| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Page heap. |
| // |
| // See malloc.go for overview. |
| |
| package runtime |
| |
| import ( |
| "runtime/internal/atomic" |
| "runtime/internal/sys" |
| "unsafe" |
| ) |
| |
| // minPhysPageSize is a lower-bound on the physical page size. The |
| // true physical page size may be larger than this. In contrast, |
| // sys.PhysPageSize is an upper-bound on the physical page size. |
| const minPhysPageSize = 4096 |
| |
| // Main malloc heap. |
| // The heap itself is the "free[]" and "large" arrays, |
| // but all the other global data is here too. |
| type mheap struct { |
| lock mutex |
| free [_MaxMHeapList]mSpanList // free lists of given length |
| freelarge mSpanList // free lists length >= _MaxMHeapList |
| busy [_MaxMHeapList]mSpanList // busy lists of large objects of given length |
| busylarge mSpanList // busy lists of large objects length >= _MaxMHeapList |
| allspans **mspan // all spans out there |
| gcspans **mspan // copy of allspans referenced by gc marker or sweeper |
| nspan uint32 |
| sweepgen uint32 // sweep generation, see comment in mspan |
| sweepdone uint32 // all spans are swept |
| // span lookup |
| spans **mspan |
| spans_mapped uintptr |
| |
| // Proportional sweep |
| pagesInUse uint64 // pages of spans in stats _MSpanInUse; R/W with mheap.lock |
| spanBytesAlloc uint64 // bytes of spans allocated this cycle; updated atomically |
| pagesSwept uint64 // pages swept this cycle; updated atomically |
| sweepPagesPerByte float64 // proportional sweep ratio; written with lock, read without |
| // TODO(austin): pagesInUse should be a uintptr, but the 386 |
| // compiler can't 8-byte align fields. |
| |
| // Malloc stats. |
| largefree uint64 // bytes freed for large objects (>maxsmallsize) |
| nlargefree uint64 // number of frees for large objects (>maxsmallsize) |
| nsmallfree [_NumSizeClasses]uint64 // number of frees for small objects (<=maxsmallsize) |
| |
| // range of addresses we might see in the heap |
| bitmap uintptr // Points to one byte past the end of the bitmap |
| bitmap_mapped uintptr |
| arena_start uintptr |
| arena_used uintptr // always mHeap_Map{Bits,Spans} before updating |
| arena_end uintptr |
| arena_reserved bool |
| |
| // central free lists for small size classes. |
| // the padding makes sure that the MCentrals are |
| // spaced CacheLineSize bytes apart, so that each MCentral.lock |
| // gets its own cache line. |
| central [_NumSizeClasses]struct { |
| mcentral mcentral |
| pad [sys.CacheLineSize]byte |
| } |
| |
| spanalloc fixalloc // allocator for span* |
| cachealloc fixalloc // allocator for mcache* |
| specialfinalizeralloc fixalloc // allocator for specialfinalizer* |
| specialprofilealloc fixalloc // allocator for specialprofile* |
| speciallock mutex // lock for special record allocators. |
| } |
| |
| var mheap_ mheap |
| |
| // An MSpan is a run of pages. |
| // |
| // When a MSpan is in the heap free list, state == MSpanFree |
| // and heapmap(s->start) == span, heapmap(s->start+s->npages-1) == span. |
| // |
| // When a MSpan is allocated, state == MSpanInUse or MSpanStack |
| // and heapmap(i) == span for all s->start <= i < s->start+s->npages. |
| |
| // Every MSpan is in one doubly-linked list, |
| // either one of the MHeap's free lists or one of the |
| // MCentral's span lists. |
| |
| // An MSpan representing actual memory has state _MSpanInUse, |
| // _MSpanStack, or _MSpanFree. Transitions between these states are |
| // constrained as follows: |
| // |
| // * A span may transition from free to in-use or stack during any GC |
| // phase. |
| // |
| // * During sweeping (gcphase == _GCoff), a span may transition from |
| // in-use to free (as a result of sweeping) or stack to free (as a |
| // result of stacks being freed). |
| // |
| // * During GC (gcphase != _GCoff), a span *must not* transition from |
| // stack or in-use to free. Because concurrent GC may read a pointer |
| // and then look up its span, the span state must be monotonic. |
| const ( |
| _MSpanInUse = iota // allocated for garbage collected heap |
| _MSpanStack // allocated for use by stack allocator |
| _MSpanFree |
| _MSpanDead |
| ) |
| |
| // mSpanList heads a linked list of spans. |
| // |
| // Linked list structure is based on BSD's "tail queue" data structure. |
| type mSpanList struct { |
| first *mspan // first span in list, or nil if none |
| last **mspan // last span's next field, or first if none |
| } |
| |
| type mspan struct { |
| next *mspan // next span in list, or nil if none |
| prev **mspan // previous span's next field, or list head's first field if none |
| list *mSpanList // For debugging. TODO: Remove. |
| |
| startAddr uintptr // address of first byte of span aka s.base() |
| npages uintptr // number of pages in span |
| stackfreelist gclinkptr // list of free stacks, avoids overloading freelist |
| |
| // freeindex is the slot index between 0 and nelems at which to begin scanning |
| // for the next free object in this span. |
| // Each allocation scans allocBits starting at freeindex until it encounters a 0 |
| // indicating a free object. freeindex is then adjusted so that subsequent scans begin |
| // just past the the newly discovered free object. |
| // |
| // If freeindex == nelem, this span has no free objects. |
| // |
| // allocBits is a bitmap of objects in this span. |
| // If n >= freeindex and allocBits[n/8] & (1<<(n%8)) is 0 |
| // then object n is free; |
| // otherwise, object n is allocated. Bits starting at nelem are |
| // undefined and should never be referenced. |
| // |
| // Object n starts at address n*elemsize + (start << pageShift). |
| freeindex uintptr |
| // TODO: Look up nelems from sizeclass and remove this field if it |
| // helps performance. |
| nelems uintptr // number of object in the span. |
| |
| // Cache of the allocBits at freeindex. allocCache is shifted |
| // such that the lowest bit corresponds to the bit freeindex. |
| // allocCache holds the complement of allocBits, thus allowing |
| // ctz (count trailing zero) to use it directly. |
| // allocCache may contain bits beyond s.nelems; the caller must ignore |
| // these. |
| allocCache uint64 |
| |
| // allocBits and gcmarkBits hold pointers to a span's mark and |
| // allocation bits. The pointers are 8 byte aligned. |
| // There are three arenas where this data is held. |
| // free: Dirty arenas that are no longer accessed |
| // and can be reused. |
| // next: Holds information to be used in the next GC cycle. |
| // current: Information being used during this GC cycle. |
| // previous: Information being used during the last GC cycle. |
| // A new GC cycle starts with the call to finishsweep_m. |
| // finishsweep_m moves the previous arena to the free arena, |
| // the current arena to the previous arena, and |
| // the next arena to the current arena. |
| // The next arena is populated as the spans request |
| // memory to hold gcmarkBits for the next GC cycle as well |
| // as allocBits for newly allocated spans. |
| // |
| // The pointer arithmetic is done "by hand" instead of using |
| // arrays to avoid bounds checks along critical performance |
| // paths. |
| // The sweep will free the old allocBits and set allocBits to the |
| // gcmarkBits. The gcmarkBits are replaced with a fresh zeroed |
| // out memory. |
| allocBits *uint8 |
| gcmarkBits *uint8 |
| |
| // sweep generation: |
| // if sweepgen == h->sweepgen - 2, the span needs sweeping |
| // if sweepgen == h->sweepgen - 1, the span is currently being swept |
| // if sweepgen == h->sweepgen, the span is swept and ready to use |
| // h->sweepgen is incremented by 2 after every GC |
| |
| sweepgen uint32 |
| divMul uint32 // for divide by elemsize - divMagic.mul |
| allocCount uint16 // capacity - number of objects in freelist |
| sizeclass uint8 // size class |
| incache bool // being used by an mcache |
| state uint8 // mspaninuse etc |
| needzero uint8 // needs to be zeroed before allocation |
| divShift uint8 // for divide by elemsize - divMagic.shift |
| divShift2 uint8 // for divide by elemsize - divMagic.shift2 |
| elemsize uintptr // computed from sizeclass or from npages |
| unusedsince int64 // first time spotted by gc in mspanfree state |
| npreleased uintptr // number of pages released to the os |
| limit uintptr // end of data in span |
| speciallock mutex // guards specials list |
| specials *special // linked list of special records sorted by offset. |
| baseMask uintptr // if non-0, elemsize is a power of 2, & this will get object allocation base |
| } |
| |
| func (s *mspan) base() uintptr { |
| return s.startAddr |
| } |
| |
| func (s *mspan) layout() (size, n, total uintptr) { |
| total = s.npages << _PageShift |
| size = s.elemsize |
| if size > 0 { |
| n = total / size |
| } |
| return |
| } |
| |
| var h_allspans []*mspan // TODO: make this h.allspans once mheap can be defined in Go |
| |
| // h_spans is a lookup table to map virtual address page IDs to *mspan. |
| // For allocated spans, their pages map to the span itself. |
| // For free spans, only the lowest and highest pages map to the span itself. Internal |
| // pages map to an arbitrary span. |
| // For pages that have never been allocated, h_spans entries are nil. |
| var h_spans []*mspan // TODO: make this h.spans once mheap can be defined in Go |
| |
| func recordspan(vh unsafe.Pointer, p unsafe.Pointer) { |
| h := (*mheap)(vh) |
| s := (*mspan)(p) |
| if len(h_allspans) >= cap(h_allspans) { |
| n := 64 * 1024 / sys.PtrSize |
| if n < cap(h_allspans)*3/2 { |
| n = cap(h_allspans) * 3 / 2 |
| } |
| var new []*mspan |
| sp := (*slice)(unsafe.Pointer(&new)) |
| sp.array = sysAlloc(uintptr(n)*sys.PtrSize, &memstats.other_sys) |
| if sp.array == nil { |
| throw("runtime: cannot allocate memory") |
| } |
| sp.len = len(h_allspans) |
| sp.cap = n |
| if len(h_allspans) > 0 { |
| copy(new, h_allspans) |
| // Don't free the old array if it's referenced by sweep. |
| // See the comment in mgc.go. |
| if h.allspans != mheap_.gcspans { |
| sysFree(unsafe.Pointer(h.allspans), uintptr(cap(h_allspans))*sys.PtrSize, &memstats.other_sys) |
| } |
| } |
| h_allspans = new |
| h.allspans = (**mspan)(sp.array) |
| } |
| h_allspans = append(h_allspans, s) |
| h.nspan = uint32(len(h_allspans)) |
| } |
| |
| // inheap reports whether b is a pointer into a (potentially dead) heap object. |
| // It returns false for pointers into stack spans. |
| // Non-preemptible because it is used by write barriers. |
| //go:nowritebarrier |
| //go:nosplit |
| func inheap(b uintptr) bool { |
| if b == 0 || b < mheap_.arena_start || b >= mheap_.arena_used { |
| return false |
| } |
| // Not a beginning of a block, consult span table to find the block beginning. |
| s := h_spans[(b-mheap_.arena_start)>>_PageShift] |
| if s == nil || b < s.base() || b >= s.limit || s.state != mSpanInUse { |
| return false |
| } |
| return true |
| } |
| |
| // inHeapOrStack is a variant of inheap that returns true for pointers into stack spans. |
| //go:nowritebarrier |
| //go:nosplit |
| func inHeapOrStack(b uintptr) bool { |
| if b == 0 || b < mheap_.arena_start || b >= mheap_.arena_used { |
| return false |
| } |
| // Not a beginning of a block, consult span table to find the block beginning. |
| s := h_spans[(b-mheap_.arena_start)>>_PageShift] |
| if s == nil || b < s.base() { |
| return false |
| } |
| switch s.state { |
| case mSpanInUse: |
| return b < s.limit |
| case _MSpanStack: |
| return b < s.base()+s.npages<<_PageShift |
| default: |
| return false |
| } |
| } |
| |
| // TODO: spanOf and spanOfUnchecked are open-coded in a lot of places. |
| // Use the functions instead. |
| |
| // spanOf returns the span of p. If p does not point into the heap or |
| // no span contains p, spanOf returns nil. |
| func spanOf(p uintptr) *mspan { |
| if p == 0 || p < mheap_.arena_start || p >= mheap_.arena_used { |
| return nil |
| } |
| return spanOfUnchecked(p) |
| } |
| |
| // spanOfUnchecked is equivalent to spanOf, but the caller must ensure |
| // that p points into the heap (that is, mheap_.arena_start <= p < |
| // mheap_.arena_used). |
| func spanOfUnchecked(p uintptr) *mspan { |
| return h_spans[(p-mheap_.arena_start)>>_PageShift] |
| } |
| |
| func mlookup(v uintptr, base *uintptr, size *uintptr, sp **mspan) int32 { |
| _g_ := getg() |
| |
| _g_.m.mcache.local_nlookup++ |
| if sys.PtrSize == 4 && _g_.m.mcache.local_nlookup >= 1<<30 { |
| // purge cache stats to prevent overflow |
| lock(&mheap_.lock) |
| purgecachedstats(_g_.m.mcache) |
| unlock(&mheap_.lock) |
| } |
| |
| s := mheap_.lookupMaybe(unsafe.Pointer(v)) |
| if sp != nil { |
| *sp = s |
| } |
| if s == nil { |
| if base != nil { |
| *base = 0 |
| } |
| if size != nil { |
| *size = 0 |
| } |
| return 0 |
| } |
| |
| p := s.base() |
| if s.sizeclass == 0 { |
| // Large object. |
| if base != nil { |
| *base = p |
| } |
| if size != nil { |
| *size = s.npages << _PageShift |
| } |
| return 1 |
| } |
| |
| n := s.elemsize |
| if base != nil { |
| i := (v - p) / n |
| *base = p + i*n |
| } |
| if size != nil { |
| *size = n |
| } |
| |
| return 1 |
| } |
| |
| // Initialize the heap. |
| func (h *mheap) init(spans_size uintptr) { |
| h.spanalloc.init(unsafe.Sizeof(mspan{}), recordspan, unsafe.Pointer(h), &memstats.mspan_sys) |
| h.cachealloc.init(unsafe.Sizeof(mcache{}), nil, nil, &memstats.mcache_sys) |
| h.specialfinalizeralloc.init(unsafe.Sizeof(specialfinalizer{}), nil, nil, &memstats.other_sys) |
| h.specialprofilealloc.init(unsafe.Sizeof(specialprofile{}), nil, nil, &memstats.other_sys) |
| |
| // h->mapcache needs no init |
| for i := range h.free { |
| h.free[i].init() |
| h.busy[i].init() |
| } |
| |
| h.freelarge.init() |
| h.busylarge.init() |
| for i := range h.central { |
| h.central[i].mcentral.init(int32(i)) |
| } |
| |
| sp := (*slice)(unsafe.Pointer(&h_spans)) |
| sp.array = unsafe.Pointer(h.spans) |
| sp.len = int(spans_size / sys.PtrSize) |
| sp.cap = int(spans_size / sys.PtrSize) |
| } |
| |
| // mHeap_MapSpans makes sure that the spans are mapped |
| // up to the new value of arena_used. |
| // |
| // It must be called with the expected new value of arena_used, |
| // *before* h.arena_used has been updated. |
| // Waiting to update arena_used until after the memory has been mapped |
| // avoids faults when other threads try access the bitmap immediately |
| // after observing the change to arena_used. |
| func (h *mheap) mapSpans(arena_used uintptr) { |
| // Map spans array, PageSize at a time. |
| n := arena_used |
| n -= h.arena_start |
| n = n / _PageSize * sys.PtrSize |
| n = round(n, sys.PhysPageSize) |
| if h.spans_mapped >= n { |
| return |
| } |
| sysMap(add(unsafe.Pointer(h.spans), h.spans_mapped), n-h.spans_mapped, h.arena_reserved, &memstats.other_sys) |
| h.spans_mapped = n |
| } |
| |
| // Sweeps spans in list until reclaims at least npages into heap. |
| // Returns the actual number of pages reclaimed. |
| func (h *mheap) reclaimList(list *mSpanList, npages uintptr) uintptr { |
| n := uintptr(0) |
| sg := mheap_.sweepgen |
| retry: |
| for s := list.first; s != nil; s = s.next { |
| if s.sweepgen == sg-2 && atomic.Cas(&s.sweepgen, sg-2, sg-1) { |
| list.remove(s) |
| // swept spans are at the end of the list |
| list.insertBack(s) |
| unlock(&h.lock) |
| snpages := s.npages |
| if s.sweep(false) { |
| n += snpages |
| } |
| lock(&h.lock) |
| if n >= npages { |
| return n |
| } |
| // the span could have been moved elsewhere |
| goto retry |
| } |
| if s.sweepgen == sg-1 { |
| // the span is being sweept by background sweeper, skip |
| continue |
| } |
| // already swept empty span, |
| // all subsequent ones must also be either swept or in process of sweeping |
| break |
| } |
| return n |
| } |
| |
| // Sweeps and reclaims at least npage pages into heap. |
| // Called before allocating npage pages. |
| func (h *mheap) reclaim(npage uintptr) { |
| // First try to sweep busy spans with large objects of size >= npage, |
| // this has good chances of reclaiming the necessary space. |
| for i := int(npage); i < len(h.busy); i++ { |
| if h.reclaimList(&h.busy[i], npage) != 0 { |
| return // Bingo! |
| } |
| } |
| |
| // Then -- even larger objects. |
| if h.reclaimList(&h.busylarge, npage) != 0 { |
| return // Bingo! |
| } |
| |
| // Now try smaller objects. |
| // One such object is not enough, so we need to reclaim several of them. |
| reclaimed := uintptr(0) |
| for i := 0; i < int(npage) && i < len(h.busy); i++ { |
| reclaimed += h.reclaimList(&h.busy[i], npage-reclaimed) |
| if reclaimed >= npage { |
| return |
| } |
| } |
| |
| // Now sweep everything that is not yet swept. |
| unlock(&h.lock) |
| for { |
| n := sweepone() |
| if n == ^uintptr(0) { // all spans are swept |
| break |
| } |
| reclaimed += n |
| if reclaimed >= npage { |
| break |
| } |
| } |
| lock(&h.lock) |
| } |
| |
| // Allocate a new span of npage pages from the heap for GC'd memory |
| // and record its size class in the HeapMap and HeapMapCache. |
| func (h *mheap) alloc_m(npage uintptr, sizeclass int32, large bool) *mspan { |
| _g_ := getg() |
| if _g_ != _g_.m.g0 { |
| throw("_mheap_alloc not on g0 stack") |
| } |
| lock(&h.lock) |
| |
| // To prevent excessive heap growth, before allocating n pages |
| // we need to sweep and reclaim at least n pages. |
| if h.sweepdone == 0 { |
| // TODO(austin): This tends to sweep a large number of |
| // spans in order to find a few completely free spans |
| // (for example, in the garbage benchmark, this sweeps |
| // ~30x the number of pages its trying to allocate). |
| // If GC kept a bit for whether there were any marks |
| // in a span, we could release these free spans |
| // at the end of GC and eliminate this entirely. |
| h.reclaim(npage) |
| } |
| |
| // transfer stats from cache to global |
| memstats.heap_scan += uint64(_g_.m.mcache.local_scan) |
| _g_.m.mcache.local_scan = 0 |
| memstats.tinyallocs += uint64(_g_.m.mcache.local_tinyallocs) |
| _g_.m.mcache.local_tinyallocs = 0 |
| |
| s := h.allocSpanLocked(npage) |
| if s != nil { |
| // Record span info, because gc needs to be |
| // able to map interior pointer to containing span. |
| atomic.Store(&s.sweepgen, h.sweepgen) |
| s.state = _MSpanInUse |
| s.allocCount = 0 |
| s.sizeclass = uint8(sizeclass) |
| if sizeclass == 0 { |
| s.elemsize = s.npages << _PageShift |
| s.divShift = 0 |
| s.divMul = 0 |
| s.divShift2 = 0 |
| s.baseMask = 0 |
| } else { |
| s.elemsize = uintptr(class_to_size[sizeclass]) |
| m := &class_to_divmagic[sizeclass] |
| s.divShift = m.shift |
| s.divMul = m.mul |
| s.divShift2 = m.shift2 |
| s.baseMask = m.baseMask |
| } |
| |
| // update stats, sweep lists |
| h.pagesInUse += uint64(npage) |
| if large { |
| memstats.heap_objects++ |
| atomic.Xadd64(&memstats.heap_live, int64(npage<<_PageShift)) |
| // Swept spans are at the end of lists. |
| if s.npages < uintptr(len(h.free)) { |
| h.busy[s.npages].insertBack(s) |
| } else { |
| h.busylarge.insertBack(s) |
| } |
| } |
| } |
| // heap_scan and heap_live were updated. |
| if gcBlackenEnabled != 0 { |
| gcController.revise() |
| } |
| |
| if trace.enabled { |
| traceHeapAlloc() |
| } |
| |
| // h_spans is accessed concurrently without synchronization |
| // from other threads. Hence, there must be a store/store |
| // barrier here to ensure the writes to h_spans above happen |
| // before the caller can publish a pointer p to an object |
| // allocated from s. As soon as this happens, the garbage |
| // collector running on another processor could read p and |
| // look up s in h_spans. The unlock acts as the barrier to |
| // order these writes. On the read side, the data dependency |
| // between p and the index in h_spans orders the reads. |
| unlock(&h.lock) |
| return s |
| } |
| |
| func (h *mheap) alloc(npage uintptr, sizeclass int32, large bool, needzero bool) *mspan { |
| // Don't do any operations that lock the heap on the G stack. |
| // It might trigger stack growth, and the stack growth code needs |
| // to be able to allocate heap. |
| var s *mspan |
| systemstack(func() { |
| s = h.alloc_m(npage, sizeclass, large) |
| }) |
| |
| if s != nil { |
| if needzero && s.needzero != 0 { |
| memclr(unsafe.Pointer(s.base()), s.npages<<_PageShift) |
| } |
| s.needzero = 0 |
| } |
| return s |
| } |
| |
| func (h *mheap) allocStack(npage uintptr) *mspan { |
| _g_ := getg() |
| if _g_ != _g_.m.g0 { |
| throw("mheap_allocstack not on g0 stack") |
| } |
| lock(&h.lock) |
| s := h.allocSpanLocked(npage) |
| if s != nil { |
| s.state = _MSpanStack |
| s.stackfreelist = 0 |
| s.allocCount = 0 |
| memstats.stacks_inuse += uint64(s.npages << _PageShift) |
| } |
| |
| // This unlock acts as a release barrier. See mHeap_Alloc_m. |
| unlock(&h.lock) |
| return s |
| } |
| |
| // Allocates a span of the given size. h must be locked. |
| // The returned span has been removed from the |
| // free list, but its state is still MSpanFree. |
| func (h *mheap) allocSpanLocked(npage uintptr) *mspan { |
| var list *mSpanList |
| var s *mspan |
| |
| // Try in fixed-size lists up to max. |
| for i := int(npage); i < len(h.free); i++ { |
| list = &h.free[i] |
| if !list.isEmpty() { |
| s = list.first |
| goto HaveSpan |
| } |
| } |
| |
| // Best fit in list of large spans. |
| list = &h.freelarge |
| s = h.allocLarge(npage) |
| if s == nil { |
| if !h.grow(npage) { |
| return nil |
| } |
| s = h.allocLarge(npage) |
| if s == nil { |
| return nil |
| } |
| } |
| |
| HaveSpan: |
| // Mark span in use. |
| if s.state != _MSpanFree { |
| throw("MHeap_AllocLocked - MSpan not free") |
| } |
| if s.npages < npage { |
| throw("MHeap_AllocLocked - bad npages") |
| } |
| list.remove(s) |
| if s.inList() { |
| throw("still in list") |
| } |
| if s.npreleased > 0 { |
| sysUsed(unsafe.Pointer(s.base()), s.npages<<_PageShift) |
| memstats.heap_released -= uint64(s.npreleased << _PageShift) |
| s.npreleased = 0 |
| } |
| |
| if s.npages > npage { |
| // Trim extra and put it back in the heap. |
| t := (*mspan)(h.spanalloc.alloc()) |
| t.init(s.base()+npage<<_PageShift, s.npages-npage) |
| s.npages = npage |
| p := (t.base() - h.arena_start) >> _PageShift |
| if p > 0 { |
| h_spans[p-1] = s |
| } |
| h_spans[p] = t |
| h_spans[p+t.npages-1] = t |
| t.needzero = s.needzero |
| s.state = _MSpanStack // prevent coalescing with s |
| t.state = _MSpanStack |
| h.freeSpanLocked(t, false, false, s.unusedsince) |
| s.state = _MSpanFree |
| } |
| s.unusedsince = 0 |
| |
| p := (s.base() - h.arena_start) >> _PageShift |
| for n := uintptr(0); n < npage; n++ { |
| h_spans[p+n] = s |
| } |
| |
| memstats.heap_inuse += uint64(npage << _PageShift) |
| memstats.heap_idle -= uint64(npage << _PageShift) |
| |
| //println("spanalloc", hex(s.start<<_PageShift)) |
| if s.inList() { |
| throw("still in list") |
| } |
| return s |
| } |
| |
| // Allocate a span of exactly npage pages from the list of large spans. |
| func (h *mheap) allocLarge(npage uintptr) *mspan { |
| return bestFit(&h.freelarge, npage, nil) |
| } |
| |
| // Search list for smallest span with >= npage pages. |
| // If there are multiple smallest spans, take the one |
| // with the earliest starting address. |
| func bestFit(list *mSpanList, npage uintptr, best *mspan) *mspan { |
| for s := list.first; s != nil; s = s.next { |
| if s.npages < npage { |
| continue |
| } |
| if best == nil || s.npages < best.npages || (s.npages == best.npages && s.base() < best.base()) { |
| best = s |
| } |
| } |
| return best |
| } |
| |
| // Try to add at least npage pages of memory to the heap, |
| // returning whether it worked. |
| // |
| // h must be locked. |
| func (h *mheap) grow(npage uintptr) bool { |
| // Ask for a big chunk, to reduce the number of mappings |
| // the operating system needs to track; also amortizes |
| // the overhead of an operating system mapping. |
| // Allocate a multiple of 64kB. |
| npage = round(npage, (64<<10)/_PageSize) |
| ask := npage << _PageShift |
| if ask < _HeapAllocChunk { |
| ask = _HeapAllocChunk |
| } |
| |
| v := h.sysAlloc(ask) |
| if v == nil { |
| if ask > npage<<_PageShift { |
| ask = npage << _PageShift |
| v = h.sysAlloc(ask) |
| } |
| if v == nil { |
| print("runtime: out of memory: cannot allocate ", ask, "-byte block (", memstats.heap_sys, " in use)\n") |
| return false |
| } |
| } |
| |
| // Create a fake "in use" span and free it, so that the |
| // right coalescing happens. |
| s := (*mspan)(h.spanalloc.alloc()) |
| s.init(uintptr(v), ask>>_PageShift) |
| p := (s.base() - h.arena_start) >> _PageShift |
| for i := p; i < p+s.npages; i++ { |
| h_spans[i] = s |
| } |
| atomic.Store(&s.sweepgen, h.sweepgen) |
| s.state = _MSpanInUse |
| h.pagesInUse += uint64(s.npages) |
| h.freeSpanLocked(s, false, true, 0) |
| return true |
| } |
| |
| // Look up the span at the given address. |
| // Address is guaranteed to be in map |
| // and is guaranteed to be start or end of span. |
| func (h *mheap) lookup(v unsafe.Pointer) *mspan { |
| p := uintptr(v) |
| p -= h.arena_start |
| return h_spans[p>>_PageShift] |
| } |
| |
| // Look up the span at the given address. |
| // Address is *not* guaranteed to be in map |
| // and may be anywhere in the span. |
| // Map entries for the middle of a span are only |
| // valid for allocated spans. Free spans may have |
| // other garbage in their middles, so we have to |
| // check for that. |
| func (h *mheap) lookupMaybe(v unsafe.Pointer) *mspan { |
| if uintptr(v) < h.arena_start || uintptr(v) >= h.arena_used { |
| return nil |
| } |
| s := h_spans[(uintptr(v)-h.arena_start)>>_PageShift] |
| if s == nil || uintptr(v) < s.base() || uintptr(v) >= uintptr(unsafe.Pointer(s.limit)) || s.state != _MSpanInUse { |
| return nil |
| } |
| return s |
| } |
| |
| // Free the span back into the heap. |
| func (h *mheap) freeSpan(s *mspan, acct int32) { |
| systemstack(func() { |
| mp := getg().m |
| lock(&h.lock) |
| memstats.heap_scan += uint64(mp.mcache.local_scan) |
| mp.mcache.local_scan = 0 |
| memstats.tinyallocs += uint64(mp.mcache.local_tinyallocs) |
| mp.mcache.local_tinyallocs = 0 |
| if msanenabled { |
| // Tell msan that this entire span is no longer in use. |
| base := unsafe.Pointer(s.base()) |
| bytes := s.npages << _PageShift |
| msanfree(base, bytes) |
| } |
| if acct != 0 { |
| memstats.heap_objects-- |
| } |
| if gcBlackenEnabled != 0 { |
| // heap_scan changed. |
| gcController.revise() |
| } |
| h.freeSpanLocked(s, true, true, 0) |
| unlock(&h.lock) |
| }) |
| } |
| |
| func (h *mheap) freeStack(s *mspan) { |
| _g_ := getg() |
| if _g_ != _g_.m.g0 { |
| throw("mheap_freestack not on g0 stack") |
| } |
| s.needzero = 1 |
| lock(&h.lock) |
| memstats.stacks_inuse -= uint64(s.npages << _PageShift) |
| h.freeSpanLocked(s, true, true, 0) |
| unlock(&h.lock) |
| } |
| |
| // s must be on a busy list (h.busy or h.busylarge) or unlinked. |
| func (h *mheap) freeSpanLocked(s *mspan, acctinuse, acctidle bool, unusedsince int64) { |
| switch s.state { |
| case _MSpanStack: |
| if s.allocCount != 0 { |
| throw("MHeap_FreeSpanLocked - invalid stack free") |
| } |
| case _MSpanInUse: |
| if s.allocCount != 0 || s.sweepgen != h.sweepgen { |
| print("MHeap_FreeSpanLocked - span ", s, " ptr ", hex(s.base()), " allocCount ", s.allocCount, " sweepgen ", s.sweepgen, "/", h.sweepgen, "\n") |
| throw("MHeap_FreeSpanLocked - invalid free") |
| } |
| h.pagesInUse -= uint64(s.npages) |
| default: |
| throw("MHeap_FreeSpanLocked - invalid span state") |
| } |
| |
| if acctinuse { |
| memstats.heap_inuse -= uint64(s.npages << _PageShift) |
| } |
| if acctidle { |
| memstats.heap_idle += uint64(s.npages << _PageShift) |
| } |
| s.state = _MSpanFree |
| if s.inList() { |
| h.busyList(s.npages).remove(s) |
| } |
| |
| // Stamp newly unused spans. The scavenger will use that |
| // info to potentially give back some pages to the OS. |
| s.unusedsince = unusedsince |
| if unusedsince == 0 { |
| s.unusedsince = nanotime() |
| } |
| s.npreleased = 0 |
| |
| // Coalesce with earlier, later spans. |
| p := (s.base() - h.arena_start) >> _PageShift |
| if p > 0 { |
| t := h_spans[p-1] |
| if t != nil && t.state == _MSpanFree { |
| s.startAddr = t.startAddr |
| s.npages += t.npages |
| s.npreleased = t.npreleased // absorb released pages |
| s.needzero |= t.needzero |
| p -= t.npages |
| h_spans[p] = s |
| h.freeList(t.npages).remove(t) |
| t.state = _MSpanDead |
| h.spanalloc.free(unsafe.Pointer(t)) |
| } |
| } |
| if (p+s.npages)*sys.PtrSize < h.spans_mapped { |
| t := h_spans[p+s.npages] |
| if t != nil && t.state == _MSpanFree { |
| s.npages += t.npages |
| s.npreleased += t.npreleased |
| s.needzero |= t.needzero |
| h_spans[p+s.npages-1] = s |
| h.freeList(t.npages).remove(t) |
| t.state = _MSpanDead |
| h.spanalloc.free(unsafe.Pointer(t)) |
| } |
| } |
| |
| // Insert s into appropriate list. |
| h.freeList(s.npages).insert(s) |
| } |
| |
| func (h *mheap) freeList(npages uintptr) *mSpanList { |
| if npages < uintptr(len(h.free)) { |
| return &h.free[npages] |
| } |
| return &h.freelarge |
| } |
| |
| func (h *mheap) busyList(npages uintptr) *mSpanList { |
| if npages < uintptr(len(h.free)) { |
| return &h.busy[npages] |
| } |
| return &h.busylarge |
| } |
| |
| func scavengelist(list *mSpanList, now, limit uint64) uintptr { |
| if list.isEmpty() { |
| return 0 |
| } |
| |
| var sumreleased uintptr |
| for s := list.first; s != nil; s = s.next { |
| if (now-uint64(s.unusedsince)) > limit && s.npreleased != s.npages { |
| start := s.base() |
| end := start + s.npages<<_PageShift |
| if sys.PhysPageSize > _PageSize { |
| // We can only release pages in |
| // PhysPageSize blocks, so round start |
| // and end in. (Otherwise, madvise |
| // will round them *out* and release |
| // more memory than we want.) |
| start = (start + sys.PhysPageSize - 1) &^ (sys.PhysPageSize - 1) |
| end &^= sys.PhysPageSize - 1 |
| if start == end { |
| continue |
| } |
| } |
| len := end - start |
| |
| released := len - (s.npreleased << _PageShift) |
| if sys.PhysPageSize > _PageSize && released == 0 { |
| continue |
| } |
| memstats.heap_released += uint64(released) |
| sumreleased += released |
| s.npreleased = len >> _PageShift |
| sysUnused(unsafe.Pointer(start), len) |
| } |
| } |
| return sumreleased |
| } |
| |
| func (h *mheap) scavenge(k int32, now, limit uint64) { |
| lock(&h.lock) |
| var sumreleased uintptr |
| for i := 0; i < len(h.free); i++ { |
| sumreleased += scavengelist(&h.free[i], now, limit) |
| } |
| sumreleased += scavengelist(&h.freelarge, now, limit) |
| unlock(&h.lock) |
| |
| if debug.gctrace > 0 { |
| if sumreleased > 0 { |
| print("scvg", k, ": ", sumreleased>>20, " MB released\n") |
| } |
| // TODO(dvyukov): these stats are incorrect as we don't subtract stack usage from heap. |
| // But we can't call ReadMemStats on g0 holding locks. |
| print("scvg", k, ": inuse: ", memstats.heap_inuse>>20, ", idle: ", memstats.heap_idle>>20, ", sys: ", memstats.heap_sys>>20, ", released: ", memstats.heap_released>>20, ", consumed: ", (memstats.heap_sys-memstats.heap_released)>>20, " (MB)\n") |
| } |
| } |
| |
| //go:linkname runtime_debug_freeOSMemory runtime/debug.freeOSMemory |
| func runtime_debug_freeOSMemory() { |
| gcStart(gcForceBlockMode, false) |
| systemstack(func() { mheap_.scavenge(-1, ^uint64(0), 0) }) |
| } |
| |
| // Initialize a new span with the given start and npages. |
| func (span *mspan) init(base uintptr, npages uintptr) { |
| span.next = nil |
| span.prev = nil |
| span.list = nil |
| span.startAddr = base |
| span.npages = npages |
| span.allocCount = 0 |
| span.sizeclass = 0 |
| span.incache = false |
| span.elemsize = 0 |
| span.state = _MSpanDead |
| span.unusedsince = 0 |
| span.npreleased = 0 |
| span.speciallock.key = 0 |
| span.specials = nil |
| span.needzero = 0 |
| span.freeindex = 0 |
| span.allocBits = nil |
| span.gcmarkBits = nil |
| } |
| |
| func (span *mspan) inList() bool { |
| return span.prev != nil |
| } |
| |
| // Initialize an empty doubly-linked list. |
| func (list *mSpanList) init() { |
| list.first = nil |
| list.last = &list.first |
| } |
| |
| func (list *mSpanList) remove(span *mspan) { |
| if span.prev == nil || span.list != list { |
| println("runtime: failed MSpanList_Remove", span, span.prev, span.list, list) |
| throw("MSpanList_Remove") |
| } |
| if span.next != nil { |
| span.next.prev = span.prev |
| } else { |
| // TODO: After we remove the span.list != list check above, |
| // we could at least still check list.last == &span.next here. |
| list.last = span.prev |
| } |
| *span.prev = span.next |
| span.next = nil |
| span.prev = nil |
| span.list = nil |
| } |
| |
| func (list *mSpanList) isEmpty() bool { |
| return list.first == nil |
| } |
| |
| func (list *mSpanList) insert(span *mspan) { |
| if span.next != nil || span.prev != nil || span.list != nil { |
| println("runtime: failed MSpanList_Insert", span, span.next, span.prev, span.list) |
| throw("MSpanList_Insert") |
| } |
| span.next = list.first |
| if list.first != nil { |
| list.first.prev = &span.next |
| } else { |
| list.last = &span.next |
| } |
| list.first = span |
| span.prev = &list.first |
| span.list = list |
| } |
| |
| func (list *mSpanList) insertBack(span *mspan) { |
| if span.next != nil || span.prev != nil || span.list != nil { |
| println("failed MSpanList_InsertBack", span, span.next, span.prev, span.list) |
| throw("MSpanList_InsertBack") |
| } |
| span.next = nil |
| span.prev = list.last |
| *list.last = span |
| list.last = &span.next |
| span.list = list |
| } |
| |
| const ( |
| _KindSpecialFinalizer = 1 |
| _KindSpecialProfile = 2 |
| // Note: The finalizer special must be first because if we're freeing |
| // an object, a finalizer special will cause the freeing operation |
| // to abort, and we want to keep the other special records around |
| // if that happens. |
| ) |
| |
| type special struct { |
| next *special // linked list in span |
| offset uint16 // span offset of object |
| kind byte // kind of special |
| } |
| |
| // Adds the special record s to the list of special records for |
| // the object p. All fields of s should be filled in except for |
| // offset & next, which this routine will fill in. |
| // Returns true if the special was successfully added, false otherwise. |
| // (The add will fail only if a record with the same p and s->kind |
| // already exists.) |
| func addspecial(p unsafe.Pointer, s *special) bool { |
| span := mheap_.lookupMaybe(p) |
| if span == nil { |
| throw("addspecial on invalid pointer") |
| } |
| |
| // Ensure that the span is swept. |
| // Sweeping accesses the specials list w/o locks, so we have |
| // to synchronize with it. And it's just much safer. |
| mp := acquirem() |
| span.ensureSwept() |
| |
| offset := uintptr(p) - span.base() |
| kind := s.kind |
| |
| lock(&span.speciallock) |
| |
| // Find splice point, check for existing record. |
| t := &span.specials |
| for { |
| x := *t |
| if x == nil { |
| break |
| } |
| if offset == uintptr(x.offset) && kind == x.kind { |
| unlock(&span.speciallock) |
| releasem(mp) |
| return false // already exists |
| } |
| if offset < uintptr(x.offset) || (offset == uintptr(x.offset) && kind < x.kind) { |
| break |
| } |
| t = &x.next |
| } |
| |
| // Splice in record, fill in offset. |
| s.offset = uint16(offset) |
| s.next = *t |
| *t = s |
| unlock(&span.speciallock) |
| releasem(mp) |
| |
| return true |
| } |
| |
| // Removes the Special record of the given kind for the object p. |
| // Returns the record if the record existed, nil otherwise. |
| // The caller must FixAlloc_Free the result. |
| func removespecial(p unsafe.Pointer, kind uint8) *special { |
| span := mheap_.lookupMaybe(p) |
| if span == nil { |
| throw("removespecial on invalid pointer") |
| } |
| |
| // Ensure that the span is swept. |
| // Sweeping accesses the specials list w/o locks, so we have |
| // to synchronize with it. And it's just much safer. |
| mp := acquirem() |
| span.ensureSwept() |
| |
| offset := uintptr(p) - span.base() |
| |
| lock(&span.speciallock) |
| t := &span.specials |
| for { |
| s := *t |
| if s == nil { |
| break |
| } |
| // This function is used for finalizers only, so we don't check for |
| // "interior" specials (p must be exactly equal to s->offset). |
| if offset == uintptr(s.offset) && kind == s.kind { |
| *t = s.next |
| unlock(&span.speciallock) |
| releasem(mp) |
| return s |
| } |
| t = &s.next |
| } |
| unlock(&span.speciallock) |
| releasem(mp) |
| return nil |
| } |
| |
| // The described object has a finalizer set for it. |
| type specialfinalizer struct { |
| special special |
| fn *funcval |
| nret uintptr |
| fint *_type |
| ot *ptrtype |
| } |
| |
| // Adds a finalizer to the object p. Returns true if it succeeded. |
| func addfinalizer(p unsafe.Pointer, f *funcval, nret uintptr, fint *_type, ot *ptrtype) bool { |
| lock(&mheap_.speciallock) |
| s := (*specialfinalizer)(mheap_.specialfinalizeralloc.alloc()) |
| unlock(&mheap_.speciallock) |
| s.special.kind = _KindSpecialFinalizer |
| s.fn = f |
| s.nret = nret |
| s.fint = fint |
| s.ot = ot |
| if addspecial(p, &s.special) { |
| // This is responsible for maintaining the same |
| // GC-related invariants as markrootSpans in any |
| // situation where it's possible that markrootSpans |
| // has already run but mark termination hasn't yet. |
| if gcphase != _GCoff { |
| _, base, _ := findObject(p) |
| mp := acquirem() |
| gcw := &mp.p.ptr().gcw |
| // Mark everything reachable from the object |
| // so it's retained for the finalizer. |
| scanobject(uintptr(base), gcw) |
| // Mark the finalizer itself, since the |
| // special isn't part of the GC'd heap. |
| scanblock(uintptr(unsafe.Pointer(&s.fn)), sys.PtrSize, &oneptrmask[0], gcw) |
| if gcBlackenPromptly { |
| gcw.dispose() |
| } |
| releasem(mp) |
| } |
| return true |
| } |
| |
| // There was an old finalizer |
| lock(&mheap_.speciallock) |
| mheap_.specialfinalizeralloc.free(unsafe.Pointer(s)) |
| unlock(&mheap_.speciallock) |
| return false |
| } |
| |
| // Removes the finalizer (if any) from the object p. |
| func removefinalizer(p unsafe.Pointer) { |
| s := (*specialfinalizer)(unsafe.Pointer(removespecial(p, _KindSpecialFinalizer))) |
| if s == nil { |
| return // there wasn't a finalizer to remove |
| } |
| lock(&mheap_.speciallock) |
| mheap_.specialfinalizeralloc.free(unsafe.Pointer(s)) |
| unlock(&mheap_.speciallock) |
| } |
| |
| // The described object is being heap profiled. |
| type specialprofile struct { |
| special special |
| b *bucket |
| } |
| |
| // Set the heap profile bucket associated with addr to b. |
| func setprofilebucket(p unsafe.Pointer, b *bucket) { |
| lock(&mheap_.speciallock) |
| s := (*specialprofile)(mheap_.specialprofilealloc.alloc()) |
| unlock(&mheap_.speciallock) |
| s.special.kind = _KindSpecialProfile |
| s.b = b |
| if !addspecial(p, &s.special) { |
| throw("setprofilebucket: profile already set") |
| } |
| } |
| |
| // Do whatever cleanup needs to be done to deallocate s. It has |
| // already been unlinked from the MSpan specials list. |
| func freespecial(s *special, p unsafe.Pointer, size uintptr) { |
| switch s.kind { |
| case _KindSpecialFinalizer: |
| sf := (*specialfinalizer)(unsafe.Pointer(s)) |
| queuefinalizer(p, sf.fn, sf.nret, sf.fint, sf.ot) |
| lock(&mheap_.speciallock) |
| mheap_.specialfinalizeralloc.free(unsafe.Pointer(sf)) |
| unlock(&mheap_.speciallock) |
| case _KindSpecialProfile: |
| sp := (*specialprofile)(unsafe.Pointer(s)) |
| mProf_Free(sp.b, size) |
| lock(&mheap_.speciallock) |
| mheap_.specialprofilealloc.free(unsafe.Pointer(sp)) |
| unlock(&mheap_.speciallock) |
| default: |
| throw("bad special kind") |
| panic("not reached") |
| } |
| } |
| |
| const gcBitsChunkBytes = uintptr(64 << 10) |
| const gcBitsHeaderBytes = unsafe.Sizeof(gcBitsHeader{}) |
| |
| type gcBitsHeader struct { |
| free uintptr // free is the index into bits of the next free byte. |
| next uintptr // *gcBits triggers recursive type bug. (issue 14620) |
| } |
| |
| type gcBits struct { |
| // gcBitsHeader // side step recursive type bug (issue 14620) by including fields by hand. |
| free uintptr // free is the index into bits of the next free byte. |
| next *gcBits |
| bits [gcBitsChunkBytes - gcBitsHeaderBytes]uint8 |
| } |
| |
| var gcBitsArenas struct { |
| lock mutex |
| free *gcBits |
| next *gcBits |
| current *gcBits |
| previous *gcBits |
| } |
| |
| // newMarkBits returns a pointer to 8 byte aligned bytes |
| // to be used for a span's mark bits. |
| func newMarkBits(nelems uintptr) *uint8 { |
| lock(&gcBitsArenas.lock) |
| blocksNeeded := uintptr((nelems + 63) / 64) |
| bytesNeeded := blocksNeeded * 8 |
| if gcBitsArenas.next == nil || |
| gcBitsArenas.next.free+bytesNeeded > uintptr(len(gcBits{}.bits)) { |
| // Allocate a new arena. |
| fresh := newArena() |
| fresh.next = gcBitsArenas.next |
| gcBitsArenas.next = fresh |
| } |
| if gcBitsArenas.next.free >= gcBitsChunkBytes { |
| println("runtime: gcBitsArenas.next.free=", gcBitsArenas.next.free, gcBitsChunkBytes) |
| throw("markBits overflow") |
| } |
| result := &gcBitsArenas.next.bits[gcBitsArenas.next.free] |
| gcBitsArenas.next.free += bytesNeeded |
| unlock(&gcBitsArenas.lock) |
| return result |
| } |
| |
| // newAllocBits returns a pointer to 8 byte aligned bytes |
| // to be used for this span's alloc bits. |
| // newAllocBits is used to provide newly initialized spans |
| // allocation bits. For spans not being initialized the |
| // the mark bits are repurposed as allocation bits when |
| // the span is swept. |
| func newAllocBits(nelems uintptr) *uint8 { |
| return newMarkBits(nelems) |
| } |
| |
| // nextMarkBitArenaEpoch establishes a new epoch for the arenas |
| // holding the mark bits. The arenas are named relative to the |
| // current GC cycle which is demarcated by the call to finishweep_m. |
| // |
| // All current spans have been swept. |
| // During that sweep each span allocated room for its gcmarkBits in |
| // gcBitsArenas.next block. gcBitsArenas.next becomes the gcBitsArenas.current |
| // where the GC will mark objects and after each span is swept these bits |
| // will be used to allocate objects. |
| // gcBitsArenas.current becomes gcBitsArenas.previous where the span's |
| // gcAllocBits live until all the spans have been swept during this GC cycle. |
| // The span's sweep extinguishes all the references to gcBitsArenas.previous |
| // by pointing gcAllocBits into the gcBitsArenas.current. |
| // The gcBitsArenas.previous is released to the gcBitsArenas.free list. |
| func nextMarkBitArenaEpoch() { |
| lock(&gcBitsArenas.lock) |
| if gcBitsArenas.previous != nil { |
| if gcBitsArenas.free == nil { |
| gcBitsArenas.free = gcBitsArenas.previous |
| } else { |
| // Find end of previous arenas. |
| last := gcBitsArenas.previous |
| for last = gcBitsArenas.previous; last.next != nil; last = last.next { |
| } |
| last.next = gcBitsArenas.free |
| gcBitsArenas.free = gcBitsArenas.previous |
| } |
| } |
| gcBitsArenas.previous = gcBitsArenas.current |
| gcBitsArenas.current = gcBitsArenas.next |
| gcBitsArenas.next = nil // newMarkBits calls newArena when needed |
| unlock(&gcBitsArenas.lock) |
| } |
| |
| // newArena allocates and zeroes a gcBits arena. |
| func newArena() *gcBits { |
| var result *gcBits |
| if gcBitsArenas.free == nil { |
| result = (*gcBits)(sysAlloc(gcBitsChunkBytes, &memstats.gc_sys)) |
| if result == nil { |
| throw("runtime: cannot allocate memory") |
| } |
| } else { |
| result = gcBitsArenas.free |
| gcBitsArenas.free = gcBitsArenas.free.next |
| memclr(unsafe.Pointer(result), gcBitsChunkBytes) |
| } |
| result.next = nil |
| // If result.bits is not 8 byte aligned adjust index so |
| // that &result.bits[result.free] is 8 byte aligned. |
| if uintptr(unsafe.Offsetof(gcBits{}.bits))&7 == 0 { |
| result.free = 0 |
| } else { |
| result.free = 8 - (uintptr(unsafe.Pointer(&result.bits[0])) & 7) |
| } |
| return result |
| } |