte{ |
| // Luminance. |
| { |
| 16, 11, 12, 14, 12, 10, 16, 14, |
| 13, 14, 18, 17, 16, 19, 24, 40, |
| 26, 24, 22, 22, 24, 49, 35, 37, |
| 29, 40, 58, 51, 61, 60, 57, 51, |
| 56, 55, 64, 72, 92, 78, 64, 68, |
| 87, 69, 55, 56, 80, 109, 81, 87, |
| 95, 98, 103, 104, 103, 62, 77, 113, |
| 121, 112, 100, 120, 92, 101, 103, 99, |
| }, |
| // Chrominance. |
| { |
| 17, 18, 18, 24, 21, 24, 47, 26, |
| 26, 47, 99, 66, 56, 66, 99, 99, |
| 99, 99, 99, 99, 99, 99, 99, 99, |
| 99, 99, 99, 99, 99, 99, 99, 99, |
| 99, 99, 99, 99, 99, 99, 99, 99, |
| 99, 99, 99, 99, 99, 99, 99, 99, |
| 99, 99, 99, 99, 99, 99, 99, 99, |
| 99, 99, 99, 99, 99, 99, 99, 99, |
| }, |
| } |
| |
| type huffIndex int |
| |
| const ( |
| huffIndexLuminanceDC huffIndex = iota |
| huffIndexLuminanceAC |
| huffIndexChrominanceDC |
| huffIndexChrominanceAC |
| nHuffIndex |
| ) |
| |
| // huffmanSpec specifies a Huffman encoding. |
| type huffmanSpec struct { |
| // count[i] is the number of codes of length i bits. |
| count [16]byte |
| // value[i] is the decoded value of the i'th codeword. |
| value []byte |
| } |
| |
| // theHuffmanSpec is the Huffman encoding specifications. |
| // This encoder uses the same Huffman encoding for all images. |
| var theHuffmanSpec = [nHuffIndex]huffmanSpec{ |
| // Luminance DC. |
| { |
| [16]byte{0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0}, |
| []byte{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, |
| }, |
| // Luminance AC. |
| { |
| [16]byte{0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 125}, |
| []byte{ |
| 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, |
| 0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07, |
| 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08, |
| 0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0, |
| 0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16, |
| 0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28, |
| 0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, |
| 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, |
| 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, |
| 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, |
| 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, |
| 0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, |
| 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, |
| 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, |
| 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, |
| 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, |
| 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4, |
| 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2, |
| 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, |
| 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, |
| 0xf9, 0xfa, |
| }, |
| }, |
| // Chrominance DC. |
| { |
| [16]byte{0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0}, |
| []byte{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, |
| }, |
| // Chrominance AC. |
| { |
| [16]byte{0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 119}, |
| []byte{ |
| 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, |
| 0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71, |
| 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, |
| 0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0, |
| 0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34, |
| 0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26, |
| 0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38, |
| 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, |
| 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, |
| 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, |
| 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, |
| 0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, |
| 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, |
| 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, |
| 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, |
| 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, |
| 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, |
| 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, |
| 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, |
| 0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, |
| 0xf9, 0xfa, |
| }, |
| }, |
| } |
| |
| // huffmanLUT is a compiled look-up table representation of a huffmanSpec. |
| // Each value maps to a uint32 of which the 8 most significant bits hold the |
| // codeword size in bits and the 24 least significant bits hold the codeword. |
| // The maximum codeword size is 16 bits. |
| type huffmanLUT []uint32 |
| |
| func (h *huffmanLUT) init(s huffmanSpec) { |
| maxValue := 0 |
| for _, v := range s.value { |
| if int(v) > maxValue { |
| maxValue = int(v) |
| } |
| } |
| *h = make([]uint32, maxValue+1) |
| code, k := uint32(0), 0 |
| for i := 0; i < len(s.count); i++ { |
| nBits := uint32(i+1) << 24 |
| for j := uint8(0); j < s.count[i]; j++ { |
| (*h)[s.value[k]] = nBits | code |
| code++ |
| k++ |
| } |
| code <<= 1 |
| } |
| } |
| |
| // theHuffmanLUT are compiled representations of theHuffmanSpec. |
| var theHuffmanLUT [4]huffmanLUT |
| |
| func init() { |
| for i, s := range theHuffmanSpec { |
| theHuffmanLUT[i].init(s) |
| } |
| } |
| |
| // writer is a buffered writer. |
| type writer interface { |
| Flush() error |
| io.Writer |
| io.ByteWriter |
| } |
| |
| // encoder encodes an image to the JPEG format. |
| type encoder struct { |
| // w is the writer to write to. err is the first error encountered during |
| // writing. All attempted writes after the first error become no-ops. |
| w writer |
| err error |
| // buf is a scratch buffer. |
| buf [16]byte |
| // bits and nBits are accumulated bits to write to w. |
| bits, nBits uint32 |
| // quant is the scaled quantization tables, in zig-zag order. |
| quant [nQuantIndex][blockSize]byte |
| } |
| |
| func (e *encoder) flush() { |
| if e.err != nil { |
| return |
| } |
| e.err = e.w.Flush() |
| } |
| |
| func (e *encoder) write(p []byte) { |
| if e.err != nil { |
| return |
| } |
| _, e.err = e.w.Write(p) |
| } |
| |
| func (e *encoder) writeByte(b byte) { |
| if e.err != nil { |
| return |
| } |
| e.err = e.w.WriteByte(b) |
| } |
| |
| // emit emits the least significant nBits bits of bits to the bit-stream. |
| // The precondition is bits < 1<<nBits && nBits <= 16. |
| func (e *encoder) emit(bits, nBits uint32) { |
| nBits += e.nBits |
| bits <<= 32 - nBits |
| bits |= e.bits |
| for nBits >= 8 { |
| b := uint8(bits >> 24) |
| e.writeByte(b) |
| if b == 0xff { |
| e.writeByte(0x00) |
| } |
| bits <<= 8 |
| nBits -= 8 |
| } |
| e.bits, e.nBits = bits, nBits |
| } |
| |
| // emitHuff emits the given value with the given Huffman encoder. |
| func (e *encoder) emitHuff(h huffIndex, value int32) { |
| x := theHuffmanLUT[h][value] |
| e.emit(x&(1<<24-1), x>>24) |
| } |
| |
| // emitHuffRLE emits a run of runLength copies of value encoded with the given |
| // Huffman encoder. |
| func (e *encoder) emitHuffRLE(h huffIndex, runLength, value int32) { |
| a, b := value, value |
| if a < 0 { |
| a, b = -value, value-1 |
| } |
| var nBits uint32 |
| if a < 0x100 { |
| nBits = uint32(bitCount[a]) |
| } else { |
| nBits = 8 + uint32(bitCount[a>>8]) |
| } |
| e.emitHuff(h, runLength<<4|int32(nBits)) |
| if nBits > 0 { |
| e.emit(uint32(b)&(1<<nBits-1), nBits) |
| } |
| } |
| |
| // writeMarkerHeader writes the header for a marker with the given length. |
| func (e *encoder) writeMarkerHeader(marker uint8, markerlen int) { |
| e.buf[0] = 0xff |
| e.buf[1] = marker |
| e.buf[2] = uint8(markerlen >> 8) |
| e.buf[3] = uint8(markerlen & 0xff) |
| e.write(e.buf[:4]) |
| } |
| |
| // writeDQT writes the Define Quantization Table marker. |
| func (e *encoder) writeDQT() { |
| const markerlen = 2 + int(nQuantIndex)*(1+blockSize) |
| e.writeMarkerHeader(dqtMarker, markerlen) |
| for i := range e.quant { |
| e.writeByte(uint8(i)) |
| e.write(e.quant[i][:]) |
| } |
| } |
| |
| // writeSOF0 writes the Start Of Frame (Baseline) marker. |
| func (e *encoder) writeSOF0(size image.Point, nComponent int) { |
| markerlen := 8 + 3*nComponent |
| e.writeMarkerHeader(sof0Marker, markerlen) |
| e.buf[0] = 8 // 8-bit color. |
| e.buf[1] = uint8(size.Y >> 8) |
| e.buf[2] = uint8(size.Y & 0xff) |
| e.buf[3] = uint8(size.X >> 8) |
| e.buf[4] = uint8(size.X & 0xff) |
| e.buf[5] = uint8(nComponent) |
| if nComponent == 1 { |
| e.buf[6] = 1 |
| // No subsampling for grayscale image. |
| e.buf[7] = 0x11 |
| e.buf[8] = 0x00 |
| } else { |
| for i := 0; i < nComponent; i++ { |
| e.buf[3*i+6] = uint8(i + 1) |
| // We use 4:2:0 chroma subsampling. |
| e.buf[3*i+7] = "\x22\x11\x11"[i] |
| e.buf[3*i+8] = "\x00\x01\x01"[i] |
| } |
| } |
| e.write(e.buf[:3*(nComponent-1)+9]) |
| } |
| |
| // writeDHT writes the Define Huffman Table marker. |
| func (e *encoder) writeDHT(nComponent int) { |
| markerlen := 2 |
| specs := theHuffmanSpec[:] |
| if nComponent == 1 { |
| // Drop the Chrominance tables. |
| specs = specs[:2] |
| } |
| for _, s := range specs { |
| markerlen += 1 + 16 + len(s.value) |
| } |
| e.writeMarkerHeader(dhtMarker, markerlen) |
| for i, s := range specs { |
| e.writeByte("\x00\x10\x01\x11"[i]) |
| e.write(s.count[:]) |
| e.write(s.value) |
| } |
| } |
| |
| // writeBlock writes a block of pixel data using the given quantization table, |
| // returning the post-quantized DC value of the DCT-transformed block. b is in |
| // natural (not zig-zag) order. |
| func (e *encoder) writeBlock(b *block, q quantIndex, prevDC int32) int32 { |
| fdct(b) |
| // Emit the DC delta. |
| dc := div(b[0], 8*int32(e.quant[q][0])) |
| e.emitHuffRLE(huffIndex(2*q+0), 0, dc-prevDC) |
| // Emit the AC components. |
| h, runLength := huffIndex(2*q+1), int32(0) |
| for zig := 1; zig < blockSize; zig++ { |
| ac := div(b[unzig[zig]], 8*int32(e.quant[q][zig])) |
| if ac == 0 { |
| runLength++ |
| } else { |
| for runLength > 15 { |
| e.emitHuff(h, 0xf0) |
| runLength -= 16 |
| } |
| e.emitHuffRLE(h, runLength, ac) |
| runLength = 0 |
| } |
| } |
| if runLength > 0 { |
| e.emitHuff(h, 0x00) |
| } |
| return dc |
| } |
| |
| // toYCbCr converts the 8x8 region of m whose top-left corner is p to its |
| // YCbCr values. |
| func toYCbCr(m image.Image, p image.Point, yBlock, cbBlock, crBlock *block) { |
| b := m.Bounds() |
| xmax := b.Max.X - 1 |
| ymax := b.Max.Y - 1 |
| for j := 0; j < 8; j++ { |
| for i := 0; i < 8; i++ { |
| r, g, b, _ := m.At(min(p.X+i, xmax), min(p.Y+j, ymax)).RGBA() |
| yy, cb, cr := color.RGBToYCbCr(uint8(r>>8), uint8(g>>8), uint8(b>>8)) |
| yBlock[8*j+i] = int32(yy) |
| cbBlock[8*j+i] = int32(cb) |
| crBlock[8*j+i] = int32(cr) |
| } |
| } |
| } |
| |
| // grayToY stores the 8x8 region of m whose top-left corner is p in yBlock. |
| func grayToY(m *image.Gray, p image.Point, yBlock *block) { |
| b := m.Bounds() |
| xmax := b.Max.X - 1 |
| ymax := b.Max.Y - 1 |
| pix := m.Pix |
| for j := 0; j < 8; j++ { |
| for i := 0; i < 8; i++ { |
| idx := m.PixOffset(min(p.X+i, xmax), min(p.Y+j, ymax)) |
| yBlock[8*j+i] = int32(pix[idx]) |
| } |
| } |
| } |
| |
| // rgbaToYCbCr is a specialized version of toYCbCr for image.RGBA images. |
| func rgbaToYCbCr(m *image.RGBA, p image.Point, yBlock, cbBlock, crBlock *block) { |
| b := m.Bounds() |
| xmax := b.Max.X - 1 |
| ymax := b.Max.Y - 1 |
| for j := 0; j < 8; j++ { |
| sj := p.Y + j |
| if sj > ymax { |
| sj = ymax |
| } |
| offset := (sj-b.Min.Y)*m.Stride - b.Min.X*4 |
| for i := 0; i < 8; i++ { |
| sx := p.X + i |
| if sx > xmax { |
| sx = xmax |
| } |
| pix := m.Pix[offset+sx*4:] |
| yy, cb, cr := color.RGBToYCbCr(pix[0], pix[1], pix[2]) |
| yBlock[8*j+i] = int32(yy) |
| cbBlock[8*j+i] = int32(cb) |
| crBlock[8*j+i] = int32(cr) |
| } |
| } |
| } |
| |
| // scale scales the 16x16 region represented by the 4 src blocks to the 8x8 |
| // dst block. |
| func scale(dst *block, src *[4]block) { |
| for i := 0; i < 4; i++ { |
| dstOff := (i&2)<<4 | (i&1)<<2 |
| for y := 0; y < 4; y++ { |
| for x := 0; x < 4; x++ { |
| j := 16*y + 2*x |
| sum := src[i][j] + src[i][j+1] + src[i][j+8] + src[i][j+9] |
| dst[8*y+x+dstOff] = (sum + 2) >> 2 |
| } |
| } |
| } |
| } |
| |
| // sosHeaderY is the SOS marker "\xff\xda" followed by 8 bytes: |
| // - the marker length "\x00\x08", |
| // - the number of components "\x01", |
| // - component 1 uses DC table 0 and AC table 0 "\x01\x00", |
| // - the bytes "\x00\x3f\x00". Section B.2.3 of the spec says that for |
| // sequential DCTs, those bytes (8-bit Ss, 8-bit Se, 4-bit Ah, 4-bit Al) |
| // should be 0x00, 0x3f, 0x00<<4 | 0x00. |
| var sosHeaderY = []byte{ |
| 0xff, 0xda, 0x00, 0x08, 0x01, 0x01, 0x00, 0x00, 0x3f, 0x00, |
| } |
| |
| // sosHeaderYCbCr is the SOS marker "\xff\xda" followed by 12 bytes: |
| // - the marker length "\x00\x0c", |
| // - the number of components "\x03", |
| // - component 1 uses DC table 0 and AC table 0 "\x01\x00", |
| // - component 2 uses DC table 1 and AC table 1 "\x02\x11", |
| // - component 3 uses DC table 1 and AC table 1 "\x03\x11", |
| // - the bytes "\x00\x3f\x00". Section B.2.3 of the spec says that for |
| // sequential DCTs, those bytes (8-bit Ss, 8-bit Se, 4-bit Ah, 4-bit Al) |
| // should be 0x00, 0x3f, 0x00<<4 | 0x00. |
| var sosHeaderYCbCr = []byte{ |
| 0xff, 0xda, 0x00, 0x0c, 0x03, 0x01, 0x00, 0x02, |
| 0x11, 0x03, 0x11, 0x00, 0x3f, 0x00, |
| } |
| |
| // writeSOS writes the StartOfScan marker. |
| func (e *encoder) writeSOS(m image.Image) { |
| switch m.(type) { |
| case *image.Gray: |
| e.write(sosHeaderY) |
| default: |
| e.write(sosHeaderYCbCr) |
| } |
| var ( |
| // Scratch buffers to hold the YCbCr values. |
| // The blocks are in natural (not zig-zag) order. |
| b block |
| cb, cr [4]block |
| // DC components are delta-encoded. |
| prevDCY, prevDCCb, prevDCCr int32 |
| ) |
| bounds := m.Bounds() |
| switch m := m.(type) { |
| // TODO(wathiede): switch on m.ColorModel() instead of type. |
| case *image.Gray: |
| for y := bounds.Min.Y; y < bounds.Max.Y; y += 8 { |
| for x := bounds.Min.X; x < bounds.Max.X; x += 8 { |
| p := image.Pt(x, y) |
| grayToY(m, p, &b) |
| prevDCY = e.writeBlock(&b, 0, prevDCY) |
| } |
| } |
| default: |
| rgba, _ := m.(*image.RGBA) |
| for y := bounds.Min.Y; y < bounds.Max.Y; y += 16 { |
| for x := bounds.Min.X; x < bounds.Max.X; x += 16 { |
| for i := 0; i < 4; i++ { |
| xOff := (i & 1) * 8 |
| yOff := (i & 2) * 4 |
| p := image.Pt(x+xOff, y+yOff) |
| if rgba != nil { |
| rgbaToYCbCr(rgba, p, &b, &cb[i], &cr[i]) |
| } else { |
| toYCbCr(m, p, &b, &cb[i], &cr[i]) |
| } |
| prevDCY = e.writeBlock(&b, 0, prevDCY) |
| } |
| scale(&b, &cb) |
| prevDCCb = e.writeBlock(&b, 1, prevDCCb) |
| scale(&b, &cr) |
| prevDCCr = e.writeBlock(&b, 1, prevDCCr) |
| } |
| } |
| } |
| // Pad the last byte with 1's. |
| e.emit(0x7f, 7) |
| } |
| |
| // DefaultQuality is the default quality encoding parameter. |
| const DefaultQuality = 75 |
| |
| // Options are the encoding parameters. |
| // Quality ranges from 1 to 100 inclusive, higher is better. |
| type Options struct { |
| Quality int |
| } |
| |
| // Encode writes the Image m to w in JPEG 4:2:0 baseline format with the given |
| // options. Default parameters are used if a nil *Options is passed. |
| func Encode(w io.Writer, m image.Image, o *Options) error { |
| b := m.Bounds() |
| if b.Dx() >= 1<<16 || b.Dy() >= 1<<16 { |
| return errors.New("jpeg: image is too large to encode") |
| } |
| var e encoder |
| if ww, ok := w.(writer); ok { |
| e.w = ww |
| } else { |
| e.w = bufio.NewWriter(w) |
| } |
| // Clip quality to [1, 100]. |
| quality := DefaultQuality |
| if o != nil { |
| quality = o.Quality |
| if quality < 1 { |
| quality = 1 |
| } else if quality > 100 { |
| quality = 100 |
| } |
| } |
| // Convert from a quality rating to a scaling factor. |
| var scale int |
| if quality < 50 { |
| scale = 5000 / quality |
| } else { |
| scale = 200 - quality*2 |
| } |
| // Initialize the quantization tables. |
| for i := range e.quant { |
| for j := range e.quant[i] { |
| x := int(unscaledQuant[i][j]) |
| x = (x*scale + 50) / 100 |
| if x < 1 { |
| x = 1 |
| } else if x > 255 { |
| x = 255 |
| } |
| e.quant[i][j] = uint8(x) |
| } |
| } |
| // Compute number of components based on input image type. |
| nComponent := 3 |
| switch m.(type) { |
| // TODO(wathiede): switch on m.ColorModel() instead of type. |
| case *image.Gray: |
| nComponent = 1 |
| } |
| // Write the Start Of Image marker. |
| e.buf[0] = 0xff |
| e.buf[1] = 0xd8 |
| e.write(e.buf[:2]) |
| // Write the quantization tables. |
| e.writeDQT() |
| // Write the image dimensions. |
| e.writeSOF0(b.Size(), nComponent) |
| // Write the Huffman tables. |
| e.writeDHT(nComponent) |
| // Write the image data. |
| e.writeSOS(m) |
| // Write the End Of Image marker. |
| e.buf[0] = 0xff |
| e.buf[1] = 0xd9 |
| e.write(e.buf[:2]) |
| e.flush() |
| return e.err |
| } |