| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // This file contains operations on unsigned multi-precision integers. |
| // These are the building blocks for the operations on signed integers |
| // and rationals. |
| |
| // This package implements multi-precision arithmetic (big numbers). |
| // The following numeric types are supported: |
| // |
| // - Int signed integers |
| // - Rat rational numbers |
| // |
| // All methods on Int take the result as the receiver; if it is one |
| // of the operands it may be overwritten (and its memory reused). |
| // To enable chaining of operations, the result is also returned. |
| // |
| package big |
| |
| import "rand" |
| |
| // An unsigned integer x of the form |
| // |
| // x = x[n-1]*_B^(n-1) + x[n-2]*_B^(n-2) + ... + x[1]*_B + x[0] |
| // |
| // with 0 <= x[i] < _B and 0 <= i < n is stored in a slice of length n, |
| // with the digits x[i] as the slice elements. |
| // |
| // A number is normalized if the slice contains no leading 0 digits. |
| // During arithmetic operations, denormalized values may occur but are |
| // always normalized before returning the final result. The normalized |
| // representation of 0 is the empty or nil slice (length = 0). |
| |
| type nat []Word |
| |
| var ( |
| natOne = nat{1} |
| natTwo = nat{2} |
| natTen = nat{10} |
| ) |
| |
| |
| func (z nat) clear() { |
| for i := range z { |
| z[i] = 0 |
| } |
| } |
| |
| |
| func (z nat) norm() nat { |
| i := len(z) |
| for i > 0 && z[i-1] == 0 { |
| i-- |
| } |
| return z[0:i] |
| } |
| |
| |
| func (z nat) make(n int) nat { |
| if n <= cap(z) { |
| return z[0:n] // reuse z |
| } |
| // Choosing a good value for e has significant performance impact |
| // because it increases the chance that a value can be reused. |
| const e = 4 // extra capacity |
| return make(nat, n, n+e) |
| } |
| |
| |
| func (z nat) setWord(x Word) nat { |
| if x == 0 { |
| return z.make(0) |
| } |
| z = z.make(1) |
| z[0] = x |
| return z |
| } |
| |
| |
| func (z nat) setUint64(x uint64) nat { |
| // single-digit values |
| if w := Word(x); uint64(w) == x { |
| return z.setWord(w) |
| } |
| |
| // compute number of words n required to represent x |
| n := 0 |
| for t := x; t > 0; t >>= _W { |
| n++ |
| } |
| |
| // split x into n words |
| z = z.make(n) |
| for i := range z { |
| z[i] = Word(x & _M) |
| x >>= _W |
| } |
| |
| return z |
| } |
| |
| |
| func (z nat) set(x nat) nat { |
| z = z.make(len(x)) |
| copy(z, x) |
| return z |
| } |
| |
| |
| func (z nat) add(x, y nat) nat { |
| m := len(x) |
| n := len(y) |
| |
| switch { |
| case m < n: |
| return z.add(y, x) |
| case m == 0: |
| // n == 0 because m >= n; result is 0 |
| return z.make(0) |
| case n == 0: |
| // result is x |
| return z.set(x) |
| } |
| // m > 0 |
| |
| z = z.make(m + 1) |
| c := addVV(z[0:n], x, y) |
| if m > n { |
| c = addVW(z[n:m], x[n:], c) |
| } |
| z[m] = c |
| |
| return z.norm() |
| } |
| |
| |
| func (z nat) sub(x, y nat) nat { |
| m := len(x) |
| n := len(y) |
| |
| switch { |
| case m < n: |
| panic("underflow") |
| case m == 0: |
| // n == 0 because m >= n; result is 0 |
| return z.make(0) |
| case n == 0: |
| // result is x |
| return z.set(x) |
| } |
| // m > 0 |
| |
| z = z.make(m) |
| c := subVV(z[0:n], x, y) |
| if m > n { |
| c = subVW(z[n:], x[n:], c) |
| } |
| if c != 0 { |
| panic("underflow") |
| } |
| |
| return z.norm() |
| } |
| |
| |
| func (x nat) cmp(y nat) (r int) { |
| m := len(x) |
| n := len(y) |
| if m != n || m == 0 { |
| switch { |
| case m < n: |
| r = -1 |
| case m > n: |
| r = 1 |
| } |
| return |
| } |
| |
| i := m - 1 |
| for i > 0 && x[i] == y[i] { |
| i-- |
| } |
| |
| switch { |
| case x[i] < y[i]: |
| r = -1 |
| case x[i] > y[i]: |
| r = 1 |
| } |
| return |
| } |
| |
| |
| func (z nat) mulAddWW(x nat, y, r Word) nat { |
| m := len(x) |
| if m == 0 || y == 0 { |
| return z.setWord(r) // result is r |
| } |
| // m > 0 |
| |
| z = z.make(m + 1) |
| z[m] = mulAddVWW(z[0:m], x, y, r) |
| |
| return z.norm() |
| } |
| |
| |
| // basicMul multiplies x and y and leaves the result in z. |
| // The (non-normalized) result is placed in z[0 : len(x) + len(y)]. |
| func basicMul(z, x, y nat) { |
| z[0 : len(x)+len(y)].clear() // initialize z |
| for i, d := range y { |
| if d != 0 { |
| z[len(x)+i] = addMulVVW(z[i:i+len(x)], x, d) |
| } |
| } |
| } |
| |
| |
| // Fast version of z[0:n+n>>1].add(z[0:n+n>>1], x[0:n]) w/o bounds checks. |
| // Factored out for readability - do not use outside karatsuba. |
| func karatsubaAdd(z, x nat, n int) { |
| if c := addVV(z[0:n], z, x); c != 0 { |
| addVW(z[n:n+n>>1], z[n:], c) |
| } |
| } |
| |
| |
| // Like karatsubaAdd, but does subtract. |
| func karatsubaSub(z, x nat, n int) { |
| if c := subVV(z[0:n], z, x); c != 0 { |
| subVW(z[n:n+n>>1], z[n:], c) |
| } |
| } |
| |
| |
| // Operands that are shorter than karatsubaThreshold are multiplied using |
| // "grade school" multiplication; for longer operands the Karatsuba algorithm |
| // is used. |
| var karatsubaThreshold int = 32 // computed by calibrate.go |
| |
| // karatsuba multiplies x and y and leaves the result in z. |
| // Both x and y must have the same length n and n must be a |
| // power of 2. The result vector z must have len(z) >= 6*n. |
| // The (non-normalized) result is placed in z[0 : 2*n]. |
| func karatsuba(z, x, y nat) { |
| n := len(y) |
| |
| // Switch to basic multiplication if numbers are odd or small. |
| // (n is always even if karatsubaThreshold is even, but be |
| // conservative) |
| if n&1 != 0 || n < karatsubaThreshold || n < 2 { |
| basicMul(z, x, y) |
| return |
| } |
| // n&1 == 0 && n >= karatsubaThreshold && n >= 2 |
| |
| // Karatsuba multiplication is based on the observation that |
| // for two numbers x and y with: |
| // |
| // x = x1*b + x0 |
| // y = y1*b + y0 |
| // |
| // the product x*y can be obtained with 3 products z2, z1, z0 |
| // instead of 4: |
| // |
| // x*y = x1*y1*b*b + (x1*y0 + x0*y1)*b + x0*y0 |
| // = z2*b*b + z1*b + z0 |
| // |
| // with: |
| // |
| // xd = x1 - x0 |
| // yd = y0 - y1 |
| // |
| // z1 = xd*yd + z1 + z0 |
| // = (x1-x0)*(y0 - y1) + z1 + z0 |
| // = x1*y0 - x1*y1 - x0*y0 + x0*y1 + z1 + z0 |
| // = x1*y0 - z1 - z0 + x0*y1 + z1 + z0 |
| // = x1*y0 + x0*y1 |
| |
| // split x, y into "digits" |
| n2 := n >> 1 // n2 >= 1 |
| x1, x0 := x[n2:], x[0:n2] // x = x1*b + y0 |
| y1, y0 := y[n2:], y[0:n2] // y = y1*b + y0 |
| |
| // z is used for the result and temporary storage: |
| // |
| // 6*n 5*n 4*n 3*n 2*n 1*n 0*n |
| // z = [z2 copy|z0 copy| xd*yd | yd:xd | x1*y1 | x0*y0 ] |
| // |
| // For each recursive call of karatsuba, an unused slice of |
| // z is passed in that has (at least) half the length of the |
| // caller's z. |
| |
| // compute z0 and z2 with the result "in place" in z |
| karatsuba(z, x0, y0) // z0 = x0*y0 |
| karatsuba(z[n:], x1, y1) // z2 = x1*y1 |
| |
| // compute xd (or the negative value if underflow occurs) |
| s := 1 // sign of product xd*yd |
| xd := z[2*n : 2*n+n2] |
| if subVV(xd, x1, x0) != 0 { // x1-x0 |
| s = -s |
| subVV(xd, x0, x1) // x0-x1 |
| } |
| |
| // compute yd (or the negative value if underflow occurs) |
| yd := z[2*n+n2 : 3*n] |
| if subVV(yd, y0, y1) != 0 { // y0-y1 |
| s = -s |
| subVV(yd, y1, y0) // y1-y0 |
| } |
| |
| // p = (x1-x0)*(y0-y1) == x1*y0 - x1*y1 - x0*y0 + x0*y1 for s > 0 |
| // p = (x0-x1)*(y0-y1) == x0*y0 - x0*y1 - x1*y0 + x1*y1 for s < 0 |
| p := z[n*3:] |
| karatsuba(p, xd, yd) |
| |
| // save original z2:z0 |
| // (ok to use upper half of z since we're done recursing) |
| r := z[n*4:] |
| copy(r, z) |
| |
| // add up all partial products |
| // |
| // 2*n n 0 |
| // z = [ z2 | z0 ] |
| // + [ z0 ] |
| // + [ z2 ] |
| // + [ p ] |
| // |
| karatsubaAdd(z[n2:], r, n) |
| karatsubaAdd(z[n2:], r[n:], n) |
| if s > 0 { |
| karatsubaAdd(z[n2:], p, n) |
| } else { |
| karatsubaSub(z[n2:], p, n) |
| } |
| } |
| |
| |
| // alias returns true if x and y share the same base array. |
| func alias(x, y nat) bool { |
| return cap(x) > 0 && cap(y) > 0 && &x[0:cap(x)][cap(x)-1] == &y[0:cap(y)][cap(y)-1] |
| } |
| |
| |
| // addAt implements z += x*(1<<(_W*i)); z must be long enough. |
| // (we don't use nat.add because we need z to stay the same |
| // slice, and we don't need to normalize z after each addition) |
| func addAt(z, x nat, i int) { |
| if n := len(x); n > 0 { |
| if c := addVV(z[i:i+n], z[i:], x); c != 0 { |
| j := i + n |
| if j < len(z) { |
| addVW(z[j:], z[j:], c) |
| } |
| } |
| } |
| } |
| |
| |
| func max(x, y int) int { |
| if x > y { |
| return x |
| } |
| return y |
| } |
| |
| |
| // karatsubaLen computes an approximation to the maximum k <= n such that |
| // k = p<<i for a number p <= karatsubaThreshold and an i >= 0. Thus, the |
| // result is the largest number that can be divided repeatedly by 2 before |
| // becoming about the value of karatsubaThreshold. |
| func karatsubaLen(n int) int { |
| i := uint(0) |
| for n > karatsubaThreshold { |
| n >>= 1 |
| i++ |
| } |
| return n << i |
| } |
| |
| |
| func (z nat) mul(x, y nat) nat { |
| m := len(x) |
| n := len(y) |
| |
| switch { |
| case m < n: |
| return z.mul(y, x) |
| case m == 0 || n == 0: |
| return z.make(0) |
| case n == 1: |
| return z.mulAddWW(x, y[0], 0) |
| } |
| // m >= n > 1 |
| |
| // determine if z can be reused |
| if alias(z, x) || alias(z, y) { |
| z = nil // z is an alias for x or y - cannot reuse |
| } |
| |
| // use basic multiplication if the numbers are small |
| if n < karatsubaThreshold || n < 2 { |
| z = z.make(m + n) |
| basicMul(z, x, y) |
| return z.norm() |
| } |
| // m >= n && n >= karatsubaThreshold && n >= 2 |
| |
| // determine Karatsuba length k such that |
| // |
| // x = x1*b + x0 |
| // y = y1*b + y0 (and k <= len(y), which implies k <= len(x)) |
| // b = 1<<(_W*k) ("base" of digits xi, yi) |
| // |
| k := karatsubaLen(n) |
| // k <= n |
| |
| // multiply x0 and y0 via Karatsuba |
| x0 := x[0:k] // x0 is not normalized |
| y0 := y[0:k] // y0 is not normalized |
| z = z.make(max(6*k, m+n)) // enough space for karatsuba of x0*y0 and full result of x*y |
| karatsuba(z, x0, y0) |
| z = z[0 : m+n] // z has final length but may be incomplete, upper portion is garbage |
| |
| // If x1 and/or y1 are not 0, add missing terms to z explicitly: |
| // |
| // m+n 2*k 0 |
| // z = [ ... | x0*y0 ] |
| // + [ x1*y1 ] |
| // + [ x1*y0 ] |
| // + [ x0*y1 ] |
| // |
| if k < n || m != n { |
| x1 := x[k:] // x1 is normalized because x is |
| y1 := y[k:] // y1 is normalized because y is |
| var t nat |
| t = t.mul(x1, y1) |
| copy(z[2*k:], t) |
| z[2*k+len(t):].clear() // upper portion of z is garbage |
| t = t.mul(x1, y0.norm()) |
| addAt(z, t, k) |
| t = t.mul(x0.norm(), y1) |
| addAt(z, t, k) |
| } |
| |
| return z.norm() |
| } |
| |
| |
| // mulRange computes the product of all the unsigned integers in the |
| // range [a, b] inclusively. If a > b (empty range), the result is 1. |
| func (z nat) mulRange(a, b uint64) nat { |
| switch { |
| case a == 0: |
| // cut long ranges short (optimization) |
| return z.setUint64(0) |
| case a > b: |
| return z.setUint64(1) |
| case a == b: |
| return z.setUint64(a) |
| case a+1 == b: |
| return z.mul(nat(nil).setUint64(a), nat(nil).setUint64(b)) |
| } |
| m := (a + b) / 2 |
| return z.mul(nat(nil).mulRange(a, m), nat(nil).mulRange(m+1, b)) |
| } |
| |
| |
| // q = (x-r)/y, with 0 <= r < y |
| func (z nat) divW(x nat, y Word) (q nat, r Word) { |
| m := len(x) |
| switch { |
| case y == 0: |
| panic("division by zero") |
| case y == 1: |
| q = z.set(x) // result is x |
| return |
| case m == 0: |
| q = z.make(0) // result is 0 |
| return |
| } |
| // m > 0 |
| z = z.make(m) |
| r = divWVW(z, 0, x, y) |
| q = z.norm() |
| return |
| } |
| |
| |
| func (z nat) div(z2, u, v nat) (q, r nat) { |
| if len(v) == 0 { |
| panic("division by zero") |
| } |
| |
| if u.cmp(v) < 0 { |
| q = z.make(0) |
| r = z2.set(u) |
| return |
| } |
| |
| if len(v) == 1 { |
| var rprime Word |
| q, rprime = z.divW(u, v[0]) |
| if rprime > 0 { |
| r = z2.make(1) |
| r[0] = rprime |
| } else { |
| r = z2.make(0) |
| } |
| return |
| } |
| |
| q, r = z.divLarge(z2, u, v) |
| return |
| } |
| |
| |
| // q = (uIn-r)/v, with 0 <= r < y |
| // Uses z as storage for q, and u as storage for r if possible. |
| // See Knuth, Volume 2, section 4.3.1, Algorithm D. |
| // Preconditions: |
| // len(v) >= 2 |
| // len(uIn) >= len(v) |
| func (z nat) divLarge(u, uIn, v nat) (q, r nat) { |
| n := len(v) |
| m := len(uIn) - n |
| |
| // determine if z can be reused |
| // TODO(gri) should find a better solution - this if statement |
| // is very costly (see e.g. time pidigits -s -n 10000) |
| if alias(z, uIn) || alias(z, v) { |
| z = nil // z is an alias for uIn or v - cannot reuse |
| } |
| q = z.make(m + 1) |
| |
| qhatv := make(nat, n+1) |
| if alias(u, uIn) || alias(u, v) { |
| u = nil // u is an alias for uIn or v - cannot reuse |
| } |
| u = u.make(len(uIn) + 1) |
| u.clear() |
| |
| // D1. |
| shift := Word(leadingZeros(v[n-1])) |
| shlVW(v, v, shift) |
| u[len(uIn)] = shlVW(u[0:len(uIn)], uIn, shift) |
| |
| // D2. |
| for j := m; j >= 0; j-- { |
| // D3. |
| qhat := Word(_M) |
| if u[j+n] != v[n-1] { |
| var rhat Word |
| qhat, rhat = divWW(u[j+n], u[j+n-1], v[n-1]) |
| |
| // x1 | x2 = q̂v_{n-2} |
| x1, x2 := mulWW(qhat, v[n-2]) |
| // test if q̂v_{n-2} > br̂ + u_{j+n-2} |
| for greaterThan(x1, x2, rhat, u[j+n-2]) { |
| qhat-- |
| prevRhat := rhat |
| rhat += v[n-1] |
| // v[n-1] >= 0, so this tests for overflow. |
| if rhat < prevRhat { |
| break |
| } |
| x1, x2 = mulWW(qhat, v[n-2]) |
| } |
| } |
| |
| // D4. |
| qhatv[n] = mulAddVWW(qhatv[0:n], v, qhat, 0) |
| |
| c := subVV(u[j:j+len(qhatv)], u[j:], qhatv) |
| if c != 0 { |
| c := addVV(u[j:j+n], u[j:], v) |
| u[j+n] += c |
| qhat-- |
| } |
| |
| q[j] = qhat |
| } |
| |
| q = q.norm() |
| shrVW(u, u, shift) |
| shrVW(v, v, shift) |
| r = u.norm() |
| |
| return q, r |
| } |
| |
| |
| // Length of x in bits. x must be normalized. |
| func (x nat) bitLen() int { |
| if i := len(x) - 1; i >= 0 { |
| return i*_W + bitLen(x[i]) |
| } |
| return 0 |
| } |
| |
| |
| func hexValue(ch byte) int { |
| var d byte |
| switch { |
| case '0' <= ch && ch <= '9': |
| d = ch - '0' |
| case 'a' <= ch && ch <= 'f': |
| d = ch - 'a' + 10 |
| case 'A' <= ch && ch <= 'F': |
| d = ch - 'A' + 10 |
| default: |
| return -1 |
| } |
| return int(d) |
| } |
| |
| |
| // scan returns the natural number corresponding to the |
| // longest possible prefix of s representing a natural number in a |
| // given conversion base, the actual conversion base used, and the |
| // prefix length. The syntax of natural numbers follows the syntax |
| // of unsigned integer literals in Go. |
| // |
| // If the base argument is 0, the string prefix determines the actual |
| // conversion base. A prefix of ``0x'' or ``0X'' selects base 16; the |
| // ``0'' prefix selects base 8, and a ``0b'' or ``0B'' prefix selects |
| // base 2. Otherwise the selected base is 10. |
| // |
| func (z nat) scan(s string, base int) (nat, int, int) { |
| // determine base if necessary |
| i, n := 0, len(s) |
| if base == 0 { |
| base = 10 |
| if n > 0 && s[0] == '0' { |
| base, i = 8, 1 |
| if n > 1 { |
| switch s[1] { |
| case 'x', 'X': |
| base, i = 16, 2 |
| case 'b', 'B': |
| base, i = 2, 2 |
| } |
| } |
| } |
| } |
| |
| // reject illegal bases or strings consisting only of prefix |
| if base < 2 || 16 < base || (base != 8 && i >= n) { |
| return z, 0, 0 |
| } |
| |
| // convert string |
| z = z.make(0) |
| for ; i < n; i++ { |
| d := hexValue(s[i]) |
| if 0 <= d && d < base { |
| z = z.mulAddWW(z, Word(base), Word(d)) |
| } else { |
| break |
| } |
| } |
| |
| return z.norm(), base, i |
| } |
| |
| |
| // string converts x to a string for a given base, with 2 <= base <= 16. |
| // TODO(gri) in the style of the other routines, perhaps this should take |
| // a []byte buffer and return it |
| func (x nat) string(base int) string { |
| if base < 2 || 16 < base { |
| panic("illegal base") |
| } |
| |
| if len(x) == 0 { |
| return "0" |
| } |
| |
| // allocate buffer for conversion |
| i := x.bitLen()/log2(Word(base)) + 1 // +1: round up |
| s := make([]byte, i) |
| |
| // don't destroy x |
| q := nat(nil).set(x) |
| |
| // convert |
| for len(q) > 0 { |
| i-- |
| var r Word |
| q, r = q.divW(q, Word(base)) |
| s[i] = "0123456789abcdef"[r] |
| } |
| |
| return string(s[i:]) |
| } |
| |
| |
| const deBruijn32 = 0x077CB531 |
| |
| var deBruijn32Lookup = []byte{ |
| 0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, |
| 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9, |
| } |
| |
| const deBruijn64 = 0x03f79d71b4ca8b09 |
| |
| var deBruijn64Lookup = []byte{ |
| 0, 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4, |
| 62, 47, 59, 36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 5, |
| 63, 55, 48, 27, 60, 41, 37, 16, 46, 35, 44, 21, 52, 32, 23, 11, |
| 54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, 6, |
| } |
| |
| // trailingZeroBits returns the number of consecutive zero bits on the right |
| // side of the given Word. |
| // See Knuth, volume 4, section 7.3.1 |
| func trailingZeroBits(x Word) int { |
| // x & -x leaves only the right-most bit set in the word. Let k be the |
| // index of that bit. Since only a single bit is set, the value is two |
| // to the power of k. Multipling by a power of two is equivalent to |
| // left shifting, in this case by k bits. The de Bruijn constant is |
| // such that all six bit, consecutive substrings are distinct. |
| // Therefore, if we have a left shifted version of this constant we can |
| // find by how many bits it was shifted by looking at which six bit |
| // substring ended up at the top of the word. |
| switch _W { |
| case 32: |
| return int(deBruijn32Lookup[((x&-x)*deBruijn32)>>27]) |
| case 64: |
| return int(deBruijn64Lookup[((x&-x)*(deBruijn64&_M))>>58]) |
| default: |
| panic("Unknown word size") |
| } |
| |
| return 0 |
| } |
| |
| |
| // z = x << s |
| func (z nat) shl(x nat, s uint) nat { |
| m := len(x) |
| if m == 0 { |
| return z.make(0) |
| } |
| // m > 0 |
| |
| n := m + int(s/_W) |
| z = z.make(n + 1) |
| z[n] = shlVW(z[n-m:n], x, Word(s%_W)) |
| z[0 : n-m].clear() |
| |
| return z.norm() |
| } |
| |
| |
| // z = x >> s |
| func (z nat) shr(x nat, s uint) nat { |
| m := len(x) |
| n := m - int(s/_W) |
| if n <= 0 { |
| return z.make(0) |
| } |
| // n > 0 |
| |
| z = z.make(n) |
| shrVW(z, x[m-n:], Word(s%_W)) |
| |
| return z.norm() |
| } |
| |
| |
| func (z nat) and(x, y nat) nat { |
| m := len(x) |
| n := len(y) |
| if m > n { |
| m = n |
| } |
| // m <= n |
| |
| z = z.make(m) |
| for i := 0; i < m; i++ { |
| z[i] = x[i] & y[i] |
| } |
| |
| return z.norm() |
| } |
| |
| |
| func (z nat) andNot(x, y nat) nat { |
| m := len(x) |
| n := len(y) |
| if n > m { |
| n = m |
| } |
| // m >= n |
| |
| z = z.make(m) |
| for i := 0; i < n; i++ { |
| z[i] = x[i] &^ y[i] |
| } |
| copy(z[n:m], x[n:m]) |
| |
| return z.norm() |
| } |
| |
| |
| func (z nat) or(x, y nat) nat { |
| m := len(x) |
| n := len(y) |
| s := x |
| if m < n { |
| n, m = m, n |
| s = y |
| } |
| // m >= n |
| |
| z = z.make(m) |
| for i := 0; i < n; i++ { |
| z[i] = x[i] | y[i] |
| } |
| copy(z[n:m], s[n:m]) |
| |
| return z.norm() |
| } |
| |
| |
| func (z nat) xor(x, y nat) nat { |
| m := len(x) |
| n := len(y) |
| s := x |
| if m < n { |
| n, m = m, n |
| s = y |
| } |
| // m >= n |
| |
| z = z.make(m) |
| for i := 0; i < n; i++ { |
| z[i] = x[i] ^ y[i] |
| } |
| copy(z[n:m], s[n:m]) |
| |
| return z.norm() |
| } |
| |
| |
| // greaterThan returns true iff (x1<<_W + x2) > (y1<<_W + y2) |
| func greaterThan(x1, x2, y1, y2 Word) bool { return x1 > y1 || x1 == y1 && x2 > y2 } |
| |
| |
| // modW returns x % d. |
| func (x nat) modW(d Word) (r Word) { |
| // TODO(agl): we don't actually need to store the q value. |
| var q nat |
| q = q.make(len(x)) |
| return divWVW(q, 0, x, d) |
| } |
| |
| |
| // powersOfTwoDecompose finds q and k such that q * 1<<k = n and q is odd. |
| func (n nat) powersOfTwoDecompose() (q nat, k Word) { |
| if len(n) == 0 { |
| return n, 0 |
| } |
| |
| zeroWords := 0 |
| for n[zeroWords] == 0 { |
| zeroWords++ |
| } |
| // One of the words must be non-zero by invariant, therefore |
| // zeroWords < len(n). |
| x := trailingZeroBits(n[zeroWords]) |
| |
| q = q.make(len(n) - zeroWords) |
| shrVW(q, n[zeroWords:], Word(x)) |
| q = q.norm() |
| |
| k = Word(_W*zeroWords + x) |
| return |
| } |
| |
| |
| // random creates a random integer in [0..limit), using the space in z if |
| // possible. n is the bit length of limit. |
| func (z nat) random(rand *rand.Rand, limit nat, n int) nat { |
| bitLengthOfMSW := uint(n % _W) |
| if bitLengthOfMSW == 0 { |
| bitLengthOfMSW = _W |
| } |
| mask := Word((1 << bitLengthOfMSW) - 1) |
| z = z.make(len(limit)) |
| |
| for { |
| for i := range z { |
| switch _W { |
| case 32: |
| z[i] = Word(rand.Uint32()) |
| case 64: |
| z[i] = Word(rand.Uint32()) | Word(rand.Uint32())<<32 |
| } |
| } |
| |
| z[len(limit)-1] &= mask |
| |
| if z.cmp(limit) < 0 { |
| break |
| } |
| } |
| |
| return z.norm() |
| } |
| |
| |
| // If m != nil, expNN calculates x**y mod m. Otherwise it calculates x**y. It |
| // reuses the storage of z if possible. |
| func (z nat) expNN(x, y, m nat) nat { |
| if alias(z, x) || alias(z, y) { |
| // We cannot allow in place modification of x or y. |
| z = nil |
| } |
| |
| if len(y) == 0 { |
| z = z.make(1) |
| z[0] = 1 |
| return z |
| } |
| |
| if m != nil { |
| // We likely end up being as long as the modulus. |
| z = z.make(len(m)) |
| } |
| z = z.set(x) |
| v := y[len(y)-1] |
| // It's invalid for the most significant word to be zero, therefore we |
| // will find a one bit. |
| shift := leadingZeros(v) + 1 |
| v <<= shift |
| var q nat |
| |
| const mask = 1 << (_W - 1) |
| |
| // We walk through the bits of the exponent one by one. Each time we |
| // see a bit, we square, thus doubling the power. If the bit is a one, |
| // we also multiply by x, thus adding one to the power. |
| |
| w := _W - int(shift) |
| for j := 0; j < w; j++ { |
| z = z.mul(z, z) |
| |
| if v&mask != 0 { |
| z = z.mul(z, x) |
| } |
| |
| if m != nil { |
| q, z = q.div(z, z, m) |
| } |
| |
| v <<= 1 |
| } |
| |
| for i := len(y) - 2; i >= 0; i-- { |
| v = y[i] |
| |
| for j := 0; j < _W; j++ { |
| z = z.mul(z, z) |
| |
| if v&mask != 0 { |
| z = z.mul(z, x) |
| } |
| |
| if m != nil { |
| q, z = q.div(z, z, m) |
| } |
| |
| v <<= 1 |
| } |
| } |
| |
| return z |
| } |
| |
| |
| // probablyPrime performs reps Miller-Rabin tests to check whether n is prime. |
| // If it returns true, n is prime with probability 1 - 1/4^reps. |
| // If it returns false, n is not prime. |
| func (n nat) probablyPrime(reps int) bool { |
| if len(n) == 0 { |
| return false |
| } |
| |
| if len(n) == 1 { |
| if n[0] < 2 { |
| return false |
| } |
| |
| if n[0]%2 == 0 { |
| return n[0] == 2 |
| } |
| |
| // We have to exclude these cases because we reject all |
| // multiples of these numbers below. |
| switch n[0] { |
| case 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53: |
| return true |
| } |
| } |
| |
| const primesProduct32 = 0xC0CFD797 // Π {p ∈ primes, 2 < p <= 29} |
| const primesProduct64 = 0xE221F97C30E94E1D // Π {p ∈ primes, 2 < p <= 53} |
| |
| var r Word |
| switch _W { |
| case 32: |
| r = n.modW(primesProduct32) |
| case 64: |
| r = n.modW(primesProduct64 & _M) |
| default: |
| panic("Unknown word size") |
| } |
| |
| if r%3 == 0 || r%5 == 0 || r%7 == 0 || r%11 == 0 || |
| r%13 == 0 || r%17 == 0 || r%19 == 0 || r%23 == 0 || r%29 == 0 { |
| return false |
| } |
| |
| if _W == 64 && (r%31 == 0 || r%37 == 0 || r%41 == 0 || |
| r%43 == 0 || r%47 == 0 || r%53 == 0) { |
| return false |
| } |
| |
| nm1 := nat(nil).sub(n, natOne) |
| // 1<<k * q = nm1; |
| q, k := nm1.powersOfTwoDecompose() |
| |
| nm3 := nat(nil).sub(nm1, natTwo) |
| rand := rand.New(rand.NewSource(int64(n[0]))) |
| |
| var x, y, quotient nat |
| nm3Len := nm3.bitLen() |
| |
| NextRandom: |
| for i := 0; i < reps; i++ { |
| x = x.random(rand, nm3, nm3Len) |
| x = x.add(x, natTwo) |
| y = y.expNN(x, q, n) |
| if y.cmp(natOne) == 0 || y.cmp(nm1) == 0 { |
| continue |
| } |
| for j := Word(1); j < k; j++ { |
| y = y.mul(y, y) |
| quotient, y = quotient.div(y, y, n) |
| if y.cmp(nm1) == 0 { |
| continue NextRandom |
| } |
| if y.cmp(natOne) == 0 { |
| return false |
| } |
| } |
| return false |
| } |
| |
| return true |
| } |
| |
| |
| // bytes writes the value of z into buf using big-endian encoding. |
| // len(buf) must be >= len(z)*_S. The value of z is encoded in the |
| // slice buf[i:]. The number i of unused bytes at the beginning of |
| // buf is returned as result. |
| func (z nat) bytes(buf []byte) (i int) { |
| i = len(buf) |
| for _, d := range z { |
| for j := 0; j < _S; j++ { |
| i-- |
| buf[i] = byte(d) |
| d >>= 8 |
| } |
| } |
| |
| for i < len(buf) && buf[i] == 0 { |
| i++ |
| } |
| |
| return |
| } |
| |
| |
| // setBytes interprets buf as the bytes of a big-endian unsigned |
| // integer, sets z to that value, and returns z. |
| func (z nat) setBytes(buf []byte) nat { |
| z = z.make((len(buf) + _S - 1) / _S) |
| |
| k := 0 |
| s := uint(0) |
| var d Word |
| for i := len(buf); i > 0; i-- { |
| d |= Word(buf[i-1]) << s |
| if s += 8; s == _S*8 { |
| z[k] = d |
| k++ |
| s = 0 |
| d = 0 |
| } |
| } |
| if k < len(z) { |
| z[k] = d |
| } |
| |
| return z.norm() |
| } |