| // Copyright 2015 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // This file implements string-to-Float conversion functions. |
| |
| package big |
| |
| import ( |
| "fmt" |
| "io" |
| "strings" |
| ) |
| |
| // SetString sets z to the value of s and returns z and a boolean indicating |
| // success. s must be a floating-point number of the same format as accepted |
| // by Parse, with base argument 0. |
| func (z *Float) SetString(s string) (*Float, bool) { |
| if f, _, err := z.Parse(s, 0); err == nil { |
| return f, true |
| } |
| return nil, false |
| } |
| |
| // scan is like Parse but reads the longest possible prefix representing a valid |
| // floating point number from an io.ByteScanner rather than a string. It serves |
| // as the implementation of Parse. It does not recognize ±Inf and does not expect |
| // EOF at the end. |
| func (z *Float) scan(r io.ByteScanner, base int) (f *Float, b int, err error) { |
| prec := z.prec |
| if prec == 0 { |
| prec = 64 |
| } |
| |
| // A reasonable value in case of an error. |
| z.form = zero |
| |
| // sign |
| z.neg, err = scanSign(r) |
| if err != nil { |
| return |
| } |
| |
| // mantissa |
| var fcount int // fractional digit count; valid if <= 0 |
| z.mant, b, fcount, err = z.mant.scan(r, base, true) |
| if err != nil { |
| return |
| } |
| |
| // exponent |
| var exp int64 |
| var ebase int |
| exp, ebase, err = scanExponent(r, true) |
| if err != nil { |
| return |
| } |
| |
| // special-case 0 |
| if len(z.mant) == 0 { |
| z.prec = prec |
| z.acc = Exact |
| z.form = zero |
| f = z |
| return |
| } |
| // len(z.mant) > 0 |
| |
| // The mantissa may have a decimal point (fcount <= 0) and there |
| // may be a nonzero exponent exp. The decimal point amounts to a |
| // division by b**(-fcount). An exponent means multiplication by |
| // ebase**exp. Finally, mantissa normalization (shift left) requires |
| // a correcting multiplication by 2**(-shiftcount). Multiplications |
| // are commutative, so we can apply them in any order as long as there |
| // is no loss of precision. We only have powers of 2 and 10, and |
| // we split powers of 10 into the product of the same powers of |
| // 2 and 5. This reduces the size of the multiplication factor |
| // needed for base-10 exponents. |
| |
| // normalize mantissa and determine initial exponent contributions |
| exp2 := int64(len(z.mant))*_W - fnorm(z.mant) |
| exp5 := int64(0) |
| |
| // determine binary or decimal exponent contribution of decimal point |
| if fcount < 0 { |
| // The mantissa has a "decimal" point ddd.dddd; and |
| // -fcount is the number of digits to the right of '.'. |
| // Adjust relevant exponent accordingly. |
| d := int64(fcount) |
| switch b { |
| case 10: |
| exp5 = d |
| fallthrough // 10**e == 5**e * 2**e |
| case 2: |
| exp2 += d |
| case 16: |
| exp2 += d * 4 // hexadecimal digits are 4 bits each |
| default: |
| panic("unexpected mantissa base") |
| } |
| // fcount consumed - not needed anymore |
| } |
| |
| // take actual exponent into account |
| switch ebase { |
| case 10: |
| exp5 += exp |
| fallthrough |
| case 2: |
| exp2 += exp |
| default: |
| panic("unexpected exponent base") |
| } |
| // exp consumed - not needed anymore |
| |
| // apply 2**exp2 |
| if MinExp <= exp2 && exp2 <= MaxExp { |
| z.prec = prec |
| z.form = finite |
| z.exp = int32(exp2) |
| f = z |
| } else { |
| err = fmt.Errorf("exponent overflow") |
| return |
| } |
| |
| if exp5 == 0 { |
| // no decimal exponent contribution |
| z.round(0) |
| return |
| } |
| // exp5 != 0 |
| |
| // apply 5**exp5 |
| p := new(Float).SetPrec(z.Prec() + 64) // use more bits for p -- TODO(gri) what is the right number? |
| if exp5 < 0 { |
| z.Quo(z, p.pow5(uint64(-exp5))) |
| } else { |
| z.Mul(z, p.pow5(uint64(exp5))) |
| } |
| |
| return |
| } |
| |
| // These powers of 5 fit into a uint64. |
| // |
| // for p, q := uint64(0), uint64(1); p < q; p, q = q, q*5 { |
| // fmt.Println(q) |
| // } |
| // |
| var pow5tab = [...]uint64{ |
| 1, |
| 5, |
| 25, |
| 125, |
| 625, |
| 3125, |
| 15625, |
| 78125, |
| 390625, |
| 1953125, |
| 9765625, |
| 48828125, |
| 244140625, |
| 1220703125, |
| 6103515625, |
| 30517578125, |
| 152587890625, |
| 762939453125, |
| 3814697265625, |
| 19073486328125, |
| 95367431640625, |
| 476837158203125, |
| 2384185791015625, |
| 11920928955078125, |
| 59604644775390625, |
| 298023223876953125, |
| 1490116119384765625, |
| 7450580596923828125, |
| } |
| |
| // pow5 sets z to 5**n and returns z. |
| // n must not be negative. |
| func (z *Float) pow5(n uint64) *Float { |
| const m = uint64(len(pow5tab) - 1) |
| if n <= m { |
| return z.SetUint64(pow5tab[n]) |
| } |
| // n > m |
| |
| z.SetUint64(pow5tab[m]) |
| n -= m |
| |
| // use more bits for f than for z |
| // TODO(gri) what is the right number? |
| f := new(Float).SetPrec(z.Prec() + 64).SetUint64(5) |
| |
| for n > 0 { |
| if n&1 != 0 { |
| z.Mul(z, f) |
| } |
| f.Mul(f, f) |
| n >>= 1 |
| } |
| |
| return z |
| } |
| |
| // Parse parses s which must contain a text representation of a floating- |
| // point number with a mantissa in the given conversion base (the exponent |
| // is always a decimal number), or a string representing an infinite value. |
| // |
| // It sets z to the (possibly rounded) value of the corresponding floating- |
| // point value, and returns z, the actual base b, and an error err, if any. |
| // If z's precision is 0, it is changed to 64 before rounding takes effect. |
| // The number must be of the form: |
| // |
| // number = [ sign ] [ prefix ] mantissa [ exponent ] | infinity . |
| // sign = "+" | "-" . |
| // prefix = "0" ( "x" | "X" | "b" | "B" ) . |
| // mantissa = digits | digits "." [ digits ] | "." digits . |
| // exponent = ( "E" | "e" | "p" ) [ sign ] digits . |
| // digits = digit { digit } . |
| // digit = "0" ... "9" | "a" ... "z" | "A" ... "Z" . |
| // infinity = [ sign ] ( "inf" | "Inf" ) . |
| // |
| // The base argument must be 0, 2, 10, or 16. Providing an invalid base |
| // argument will lead to a run-time panic. |
| // |
| // For base 0, the number prefix determines the actual base: A prefix of |
| // "0x" or "0X" selects base 16, and a "0b" or "0B" prefix selects |
| // base 2; otherwise, the actual base is 10 and no prefix is accepted. |
| // The octal prefix "0" is not supported (a leading "0" is simply |
| // considered a "0"). |
| // |
| // A "p" exponent indicates a binary (rather then decimal) exponent; |
| // for instance "0x1.fffffffffffffp1023" (using base 0) represents the |
| // maximum float64 value. For hexadecimal mantissae, the exponent must |
| // be binary, if present (an "e" or "E" exponent indicator cannot be |
| // distinguished from a mantissa digit). |
| // |
| // The returned *Float f is nil and the value of z is valid but not |
| // defined if an error is reported. |
| // |
| func (z *Float) Parse(s string, base int) (f *Float, b int, err error) { |
| // scan doesn't handle ±Inf |
| if len(s) == 3 && (s == "Inf" || s == "inf") { |
| f = z.SetInf(false) |
| return |
| } |
| if len(s) == 4 && (s[0] == '+' || s[0] == '-') && (s[1:] == "Inf" || s[1:] == "inf") { |
| f = z.SetInf(s[0] == '-') |
| return |
| } |
| |
| r := strings.NewReader(s) |
| if f, b, err = z.scan(r, base); err != nil { |
| return |
| } |
| |
| // entire string must have been consumed |
| if ch, err2 := r.ReadByte(); err2 == nil { |
| err = fmt.Errorf("expected end of string, found %q", ch) |
| } else if err2 != io.EOF { |
| err = err2 |
| } |
| |
| return |
| } |
| |
| // ParseFloat is like f.Parse(s, base) with f set to the given precision |
| // and rounding mode. |
| func ParseFloat(s string, base int, prec uint, mode RoundingMode) (f *Float, b int, err error) { |
| return new(Float).SetPrec(prec).SetMode(mode).Parse(s, base) |
| } |