| // Copyright 2010 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // The elliptic package implements several standard elliptic curves over prime |
| // fields |
| package elliptic |
| |
| // This package operates, internally, on Jacobian coordinates. For a given |
| // (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1) |
| // where x = x1/z1² and y = y1/z1³. The greatest speedups come when the whole |
| // calculation can be performed within the transform (as in ScalarMult and |
| // ScalarBaseMult). But even for Add and Double, it's faster to apply and |
| // reverse the transform than to operate in affine coordinates. |
| |
| import ( |
| "big" |
| "io" |
| "os" |
| "sync" |
| ) |
| |
| // A Curve represents a short-form Weierstrass curve with a=-3. |
| // See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html |
| type Curve struct { |
| P *big.Int // the order of the underlying field |
| N *big.Int // the order of the base point |
| B *big.Int // the constant of the curve equation |
| Gx, Gy *big.Int // (x,y) of the base point |
| BitSize int // the size of the underlying field |
| } |
| |
| // IsOnCurve returns true if the given (x,y) lies on the curve. |
| func (curve *Curve) IsOnCurve(x, y *big.Int) bool { |
| // y² = x³ - 3x + b |
| y2 := new(big.Int).Mul(y, y) |
| y2.Mod(y2, curve.P) |
| |
| x3 := new(big.Int).Mul(x, x) |
| x3.Mul(x3, x) |
| |
| threeX := new(big.Int).Lsh(x, 1) |
| threeX.Add(threeX, x) |
| |
| x3.Sub(x3, threeX) |
| x3.Add(x3, curve.B) |
| x3.Mod(x3, curve.P) |
| |
| return x3.Cmp(y2) == 0 |
| } |
| |
| // affineFromJacobian reverses the Jacobian transform. See the comment at the |
| // top of the file. |
| func (curve *Curve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) { |
| zinv := new(big.Int).ModInverse(z, curve.P) |
| zinvsq := new(big.Int).Mul(zinv, zinv) |
| |
| xOut = new(big.Int).Mul(x, zinvsq) |
| xOut.Mod(xOut, curve.P) |
| zinvsq.Mul(zinvsq, zinv) |
| yOut = new(big.Int).Mul(y, zinvsq) |
| yOut.Mod(yOut, curve.P) |
| return |
| } |
| |
| // Add returns the sum of (x1,y1) and (x2,y2) |
| func (curve *Curve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) { |
| z := new(big.Int).SetInt64(1) |
| return curve.affineFromJacobian(curve.addJacobian(x1, y1, z, x2, y2, z)) |
| } |
| |
| // addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and |
| // (x2, y2, z2) and returns their sum, also in Jacobian form. |
| func (curve *Curve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) { |
| // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl |
| z1z1 := new(big.Int).Mul(z1, z1) |
| z1z1.Mod(z1z1, curve.P) |
| z2z2 := new(big.Int).Mul(z2, z2) |
| z2z2.Mod(z2z2, curve.P) |
| |
| u1 := new(big.Int).Mul(x1, z2z2) |
| u1.Mod(u1, curve.P) |
| u2 := new(big.Int).Mul(x2, z1z1) |
| u2.Mod(u2, curve.P) |
| h := new(big.Int).Sub(u2, u1) |
| if h.Sign() == -1 { |
| h.Add(h, curve.P) |
| } |
| i := new(big.Int).Lsh(h, 1) |
| i.Mul(i, i) |
| j := new(big.Int).Mul(h, i) |
| |
| s1 := new(big.Int).Mul(y1, z2) |
| s1.Mul(s1, z2z2) |
| s1.Mod(s1, curve.P) |
| s2 := new(big.Int).Mul(y2, z1) |
| s2.Mul(s2, z1z1) |
| s2.Mod(s2, curve.P) |
| r := new(big.Int).Sub(s2, s1) |
| if r.Sign() == -1 { |
| r.Add(r, curve.P) |
| } |
| r.Lsh(r, 1) |
| v := new(big.Int).Mul(u1, i) |
| |
| x3 := new(big.Int).Set(r) |
| x3.Mul(x3, x3) |
| x3.Sub(x3, j) |
| x3.Sub(x3, v) |
| x3.Sub(x3, v) |
| x3.Mod(x3, curve.P) |
| |
| y3 := new(big.Int).Set(r) |
| v.Sub(v, x3) |
| y3.Mul(y3, v) |
| s1.Mul(s1, j) |
| s1.Lsh(s1, 1) |
| y3.Sub(y3, s1) |
| y3.Mod(y3, curve.P) |
| |
| z3 := new(big.Int).Add(z1, z2) |
| z3.Mul(z3, z3) |
| z3.Sub(z3, z1z1) |
| if z3.Sign() == -1 { |
| z3.Add(z3, curve.P) |
| } |
| z3.Sub(z3, z2z2) |
| if z3.Sign() == -1 { |
| z3.Add(z3, curve.P) |
| } |
| z3.Mul(z3, h) |
| z3.Mod(z3, curve.P) |
| |
| return x3, y3, z3 |
| } |
| |
| // Double returns 2*(x,y) |
| func (curve *Curve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) { |
| z1 := new(big.Int).SetInt64(1) |
| return curve.affineFromJacobian(curve.doubleJacobian(x1, y1, z1)) |
| } |
| |
| // doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and |
| // returns its double, also in Jacobian form. |
| func (curve *Curve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) { |
| // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b |
| delta := new(big.Int).Mul(z, z) |
| delta.Mod(delta, curve.P) |
| gamma := new(big.Int).Mul(y, y) |
| gamma.Mod(gamma, curve.P) |
| alpha := new(big.Int).Sub(x, delta) |
| if alpha.Sign() == -1 { |
| alpha.Add(alpha, curve.P) |
| } |
| alpha2 := new(big.Int).Add(x, delta) |
| alpha.Mul(alpha, alpha2) |
| alpha2.Set(alpha) |
| alpha.Lsh(alpha, 1) |
| alpha.Add(alpha, alpha2) |
| |
| beta := alpha2.Mul(x, gamma) |
| |
| x3 := new(big.Int).Mul(alpha, alpha) |
| beta8 := new(big.Int).Lsh(beta, 3) |
| x3.Sub(x3, beta8) |
| for x3.Sign() == -1 { |
| x3.Add(x3, curve.P) |
| } |
| x3.Mod(x3, curve.P) |
| |
| z3 := new(big.Int).Add(y, z) |
| z3.Mul(z3, z3) |
| z3.Sub(z3, gamma) |
| if z3.Sign() == -1 { |
| z3.Add(z3, curve.P) |
| } |
| z3.Sub(z3, delta) |
| if z3.Sign() == -1 { |
| z3.Add(z3, curve.P) |
| } |
| z3.Mod(z3, curve.P) |
| |
| beta.Lsh(beta, 2) |
| beta.Sub(beta, x3) |
| if beta.Sign() == -1 { |
| beta.Add(beta, curve.P) |
| } |
| y3 := alpha.Mul(alpha, beta) |
| |
| gamma.Mul(gamma, gamma) |
| gamma.Lsh(gamma, 3) |
| gamma.Mod(gamma, curve.P) |
| |
| y3.Sub(y3, gamma) |
| if y3.Sign() == -1 { |
| y3.Add(y3, curve.P) |
| } |
| y3.Mod(y3, curve.P) |
| |
| return x3, y3, z3 |
| } |
| |
| // ScalarMult returns k*(Bx,By) where k is a number in big-endian form. |
| func (curve *Curve) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) { |
| // We have a slight problem in that the identity of the group (the |
| // point at infinity) cannot be represented in (x, y) form on a finite |
| // machine. Thus the standard add/double algorithm has to be tweaked |
| // slightly: our initial state is not the identity, but x, and we |
| // ignore the first true bit in |k|. If we don't find any true bits in |
| // |k|, then we return nil, nil, because we cannot return the identity |
| // element. |
| |
| Bz := new(big.Int).SetInt64(1) |
| x := Bx |
| y := By |
| z := Bz |
| |
| seenFirstTrue := false |
| for _, byte := range k { |
| for bitNum := 0; bitNum < 8; bitNum++ { |
| if seenFirstTrue { |
| x, y, z = curve.doubleJacobian(x, y, z) |
| } |
| if byte&0x80 == 0x80 { |
| if !seenFirstTrue { |
| seenFirstTrue = true |
| } else { |
| x, y, z = curve.addJacobian(Bx, By, Bz, x, y, z) |
| } |
| } |
| byte <<= 1 |
| } |
| } |
| |
| if !seenFirstTrue { |
| return nil, nil |
| } |
| |
| return curve.affineFromJacobian(x, y, z) |
| } |
| |
| // ScalarBaseMult returns k*G, where G is the base point of the group and k is |
| // an integer in big-endian form. |
| func (curve *Curve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) { |
| return curve.ScalarMult(curve.Gx, curve.Gy, k) |
| } |
| |
| var mask = []byte{0xff, 0x1, 0x3, 0x7, 0xf, 0x1f, 0x3f, 0x7f} |
| |
| // GenerateKey returns a public/private key pair. The private key is generated |
| // using the given reader, which must return random data. |
| func (curve *Curve) GenerateKey(rand io.Reader) (priv []byte, x, y *big.Int, err os.Error) { |
| byteLen := (curve.BitSize + 7) >> 3 |
| priv = make([]byte, byteLen) |
| |
| for x == nil { |
| _, err = io.ReadFull(rand, priv) |
| if err != nil { |
| return |
| } |
| // We have to mask off any excess bits in the case that the size of the |
| // underlying field is not a whole number of bytes. |
| priv[0] &= mask[curve.BitSize%8] |
| // This is because, in tests, rand will return all zeros and we don't |
| // want to get the point at infinity and loop forever. |
| priv[1] ^= 0x42 |
| x, y = curve.ScalarBaseMult(priv) |
| } |
| return |
| } |
| |
| // Marshal converts a point into the form specified in section 4.3.6 of ANSI |
| // X9.62. |
| func (curve *Curve) Marshal(x, y *big.Int) []byte { |
| byteLen := (curve.BitSize + 7) >> 3 |
| |
| ret := make([]byte, 1+2*byteLen) |
| ret[0] = 4 // uncompressed point |
| |
| xBytes := x.Bytes() |
| copy(ret[1+byteLen-len(xBytes):], xBytes) |
| yBytes := y.Bytes() |
| copy(ret[1+2*byteLen-len(yBytes):], yBytes) |
| return ret |
| } |
| |
| // Unmarshal converts a point, serialised by Marshal, into an x, y pair. On |
| // error, x = nil. |
| func (curve *Curve) Unmarshal(data []byte) (x, y *big.Int) { |
| byteLen := (curve.BitSize + 7) >> 3 |
| if len(data) != 1+2*byteLen { |
| return |
| } |
| if data[0] != 4 { // uncompressed form |
| return |
| } |
| x = new(big.Int).SetBytes(data[1 : 1+byteLen]) |
| y = new(big.Int).SetBytes(data[1+byteLen:]) |
| return |
| } |
| |
| var initonce sync.Once |
| var p224 *Curve |
| var p256 *Curve |
| var p384 *Curve |
| var p521 *Curve |
| |
| func initAll() { |
| initP224() |
| initP256() |
| initP384() |
| initP521() |
| } |
| |
| func initP224() { |
| // See FIPS 186-3, section D.2.2 |
| p224 = new(Curve) |
| p224.P, _ = new(big.Int).SetString("26959946667150639794667015087019630673557916260026308143510066298881", 10) |
| p224.N, _ = new(big.Int).SetString("26959946667150639794667015087019625940457807714424391721682722368061", 10) |
| p224.B, _ = new(big.Int).SetString("b4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4", 16) |
| p224.Gx, _ = new(big.Int).SetString("b70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21", 16) |
| p224.Gy, _ = new(big.Int).SetString("bd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34", 16) |
| p224.BitSize = 224 |
| } |
| |
| func initP256() { |
| // See FIPS 186-3, section D.2.3 |
| p256 = new(Curve) |
| p256.P, _ = new(big.Int).SetString("115792089210356248762697446949407573530086143415290314195533631308867097853951", 10) |
| p256.N, _ = new(big.Int).SetString("115792089210356248762697446949407573529996955224135760342422259061068512044369", 10) |
| p256.B, _ = new(big.Int).SetString("5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b", 16) |
| p256.Gx, _ = new(big.Int).SetString("6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296", 16) |
| p256.Gy, _ = new(big.Int).SetString("4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5", 16) |
| p256.BitSize = 256 |
| } |
| |
| func initP384() { |
| // See FIPS 186-3, section D.2.4 |
| p384 = new(Curve) |
| p384.P, _ = new(big.Int).SetString("39402006196394479212279040100143613805079739270465446667948293404245721771496870329047266088258938001861606973112319", 10) |
| p384.N, _ = new(big.Int).SetString("39402006196394479212279040100143613805079739270465446667946905279627659399113263569398956308152294913554433653942643", 10) |
| p384.B, _ = new(big.Int).SetString("b3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef", 16) |
| p384.Gx, _ = new(big.Int).SetString("aa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7", 16) |
| p384.Gy, _ = new(big.Int).SetString("3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f", 16) |
| p384.BitSize = 384 |
| } |
| |
| func initP521() { |
| // See FIPS 186-3, section D.2.5 |
| p521 = new(Curve) |
| p521.P, _ = new(big.Int).SetString("6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151", 10) |
| p521.N, _ = new(big.Int).SetString("6864797660130609714981900799081393217269435300143305409394463459185543183397655394245057746333217197532963996371363321113864768612440380340372808892707005449", 10) |
| p521.B, _ = new(big.Int).SetString("051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00", 16) |
| p521.Gx, _ = new(big.Int).SetString("c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66", 16) |
| p521.Gy, _ = new(big.Int).SetString("11839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650", 16) |
| p521.BitSize = 521 |
| } |
| |
| // P224 returns a Curve which implements P-224 (see FIPS 186-3, section D.2.2) |
| func P224() *Curve { |
| initonce.Do(initAll) |
| return p224 |
| } |
| |
| // P256 returns a Curve which implements P-256 (see FIPS 186-3, section D.2.3) |
| func P256() *Curve { |
| initonce.Do(initAll) |
| return p256 |
| } |
| |
| // P384 returns a Curve which implements P-384 (see FIPS 186-3, section D.2.4) |
| func P384() *Curve { |
| initonce.Do(initAll) |
| return p384 |
| } |
| |
| // P256 returns a Curve which implements P-521 (see FIPS 186-3, section D.2.5) |
| func P521() *Curve { |
| initonce.Do(initAll) |
| return p521 |
| } |