blob: 0ab7b59ab754b6438e443ae6a2d251e621e0c586 [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package draw provides image composition functions
// in the style of the Plan 9 graphics library
// (see http://plan9.bell-labs.com/magic/man2html/2/draw)
// and the X Render extension.
package draw
import (
"image"
"image/ycbcr"
)
// m is the maximum color value returned by image.Color.RGBA.
const m = 1<<16 - 1
// Op is a Porter-Duff compositing operator.
type Op int
const (
// Over specifies ``(src in mask) over dst''.
Over Op = iota
// Src specifies ``src in mask''.
Src
)
var zeroColor image.Color = image.AlphaColor{0}
// A draw.Image is an image.Image with a Set method to change a single pixel.
type Image interface {
image.Image
Set(x, y int, c image.Color)
}
// Draw calls DrawMask with a nil mask.
func Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point, op Op) {
DrawMask(dst, r, src, sp, nil, image.ZP, op)
}
// clip clips r against each image's bounds (after translating into the
// destination image's co-ordinate space) and shifts the points sp and mp by
// the same amount as the change in r.Min.
func clip(dst Image, r *image.Rectangle, src image.Image, sp *image.Point, mask image.Image, mp *image.Point) {
orig := r.Min
*r = r.Intersect(dst.Bounds())
*r = r.Intersect(src.Bounds().Add(orig.Sub(*sp)))
if mask != nil {
*r = r.Intersect(mask.Bounds().Add(orig.Sub(*mp)))
}
dx := r.Min.X - orig.X
dy := r.Min.Y - orig.Y
if dx == 0 && dy == 0 {
return
}
(*sp).X += dx
(*sp).Y += dy
(*mp).X += dx
(*mp).Y += dy
}
// DrawMask aligns r.Min in dst with sp in src and mp in mask and then replaces the rectangle r
// in dst with the result of a Porter-Duff composition. A nil mask is treated as opaque.
func DrawMask(dst Image, r image.Rectangle, src image.Image, sp image.Point, mask image.Image, mp image.Point, op Op) {
clip(dst, &r, src, &sp, mask, &mp)
if r.Empty() {
return
}
// Fast paths for special cases. If none of them apply, then we fall back to a general but slow implementation.
if dst0, ok := dst.(*image.RGBA); ok {
if op == Over {
if mask == nil {
switch src0 := src.(type) {
case *image.ColorImage:
drawFillOver(dst0, r, src0)
return
case *image.RGBA:
drawCopyOver(dst0, r, src0, sp)
return
case *image.NRGBA:
drawNRGBAOver(dst0, r, src0, sp)
return
case *ycbcr.YCbCr:
drawYCbCr(dst0, r, src0, sp)
return
}
} else if mask0, ok := mask.(*image.Alpha); ok {
switch src0 := src.(type) {
case *image.ColorImage:
drawGlyphOver(dst0, r, src0, mask0, mp)
return
}
}
} else {
if mask == nil {
switch src0 := src.(type) {
case *image.ColorImage:
drawFillSrc(dst0, r, src0)
return
case *image.RGBA:
drawCopySrc(dst0, r, src0, sp)
return
case *image.NRGBA:
drawNRGBASrc(dst0, r, src0, sp)
return
case *ycbcr.YCbCr:
drawYCbCr(dst0, r, src0, sp)
return
}
}
}
drawRGBA(dst0, r, src, sp, mask, mp, op)
return
}
x0, x1, dx := r.Min.X, r.Max.X, 1
y0, y1, dy := r.Min.Y, r.Max.Y, 1
if image.Image(dst) == src && r.Overlaps(r.Add(sp.Sub(r.Min))) {
// Rectangles overlap: process backward?
if sp.Y < r.Min.Y || sp.Y == r.Min.Y && sp.X < r.Min.X {
x0, x1, dx = x1-1, x0-1, -1
y0, y1, dy = y1-1, y0-1, -1
}
}
var out *image.RGBA64Color
sy := sp.Y + y0 - r.Min.Y
my := mp.Y + y0 - r.Min.Y
for y := y0; y != y1; y, sy, my = y+dy, sy+dy, my+dy {
sx := sp.X + x0 - r.Min.X
mx := mp.X + x0 - r.Min.X
for x := x0; x != x1; x, sx, mx = x+dx, sx+dx, mx+dx {
ma := uint32(m)
if mask != nil {
_, _, _, ma = mask.At(mx, my).RGBA()
}
switch {
case ma == 0:
if op == Over {
// No-op.
} else {
dst.Set(x, y, zeroColor)
}
case ma == m && op == Src:
dst.Set(x, y, src.At(sx, sy))
default:
sr, sg, sb, sa := src.At(sx, sy).RGBA()
if out == nil {
out = new(image.RGBA64Color)
}
if op == Over {
dr, dg, db, da := dst.At(x, y).RGBA()
a := m - (sa * ma / m)
out.R = uint16((dr*a + sr*ma) / m)
out.G = uint16((dg*a + sg*ma) / m)
out.B = uint16((db*a + sb*ma) / m)
out.A = uint16((da*a + sa*ma) / m)
} else {
out.R = uint16(sr * ma / m)
out.G = uint16(sg * ma / m)
out.B = uint16(sb * ma / m)
out.A = uint16(sa * ma / m)
}
dst.Set(x, y, out)
}
}
}
}
func drawFillOver(dst *image.RGBA, r image.Rectangle, src *image.ColorImage) {
cr, cg, cb, ca := src.RGBA()
// The 0x101 is here for the same reason as in drawRGBA.
a := (m - ca) * 0x101
x0, x1 := r.Min.X, r.Max.X
y0, y1 := r.Min.Y, r.Max.Y
for y := y0; y != y1; y++ {
dbase := y * dst.Stride
dpix := dst.Pix[dbase+x0 : dbase+x1]
for i, rgba := range dpix {
dr := (uint32(rgba.R)*a)/m + cr
dg := (uint32(rgba.G)*a)/m + cg
db := (uint32(rgba.B)*a)/m + cb
da := (uint32(rgba.A)*a)/m + ca
dpix[i] = image.RGBAColor{uint8(dr >> 8), uint8(dg >> 8), uint8(db >> 8), uint8(da >> 8)}
}
}
}
func drawCopyOver(dst *image.RGBA, r image.Rectangle, src *image.RGBA, sp image.Point) {
dx0, dx1 := r.Min.X, r.Max.X
dy0, dy1 := r.Min.Y, r.Max.Y
nrows := dy1 - dy0
sx0, sx1 := sp.X, sp.X+dx1-dx0
d0 := dy0*dst.Stride + dx0
d1 := dy0*dst.Stride + dx1
s0 := sp.Y*src.Stride + sx0
s1 := sp.Y*src.Stride + sx1
var (
ddelta, sdelta int
i0, i1, idelta int
)
if r.Min.Y < sp.Y || r.Min.Y == sp.Y && r.Min.X <= sp.X {
ddelta = dst.Stride
sdelta = src.Stride
i0, i1, idelta = 0, d1-d0, +1
} else {
// If the source start point is higher than the destination start point, or equal height but to the left,
// then we compose the rows in right-to-left, bottom-up order instead of left-to-right, top-down.
d0 += (nrows - 1) * dst.Stride
d1 += (nrows - 1) * dst.Stride
s0 += (nrows - 1) * src.Stride
s1 += (nrows - 1) * src.Stride
ddelta = -dst.Stride
sdelta = -src.Stride
i0, i1, idelta = d1-d0-1, -1, -1
}
for ; nrows > 0; nrows-- {
dpix := dst.Pix[d0:d1]
spix := src.Pix[s0:s1]
for i := i0; i != i1; i += idelta {
// For unknown reasons, even though both dpix[i] and spix[i] are
// image.RGBAColors, on an x86 CPU it seems fastest to call RGBA
// for the source but to do it manually for the destination.
sr, sg, sb, sa := spix[i].RGBA()
rgba := dpix[i]
dr := uint32(rgba.R)
dg := uint32(rgba.G)
db := uint32(rgba.B)
da := uint32(rgba.A)
// The 0x101 is here for the same reason as in drawRGBA.
a := (m - sa) * 0x101
dr = (dr*a)/m + sr
dg = (dg*a)/m + sg
db = (db*a)/m + sb
da = (da*a)/m + sa
dpix[i] = image.RGBAColor{uint8(dr >> 8), uint8(dg >> 8), uint8(db >> 8), uint8(da >> 8)}
}
d0 += ddelta
d1 += ddelta
s0 += sdelta
s1 += sdelta
}
}
func drawNRGBAOver(dst *image.RGBA, r image.Rectangle, src *image.NRGBA, sp image.Point) {
for y, sy := r.Min.Y, sp.Y; y != r.Max.Y; y, sy = y+1, sy+1 {
dpix := dst.Pix[y*dst.Stride : (y+1)*dst.Stride]
spix := src.Pix[sy*src.Stride : (sy+1)*src.Stride]
for x, sx := r.Min.X, sp.X; x != r.Max.X; x, sx = x+1, sx+1 {
// Convert from non-premultiplied color to pre-multiplied color.
// The order of operations here is to match the NRGBAColor.RGBA
// method in image/color.go.
snrgba := spix[sx]
sa := uint32(snrgba.A)
sr := uint32(snrgba.R) * 0x101 * sa / 0xff
sg := uint32(snrgba.G) * 0x101 * sa / 0xff
sb := uint32(snrgba.B) * 0x101 * sa / 0xff
sa *= 0x101
rgba := dpix[x]
dr := uint32(rgba.R)
dg := uint32(rgba.G)
db := uint32(rgba.B)
da := uint32(rgba.A)
a := (m - sa) * 0x101
dr = (dr*a + sr*m) / m
dg = (dg*a + sg*m) / m
db = (db*a + sb*m) / m
da = (da*a + sa*m) / m
dpix[x] = image.RGBAColor{uint8(dr >> 8), uint8(dg >> 8), uint8(db >> 8), uint8(da >> 8)}
}
}
}
func drawGlyphOver(dst *image.RGBA, r image.Rectangle, src *image.ColorImage, mask *image.Alpha, mp image.Point) {
x0, x1 := r.Min.X, r.Max.X
y0, y1 := r.Min.Y, r.Max.Y
cr, cg, cb, ca := src.RGBA()
for y, my := y0, mp.Y; y != y1; y, my = y+1, my+1 {
dbase := y * dst.Stride
dpix := dst.Pix[dbase+x0 : dbase+x1]
mbase := my * mask.Stride
mpix := mask.Pix[mbase+mp.X:]
for i, rgba := range dpix {
ma := uint32(mpix[i].A)
if ma == 0 {
continue
}
ma |= ma << 8
dr := uint32(rgba.R)
dg := uint32(rgba.G)
db := uint32(rgba.B)
da := uint32(rgba.A)
// The 0x101 is here for the same reason as in drawRGBA.
a := (m - (ca * ma / m)) * 0x101
dr = (dr*a + cr*ma) / m
dg = (dg*a + cg*ma) / m
db = (db*a + cb*ma) / m
da = (da*a + ca*ma) / m
dpix[i] = image.RGBAColor{uint8(dr >> 8), uint8(dg >> 8), uint8(db >> 8), uint8(da >> 8)}
}
}
}
func drawFillSrc(dst *image.RGBA, r image.Rectangle, src *image.ColorImage) {
if r.Dy() < 1 {
return
}
cr, cg, cb, ca := src.RGBA()
color := image.RGBAColor{uint8(cr >> 8), uint8(cg >> 8), uint8(cb >> 8), uint8(ca >> 8)}
// The built-in copy function is faster than a straightforward for loop to fill the destination with
// the color, but copy requires a slice source. We therefore use a for loop to fill the first row, and
// then use the first row as the slice source for the remaining rows.
dx0, dx1 := r.Min.X, r.Max.X
dy0, dy1 := r.Min.Y, r.Max.Y
dbase := dy0 * dst.Stride
i0, i1 := dbase+dx0, dbase+dx1
firstRow := dst.Pix[i0:i1]
for i := range firstRow {
firstRow[i] = color
}
for y := dy0 + 1; y < dy1; y++ {
i0 += dst.Stride
i1 += dst.Stride
copy(dst.Pix[i0:i1], firstRow)
}
}
func drawCopySrc(dst *image.RGBA, r image.Rectangle, src *image.RGBA, sp image.Point) {
dx0, dx1 := r.Min.X, r.Max.X
dy0, dy1 := r.Min.Y, r.Max.Y
nrows := dy1 - dy0
sx0, sx1 := sp.X, sp.X+dx1-dx0
d0 := dy0*dst.Stride + dx0
d1 := dy0*dst.Stride + dx1
s0 := sp.Y*src.Stride + sx0
s1 := sp.Y*src.Stride + sx1
var ddelta, sdelta int
if r.Min.Y <= sp.Y {
ddelta = dst.Stride
sdelta = src.Stride
} else {
// If the source start point is higher than the destination start point, then we compose the rows
// in bottom-up order instead of top-down. Unlike the drawCopyOver function, we don't have to
// check the x co-ordinates because the built-in copy function can handle overlapping slices.
d0 += (nrows - 1) * dst.Stride
d1 += (nrows - 1) * dst.Stride
s0 += (nrows - 1) * src.Stride
s1 += (nrows - 1) * src.Stride
ddelta = -dst.Stride
sdelta = -src.Stride
}
for ; nrows > 0; nrows-- {
copy(dst.Pix[d0:d1], src.Pix[s0:s1])
d0 += ddelta
d1 += ddelta
s0 += sdelta
s1 += sdelta
}
}
func drawNRGBASrc(dst *image.RGBA, r image.Rectangle, src *image.NRGBA, sp image.Point) {
for y, sy := r.Min.Y, sp.Y; y != r.Max.Y; y, sy = y+1, sy+1 {
dpix := dst.Pix[y*dst.Stride : (y+1)*dst.Stride]
spix := src.Pix[sy*src.Stride : (sy+1)*src.Stride]
for x, sx := r.Min.X, sp.X; x != r.Max.X; x, sx = x+1, sx+1 {
// Convert from non-premultiplied color to pre-multiplied color.
// The order of operations here is to match the NRGBAColor.RGBA
// method in image/color.go.
snrgba := spix[sx]
sa := uint32(snrgba.A)
sr := uint32(snrgba.R) * 0x101 * sa / 0xff
sg := uint32(snrgba.G) * 0x101 * sa / 0xff
sb := uint32(snrgba.B) * 0x101 * sa / 0xff
sa *= 0x101
dpix[x] = image.RGBAColor{uint8(sr >> 8), uint8(sg >> 8), uint8(sb >> 8), uint8(sa >> 8)}
}
}
}
func drawYCbCr(dst *image.RGBA, r image.Rectangle, src *ycbcr.YCbCr, sp image.Point) {
// A YCbCr image is always fully opaque, and so if the mask is implicitly nil
// (i.e. fully opaque) then the op is effectively always Src.
var (
yy, cb, cr uint8
rr, gg, bb uint8
)
switch src.SubsampleRatio {
case ycbcr.SubsampleRatio422:
for y, sy := r.Min.Y, sp.Y; y != r.Max.Y; y, sy = y+1, sy+1 {
dpix := dst.Pix[y*dst.Stride : (y+1)*dst.Stride]
for x, sx := r.Min.X, sp.X; x != r.Max.X; x, sx = x+1, sx+1 {
i := sx / 2
yy = src.Y[sy*src.YStride+sx]
cb = src.Cb[sy*src.CStride+i]
cr = src.Cr[sy*src.CStride+i]
rr, gg, bb = ycbcr.YCbCrToRGB(yy, cb, cr)
dpix[x] = image.RGBAColor{rr, gg, bb, 255}
}
}
case ycbcr.SubsampleRatio420:
for y, sy := r.Min.Y, sp.Y; y != r.Max.Y; y, sy = y+1, sy+1 {
dpix := dst.Pix[y*dst.Stride : (y+1)*dst.Stride]
for x, sx := r.Min.X, sp.X; x != r.Max.X; x, sx = x+1, sx+1 {
i, j := sx/2, sy/2
yy = src.Y[sy*src.YStride+sx]
cb = src.Cb[j*src.CStride+i]
cr = src.Cr[j*src.CStride+i]
rr, gg, bb = ycbcr.YCbCrToRGB(yy, cb, cr)
dpix[x] = image.RGBAColor{rr, gg, bb, 255}
}
}
default:
// Default to 4:4:4 subsampling.
for y, sy := r.Min.Y, sp.Y; y != r.Max.Y; y, sy = y+1, sy+1 {
dpix := dst.Pix[y*dst.Stride : (y+1)*dst.Stride]
for x, sx := r.Min.X, sp.X; x != r.Max.X; x, sx = x+1, sx+1 {
yy = src.Y[sy*src.YStride+sx]
cb = src.Cb[sy*src.CStride+sx]
cr = src.Cr[sy*src.CStride+sx]
rr, gg, bb = ycbcr.YCbCrToRGB(yy, cb, cr)
dpix[x] = image.RGBAColor{rr, gg, bb, 255}
}
}
}
}
func drawRGBA(dst *image.RGBA, r image.Rectangle, src image.Image, sp image.Point, mask image.Image, mp image.Point, op Op) {
x0, x1, dx := r.Min.X, r.Max.X, 1
y0, y1, dy := r.Min.Y, r.Max.Y, 1
if image.Image(dst) == src && r.Overlaps(r.Add(sp.Sub(r.Min))) {
if sp.Y < r.Min.Y || sp.Y == r.Min.Y && sp.X < r.Min.X {
x0, x1, dx = x1-1, x0-1, -1
y0, y1, dy = y1-1, y0-1, -1
}
}
sy := sp.Y + y0 - r.Min.Y
my := mp.Y + y0 - r.Min.Y
for y := y0; y != y1; y, sy, my = y+dy, sy+dy, my+dy {
sx := sp.X + x0 - r.Min.X
mx := mp.X + x0 - r.Min.X
dpix := dst.Pix[y*dst.Stride : (y+1)*dst.Stride]
for x := x0; x != x1; x, sx, mx = x+dx, sx+dx, mx+dx {
ma := uint32(m)
if mask != nil {
_, _, _, ma = mask.At(mx, my).RGBA()
}
sr, sg, sb, sa := src.At(sx, sy).RGBA()
var dr, dg, db, da uint32
if op == Over {
rgba := dpix[x]
dr = uint32(rgba.R)
dg = uint32(rgba.G)
db = uint32(rgba.B)
da = uint32(rgba.A)
// dr, dg, db and da are all 8-bit color at the moment, ranging in [0,255].
// We work in 16-bit color, and so would normally do:
// dr |= dr << 8
// and similarly for dg, db and da, but instead we multiply a
// (which is a 16-bit color, ranging in [0,65535]) by 0x101.
// This yields the same result, but is fewer arithmetic operations.
a := (m - (sa * ma / m)) * 0x101
dr = (dr*a + sr*ma) / m
dg = (dg*a + sg*ma) / m
db = (db*a + sb*ma) / m
da = (da*a + sa*ma) / m
} else {
dr = sr * ma / m
dg = sg * ma / m
db = sb * ma / m
da = sa * ma / m
}
dpix[x] = image.RGBAColor{uint8(dr >> 8), uint8(dg >> 8), uint8(db >> 8), uint8(da >> 8)}
}
}
}