blob: 48e02b6a77d349e53e567f58beed9d3c3c6d1372 [file] [log] [blame]
// Use of this source file is governed by a BSD-style
// license that can be found in the LICENSE file.`
#include "runtime.h"
#include "defs.h"
#include "os.h"
#include "stack.h"
enum
{
MUTEX_UNLOCKED = 0,
MUTEX_LOCKED = 1,
MUTEX_SLEEPING = 2,
ACTIVE_SPIN = 4,
ACTIVE_SPIN_CNT = 30,
PASSIVE_SPIN = 1,
ESRCH = 3,
ENOTSUP = 91,
};
extern SigTab runtime·sigtab[];
extern int64 runtime·rfork_thread(int32 flags, void *stack, M *m, G *g, void (*fn)(void));
extern int32 runtime·thrsleep(void *, void *, void*, void *);
extern int32 runtime·thrwakeup(void *, int32);
// From OpenBSD's <sys/sysctl.h>
#define CTL_HW 6
#define HW_NCPU 3
static int32
getncpu(void)
{
uint32 mib[2];
uint32 out;
int32 ret;
uintptr nout;
// Fetch hw.ncpu via sysctl.
mib[0] = CTL_HW;
mib[1] = HW_NCPU;
nout = sizeof out;
out = 0;
ret = runtime·sysctl(mib, 2, (byte*)&out, &nout, nil, 0);
if(ret >= 0)
return out;
else
return 1;
}
// Possible lock states are MUTEX_UNLOCKED, MUTEX_LOCKED and MUTEX_SLEEPING.
// MUTEX_SLEEPING means that there is potentially at least one sleeping thread.
// Note that there can be spinning threads during all states - they do not
// affect the mutex's state.
static void
lock(Lock *l)
{
uint32 i, v, wait, spin;
int32 ret;
// Speculative grab for lock.
v = runtime·xchg(&l->key, MUTEX_LOCKED);
if(v == MUTEX_UNLOCKED)
return;
// If we ever change the lock from MUTEX_SLEEPING to some other value,
// we must be careful to change it back to MUTEX_SLEEPING before
// returning, to ensure that the sleeping thread gets its wakeup call.
wait = v;
// No point spinning unless there are multiple processors.
spin = 0;
if(runtime·ncpu > 1)
spin = ACTIVE_SPIN;
for(;;) {
// Try for lock, spinning.
for(i = 0; i < spin; i++) {
while(l->key == MUTEX_UNLOCKED)
if(runtime·cas(&l->key, MUTEX_UNLOCKED, wait))
return;
runtime·procyield(ACTIVE_SPIN_CNT);
}
// Try for lock, rescheduling.
for(i = 0; i < PASSIVE_SPIN; i++) {
while(l->key == MUTEX_UNLOCKED)
if(runtime·cas(&l->key, MUTEX_UNLOCKED, wait))
return;
runtime·osyield();
}
// Grab a lock on sema and sleep - sema will be unlocked by
// thrsleep() and we'll get woken by another thread.
// Note that thrsleep unlocks on a _spinlock_lock_t which is
// an int on amd64, so we need to be careful here.
while (!runtime·cas(&l->sema, MUTEX_UNLOCKED, MUTEX_LOCKED))
runtime·osyield();
v = runtime·xchg(&l->key, MUTEX_SLEEPING);
if(v == MUTEX_UNLOCKED) {
l->sema = MUTEX_UNLOCKED;
return;
}
wait = v;
ret = runtime·thrsleep(&l->key, 0, 0, &l->sema);
if (ret != 0) {
runtime·printf("thrsleep addr=%p sema=%d ret=%d\n",
&l->key, l->sema, ret);
l->sema = MUTEX_UNLOCKED;
}
}
}
static void
unlock(Lock *l)
{
uint32 v, ret;
while (!runtime·cas(&l->sema, MUTEX_UNLOCKED, MUTEX_LOCKED))
runtime·osyield();
v = runtime·xchg(&l->key, MUTEX_UNLOCKED);
l->sema = MUTEX_UNLOCKED;
if(v == MUTEX_UNLOCKED)
runtime·throw("unlock of unlocked lock");
if(v == MUTEX_SLEEPING) {
ret = runtime·thrwakeup(&l->key, 0);
if (ret != 0 && ret != ESRCH) {
runtime·printf("thrwakeup addr=%p sem=%d ret=%d\n",
&l->key, l->sema, ret);
}
}
}
void
runtime·lock(Lock *l)
{
if(m->locks < 0)
runtime·throw("lock count");
m->locks++;
lock(l);
}
void
runtime·unlock(Lock *l)
{
m->locks--;
if(m->locks < 0)
runtime·throw("lock count");
unlock(l);
}
// Event notifications.
void
runtime·noteclear(Note *n)
{
n->lock.key = 0;
lock(&n->lock);
}
void
runtime·notesleep(Note *n)
{
lock(&n->lock);
unlock(&n->lock);
}
void
runtime·notewakeup(Note *n)
{
unlock(&n->lock);
}
// From OpenBSD's sys/param.h
#define RFPROC (1<<4) /* change child (else changes curproc) */
#define RFMEM (1<<5) /* share `address space' */
#define RFNOWAIT (1<<6) /* parent need not wait() on child */
#define RFTHREAD (1<<13) /* create a thread, not a process */
void
runtime·newosproc(M *m, G *g, void *stk, void (*fn)(void))
{
int32 flags;
int32 ret;
flags = RFPROC | RFTHREAD | RFMEM | RFNOWAIT;
if (0) {
runtime·printf(
"newosproc stk=%p m=%p g=%p fn=%p id=%d/%d ostk=%p\n",
stk, m, g, fn, m->id, m->tls[0], &m);
}
m->tls[0] = m->id; // so 386 asm can find it
if((ret = runtime·rfork_thread(flags, stk, m, g, fn)) < 0) {
runtime·printf("runtime: failed to create new OS thread (have %d already; errno=%d)\n", runtime·mcount() - 1, -ret);
if (ret == -ENOTSUP)
runtime·printf("runtime: is kern.rthreads disabled?\n");
runtime·throw("runtime.newosproc");
}
}
void
runtime·osinit(void)
{
runtime·ncpu = getncpu();
}
void
runtime·goenvs(void)
{
runtime·goenvs_unix();
}
// Called to initialize a new m (including the bootstrap m).
void
runtime·minit(void)
{
// Initialize signal handling
m->gsignal = runtime·malg(32*1024);
runtime·signalstack(m->gsignal->stackguard - StackGuard, 32*1024);
}
void
runtime·sigpanic(void)
{
switch(g->sig) {
case SIGBUS:
if(g->sigcode0 == BUS_ADRERR && g->sigcode1 < 0x1000)
runtime·panicstring("invalid memory address or nil pointer dereference");
runtime·printf("unexpected fault address %p\n", g->sigcode1);
runtime·throw("fault");
case SIGSEGV:
if((g->sigcode0 == 0 || g->sigcode0 == SEGV_MAPERR || g->sigcode0 == SEGV_ACCERR) && g->sigcode1 < 0x1000)
runtime·panicstring("invalid memory address or nil pointer dereference");
runtime·printf("unexpected fault address %p\n", g->sigcode1);
runtime·throw("fault");
case SIGFPE:
switch(g->sigcode0) {
case FPE_INTDIV:
runtime·panicstring("integer divide by zero");
case FPE_INTOVF:
runtime·panicstring("integer overflow");
}
runtime·panicstring("floating point error");
}
runtime·panicstring(runtime·sigtab[g->sig].name);
}