| // $G $D/$F.go && $L $F.$A && ./$A.out |
| |
| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Power series package |
| // A power series is a channel, along which flow rational |
| // coefficients. A denominator of zero signifies the end. |
| // Original code in Newsqueak by Doug McIlroy. |
| // See Squinting at Power Series by Doug McIlroy, |
| // http://www.cs.bell-labs.com/who/rsc/thread/squint.pdf |
| // Like powser1.go but uses channels of interfaces. |
| // Has not been cleaned up as much as powser1.go, to keep |
| // it distinct and therefore a different test. |
| |
| package main |
| |
| import "os" |
| |
| type rat struct { |
| num, den int64 // numerator, denominator |
| } |
| |
| type item interface { |
| pr() |
| eq(c item) bool |
| } |
| |
| func (u *rat) pr(){ |
| if u.den==1 { |
| print(u.num) |
| } else { |
| print(u.num, "/", u.den) |
| } |
| print(" ") |
| } |
| |
| func (u *rat) eq(c item) bool { |
| c1 := c.(*rat) |
| return u.num == c1.num && u.den == c1.den |
| } |
| |
| type dch struct { |
| req chan int |
| dat chan item |
| nam int |
| } |
| |
| type dch2 [2] *dch |
| |
| var chnames string |
| var chnameserial int |
| var seqno int |
| |
| func mkdch() *dch { |
| c := chnameserial % len(chnames) |
| chnameserial++ |
| d := new(dch) |
| d.req = make(chan int) |
| d.dat = make(chan item) |
| d.nam = c |
| return d |
| } |
| |
| func mkdch2() *dch2 { |
| d2 := new(dch2) |
| d2[0] = mkdch() |
| d2[1] = mkdch() |
| return d2 |
| } |
| |
| // split reads a single demand channel and replicates its |
| // output onto two, which may be read at different rates. |
| // A process is created at first demand for an item and dies |
| // after the item has been sent to both outputs. |
| |
| // When multiple generations of split exist, the newest |
| // will service requests on one channel, which is |
| // always renamed to be out[0]; the oldest will service |
| // requests on the other channel, out[1]. All generations but the |
| // newest hold queued data that has already been sent to |
| // out[0]. When data has finally been sent to out[1], |
| // a signal on the release-wait channel tells the next newer |
| // generation to begin servicing out[1]. |
| |
| func dosplit(in *dch, out *dch2, wait chan int ){ |
| both := false // do not service both channels |
| |
| select { |
| case <-out[0].req: |
| |
| case <-wait: |
| both = true |
| select { |
| case <-out[0].req: |
| |
| case <-out[1].req: |
| out[0],out[1] = out[1], out[0] |
| } |
| } |
| |
| seqno++ |
| in.req <- seqno |
| release := make(chan int) |
| go dosplit(in, out, release) |
| dat := <-in.dat |
| out[0].dat <- dat |
| if !both { |
| <-wait |
| } |
| <-out[1].req |
| out[1].dat <- dat |
| release <- 0 |
| } |
| |
| func split(in *dch, out *dch2){ |
| release := make(chan int) |
| go dosplit(in, out, release) |
| release <- 0 |
| } |
| |
| func put(dat item, out *dch){ |
| <-out.req |
| out.dat <- dat |
| } |
| |
| func get(in *dch) *rat { |
| seqno++ |
| in.req <- seqno |
| return (<-in.dat).(*rat) |
| } |
| |
| // Get one item from each of n demand channels |
| |
| func getn(in []*dch) []item { |
| n:=len(in) |
| if n != 2 { panic("bad n in getn") } |
| req := make([] chan int, 2) |
| dat := make([] chan item, 2) |
| out := make([]item, 2) |
| var i int |
| var it item |
| for i=0; i<n; i++ { |
| req[i] = in[i].req |
| dat[i] = nil |
| } |
| for n=2*n; n>0; n-- { |
| seqno++ |
| |
| select{ |
| case req[0] <- seqno: |
| dat[0] = in[0].dat |
| req[0] = nil |
| case req[1] <- seqno: |
| dat[1] = in[1].dat |
| req[1] = nil |
| case it = <-dat[0]: |
| out[0] = it |
| dat[0] = nil |
| case it = <-dat[1]: |
| out[1] = it |
| dat[1] = nil |
| } |
| } |
| return out |
| } |
| |
| // Get one item from each of 2 demand channels |
| |
| func get2(in0 *dch, in1 *dch) []item { |
| return getn([]*dch{in0, in1}) |
| } |
| |
| func copy(in *dch, out *dch){ |
| for { |
| <-out.req |
| out.dat <- get(in) |
| } |
| } |
| |
| func repeat(dat item, out *dch){ |
| for { |
| put(dat, out) |
| } |
| } |
| |
| type PS *dch // power series |
| type PS2 *[2] PS // pair of power series |
| |
| var Ones PS |
| var Twos PS |
| |
| func mkPS() *dch { |
| return mkdch() |
| } |
| |
| func mkPS2() *dch2 { |
| return mkdch2() |
| } |
| |
| // Conventions |
| // Upper-case for power series. |
| // Lower-case for rationals. |
| // Input variables: U,V,... |
| // Output variables: ...,Y,Z |
| |
| // Integer gcd; needed for rational arithmetic |
| |
| func gcd (u, v int64) int64{ |
| if u < 0 { return gcd(-u, v) } |
| if u == 0 { return v } |
| return gcd(v%u, u) |
| } |
| |
| // Make a rational from two ints and from one int |
| |
| func i2tor(u, v int64) *rat{ |
| g := gcd(u,v) |
| r := new(rat) |
| if v > 0 { |
| r.num = u/g |
| r.den = v/g |
| } else { |
| r.num = -u/g |
| r.den = -v/g |
| } |
| return r |
| } |
| |
| func itor(u int64) *rat{ |
| return i2tor(u, 1) |
| } |
| |
| var zero *rat |
| var one *rat |
| |
| |
| // End mark and end test |
| |
| var finis *rat |
| |
| func end(u *rat) int64 { |
| if u.den==0 { return 1 } |
| return 0 |
| } |
| |
| // Operations on rationals |
| |
| func add(u, v *rat) *rat { |
| g := gcd(u.den,v.den) |
| return i2tor(u.num*(v.den/g)+v.num*(u.den/g),u.den*(v.den/g)) |
| } |
| |
| func mul(u, v *rat) *rat{ |
| g1 := gcd(u.num,v.den) |
| g2 := gcd(u.den,v.num) |
| r := new(rat) |
| r.num =(u.num/g1)*(v.num/g2) |
| r.den = (u.den/g2)*(v.den/g1) |
| return r |
| } |
| |
| func neg(u *rat) *rat{ |
| return i2tor(-u.num, u.den) |
| } |
| |
| func sub(u, v *rat) *rat{ |
| return add(u, neg(v)) |
| } |
| |
| func inv(u *rat) *rat{ // invert a rat |
| if u.num == 0 { panic("zero divide in inv") } |
| return i2tor(u.den, u.num) |
| } |
| |
| // print eval in floating point of PS at x=c to n terms |
| func Evaln(c *rat, U PS, n int) { |
| xn := float64(1) |
| x := float64(c.num)/float64(c.den) |
| val := float64(0) |
| for i:=0; i<n; i++ { |
| u := get(U) |
| if end(u) != 0 { |
| break |
| } |
| val = val + x * float64(u.num)/float64(u.den) |
| xn = xn*x |
| } |
| print(val, "\n") |
| } |
| |
| // Print n terms of a power series |
| func Printn(U PS, n int){ |
| done := false |
| for ; !done && n>0; n-- { |
| u := get(U) |
| if end(u) != 0 { |
| done = true |
| } else { |
| u.pr() |
| } |
| } |
| print(("\n")) |
| } |
| |
| func Print(U PS){ |
| Printn(U,1000000000) |
| } |
| |
| // Evaluate n terms of power series U at x=c |
| func eval(c *rat, U PS, n int) *rat{ |
| if n==0 { return zero } |
| y := get(U) |
| if end(y) != 0 { return zero } |
| return add(y,mul(c,eval(c,U,n-1))) |
| } |
| |
| // Power-series constructors return channels on which power |
| // series flow. They start an encapsulated generator that |
| // puts the terms of the series on the channel. |
| |
| // Make a pair of power series identical to a given power series |
| |
| func Split(U PS) *dch2{ |
| UU := mkdch2() |
| go split(U,UU) |
| return UU |
| } |
| |
| // Add two power series |
| func Add(U, V PS) PS{ |
| Z := mkPS() |
| go func(U, V, Z PS){ |
| var uv [] item |
| for { |
| <-Z.req |
| uv = get2(U,V) |
| switch end(uv[0].(*rat))+2*end(uv[1].(*rat)) { |
| case 0: |
| Z.dat <- add(uv[0].(*rat), uv[1].(*rat)) |
| case 1: |
| Z.dat <- uv[1] |
| copy(V,Z) |
| case 2: |
| Z.dat <- uv[0] |
| copy(U,Z) |
| case 3: |
| Z.dat <- finis |
| } |
| } |
| }(U, V, Z) |
| return Z |
| } |
| |
| // Multiply a power series by a constant |
| func Cmul(c *rat,U PS) PS{ |
| Z := mkPS() |
| go func(c *rat, U, Z PS){ |
| done := false |
| for !done { |
| <-Z.req |
| u := get(U) |
| if end(u) != 0 { |
| done = true |
| } else { |
| Z.dat <- mul(c,u) |
| } |
| } |
| Z.dat <- finis |
| }(c, U, Z) |
| return Z |
| } |
| |
| // Subtract |
| |
| func Sub(U, V PS) PS{ |
| return Add(U, Cmul(neg(one), V)) |
| } |
| |
| // Multiply a power series by the monomial x^n |
| |
| func Monmul(U PS, n int) PS{ |
| Z := mkPS() |
| go func(n int, U PS, Z PS){ |
| for ; n>0; n-- { put(zero,Z) } |
| copy(U,Z) |
| }(n, U, Z) |
| return Z |
| } |
| |
| // Multiply by x |
| |
| func Xmul(U PS) PS{ |
| return Monmul(U,1) |
| } |
| |
| func Rep(c *rat) PS{ |
| Z := mkPS() |
| go repeat(c,Z) |
| return Z |
| } |
| |
| // Monomial c*x^n |
| |
| func Mon(c *rat, n int) PS{ |
| Z:=mkPS() |
| go func(c *rat, n int, Z PS){ |
| if(c.num!=0) { |
| for ; n>0; n=n-1 { put(zero,Z) } |
| put(c,Z) |
| } |
| put(finis,Z) |
| }(c, n, Z) |
| return Z |
| } |
| |
| func Shift(c *rat, U PS) PS{ |
| Z := mkPS() |
| go func(c *rat, U, Z PS){ |
| put(c,Z) |
| copy(U,Z) |
| }(c, U, Z) |
| return Z |
| } |
| |
| // simple pole at 1: 1/(1-x) = 1 1 1 1 1 ... |
| |
| // Convert array of coefficients, constant term first |
| // to a (finite) power series |
| |
| /* |
| func Poly(a [] *rat) PS{ |
| Z:=mkPS() |
| begin func(a [] *rat, Z PS){ |
| j:=0 |
| done:=0 |
| for j=len(a); !done&&j>0; j=j-1) |
| if(a[j-1].num!=0) done=1 |
| i:=0 |
| for(; i<j; i=i+1) put(a[i],Z) |
| put(finis,Z) |
| }() |
| return Z |
| } |
| */ |
| |
| // Multiply. The algorithm is |
| // let U = u + x*UU |
| // let V = v + x*VV |
| // then UV = u*v + x*(u*VV+v*UU) + x*x*UU*VV |
| |
| func Mul(U, V PS) PS{ |
| Z:=mkPS() |
| go func(U, V, Z PS){ |
| <-Z.req |
| uv := get2(U,V) |
| if end(uv[0].(*rat))!=0 || end(uv[1].(*rat)) != 0 { |
| Z.dat <- finis |
| } else { |
| Z.dat <- mul(uv[0].(*rat),uv[1].(*rat)) |
| UU := Split(U) |
| VV := Split(V) |
| W := Add(Cmul(uv[0].(*rat),VV[0]),Cmul(uv[1].(*rat),UU[0])) |
| <-Z.req |
| Z.dat <- get(W) |
| copy(Add(W,Mul(UU[1],VV[1])),Z) |
| } |
| }(U, V, Z) |
| return Z |
| } |
| |
| // Differentiate |
| |
| func Diff(U PS) PS{ |
| Z:=mkPS() |
| go func(U, Z PS){ |
| <-Z.req |
| u := get(U) |
| if end(u) == 0 { |
| done:=false |
| for i:=1; !done; i++ { |
| u = get(U) |
| if end(u) != 0 { |
| done=true |
| } else { |
| Z.dat <- mul(itor(int64(i)),u) |
| <-Z.req |
| } |
| } |
| } |
| Z.dat <- finis |
| }(U, Z) |
| return Z |
| } |
| |
| // Integrate, with const of integration |
| func Integ(c *rat,U PS) PS{ |
| Z:=mkPS() |
| go func(c *rat, U, Z PS){ |
| put(c,Z) |
| done:=false |
| for i:=1; !done; i++ { |
| <-Z.req |
| u := get(U) |
| if end(u) != 0 { done= true } |
| Z.dat <- mul(i2tor(1,int64(i)),u) |
| } |
| Z.dat <- finis |
| }(c, U, Z) |
| return Z |
| } |
| |
| // Binomial theorem (1+x)^c |
| |
| func Binom(c *rat) PS{ |
| Z:=mkPS() |
| go func(c *rat, Z PS){ |
| n := 1 |
| t := itor(1) |
| for c.num!=0 { |
| put(t,Z) |
| t = mul(mul(t,c),i2tor(1,int64(n))) |
| c = sub(c,one) |
| n++ |
| } |
| put(finis,Z) |
| }(c, Z) |
| return Z |
| } |
| |
| // Reciprocal of a power series |
| // let U = u + x*UU |
| // let Z = z + x*ZZ |
| // (u+x*UU)*(z+x*ZZ) = 1 |
| // z = 1/u |
| // u*ZZ + z*UU +x*UU*ZZ = 0 |
| // ZZ = -UU*(z+x*ZZ)/u |
| |
| func Recip(U PS) PS{ |
| Z:=mkPS() |
| go func(U, Z PS){ |
| ZZ:=mkPS2() |
| <-Z.req |
| z := inv(get(U)) |
| Z.dat <- z |
| split(Mul(Cmul(neg(z),U),Shift(z,ZZ[0])),ZZ) |
| copy(ZZ[1],Z) |
| }(U, Z) |
| return Z |
| } |
| |
| // Exponential of a power series with constant term 0 |
| // (nonzero constant term would make nonrational coefficients) |
| // bug: the constant term is simply ignored |
| // Z = exp(U) |
| // DZ = Z*DU |
| // integrate to get Z |
| |
| func Exp(U PS) PS{ |
| ZZ := mkPS2() |
| split(Integ(one,Mul(ZZ[0],Diff(U))),ZZ) |
| return ZZ[1] |
| } |
| |
| // Substitute V for x in U, where the leading term of V is zero |
| // let U = u + x*UU |
| // let V = v + x*VV |
| // then S(U,V) = u + VV*S(V,UU) |
| // bug: a nonzero constant term is ignored |
| |
| func Subst(U, V PS) PS { |
| Z:= mkPS() |
| go func(U, V, Z PS) { |
| VV := Split(V) |
| <-Z.req |
| u := get(U) |
| Z.dat <- u |
| if end(u) == 0 { |
| if end(get(VV[0])) != 0 { |
| put(finis,Z) |
| } else { |
| copy(Mul(VV[0],Subst(U,VV[1])),Z) |
| } |
| } |
| }(U, V, Z) |
| return Z |
| } |
| |
| // Monomial Substition: U(c x^n) |
| // Each Ui is multiplied by c^i and followed by n-1 zeros |
| |
| func MonSubst(U PS, c0 *rat, n int) PS { |
| Z:= mkPS() |
| go func(U, Z PS, c0 *rat, n int) { |
| c := one |
| for { |
| <-Z.req |
| u := get(U) |
| Z.dat <- mul(u, c) |
| c = mul(c, c0) |
| if end(u) != 0 { |
| Z.dat <- finis |
| break |
| } |
| for i := 1; i < n; i++ { |
| <-Z.req |
| Z.dat <- zero |
| } |
| } |
| }(U, Z, c0, n) |
| return Z |
| } |
| |
| |
| func Init() { |
| chnameserial = -1 |
| seqno = 0 |
| chnames = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" |
| zero = itor(0) |
| one = itor(1) |
| finis = i2tor(1,0) |
| Ones = Rep(one) |
| Twos = Rep(itor(2)) |
| } |
| |
| func check(U PS, c *rat, count int, str string) { |
| for i := 0; i < count; i++ { |
| r := get(U) |
| if !r.eq(c) { |
| print("got: ") |
| r.pr() |
| print("should get ") |
| c.pr() |
| print("\n") |
| panic(str) |
| } |
| } |
| } |
| |
| const N=10 |
| func checka(U PS, a []*rat, str string) { |
| for i := 0; i < N; i++ { |
| check(U, a[i], 1, str) |
| } |
| } |
| |
| func main() { |
| Init() |
| if len(os.Args) > 1 { // print |
| print("Ones: "); Printn(Ones, 10) |
| print("Twos: "); Printn(Twos, 10) |
| print("Add: "); Printn(Add(Ones, Twos), 10) |
| print("Diff: "); Printn(Diff(Ones), 10) |
| print("Integ: "); Printn(Integ(zero, Ones), 10) |
| print("CMul: "); Printn(Cmul(neg(one), Ones), 10) |
| print("Sub: "); Printn(Sub(Ones, Twos), 10) |
| print("Mul: "); Printn(Mul(Ones, Ones), 10) |
| print("Exp: "); Printn(Exp(Ones), 15) |
| print("MonSubst: "); Printn(MonSubst(Ones, neg(one), 2), 10) |
| print("ATan: "); Printn(Integ(zero, MonSubst(Ones, neg(one), 2)), 10) |
| } else { // test |
| check(Ones, one, 5, "Ones") |
| check(Add(Ones, Ones), itor(2), 0, "Add Ones Ones") // 1 1 1 1 1 |
| check(Add(Ones, Twos), itor(3), 0, "Add Ones Twos") // 3 3 3 3 3 |
| a := make([]*rat, N) |
| d := Diff(Ones) |
| for i:=0; i < N; i++ { |
| a[i] = itor(int64(i+1)) |
| } |
| checka(d, a, "Diff") // 1 2 3 4 5 |
| in := Integ(zero, Ones) |
| a[0] = zero // integration constant |
| for i:=1; i < N; i++ { |
| a[i] = i2tor(1, int64(i)) |
| } |
| checka(in, a, "Integ") // 0 1 1/2 1/3 1/4 1/5 |
| check(Cmul(neg(one), Twos), itor(-2), 10, "CMul") // -1 -1 -1 -1 -1 |
| check(Sub(Ones, Twos), itor(-1), 0, "Sub Ones Twos") // -1 -1 -1 -1 -1 |
| m := Mul(Ones, Ones) |
| for i:=0; i < N; i++ { |
| a[i] = itor(int64(i+1)) |
| } |
| checka(m, a, "Mul") // 1 2 3 4 5 |
| e := Exp(Ones) |
| a[0] = itor(1) |
| a[1] = itor(1) |
| a[2] = i2tor(3,2) |
| a[3] = i2tor(13,6) |
| a[4] = i2tor(73,24) |
| a[5] = i2tor(167,40) |
| a[6] = i2tor(4051,720) |
| a[7] = i2tor(37633,5040) |
| a[8] = i2tor(43817,4480) |
| a[9] = i2tor(4596553,362880) |
| checka(e, a, "Exp") // 1 1 3/2 13/6 73/24 |
| at := Integ(zero, MonSubst(Ones, neg(one), 2)) |
| for c, i := 1, 0; i < N; i++ { |
| if i%2 == 0 { |
| a[i] = zero |
| } else { |
| a[i] = i2tor(int64(c), int64(i)) |
| c *= -1 |
| } |
| } |
| checka(at, a, "ATan"); // 0 -1 0 -1/3 0 -1/5 |
| /* |
| t := Revert(Integ(zero, MonSubst(Ones, neg(one), 2))) |
| a[0] = zero |
| a[1] = itor(1) |
| a[2] = zero |
| a[3] = i2tor(1,3) |
| a[4] = zero |
| a[5] = i2tor(2,15) |
| a[6] = zero |
| a[7] = i2tor(17,315) |
| a[8] = zero |
| a[9] = i2tor(62,2835) |
| checka(t, a, "Tan") // 0 1 0 1/3 0 2/15 |
| */ |
| } |
| } |