blob: fde440a05e21af3a0e8388c9ed1db31b1177075c [file] [log] [blame]
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file contains the printf-checker.
package main
import (
"flag"
"fmt"
"go/ast"
"go/token"
"go/types"
"strconv"
"strings"
"unicode/utf8"
)
var printfuncs = flag.String("printfuncs", "", "comma-separated list of print function names to check")
// printfList records the formatted-print functions. The value is the location
// of the format parameter. Names are lower-cased so the lookup is
// case insensitive.
var printfList = map[string]int{
"errorf": 0,
"fatalf": 0,
"fprintf": 1,
"panicf": 0,
"printf": 0,
"sprintf": 0,
}
// printList records the unformatted-print functions. The value is the location
// of the first parameter to be printed. Names are lower-cased so the lookup is
// case insensitive.
var printList = map[string]int{
"error": 0,
"fatal": 0,
"fprint": 1, "fprintln": 1,
"panic": 0, "panicln": 0,
"print": 0, "println": 0,
"sprint": 0, "sprintln": 0,
}
// checkCall triggers the print-specific checks if the call invokes a print function.
func (f *File) checkFmtPrintfCall(call *ast.CallExpr, Name string) {
if !vet("printf") {
return
}
name := strings.ToLower(Name)
if skip, ok := printfList[name]; ok {
f.checkPrintf(call, Name, skip)
return
}
if skip, ok := printList[name]; ok {
f.checkPrint(call, Name, skip)
return
}
}
// literal returns the literal value represented by the expression, or nil if it is not a literal.
func (f *File) literal(value ast.Expr) *ast.BasicLit {
switch v := value.(type) {
case *ast.BasicLit:
return v
case *ast.ParenExpr:
return f.literal(v.X)
case *ast.BinaryExpr:
if v.Op != token.ADD {
break
}
litX := f.literal(v.X)
litY := f.literal(v.Y)
if litX != nil && litY != nil {
lit := *litX
x, errX := strconv.Unquote(litX.Value)
y, errY := strconv.Unquote(litY.Value)
if errX == nil && errY == nil {
return &ast.BasicLit{
ValuePos: lit.ValuePos,
Kind: lit.Kind,
Value: strconv.Quote(x + y),
}
}
}
case *ast.Ident:
// See if it's a constant or initial value (we can't tell the difference).
if v.Obj == nil || v.Obj.Decl == nil {
return nil
}
valueSpec, ok := v.Obj.Decl.(*ast.ValueSpec)
if ok && len(valueSpec.Names) == len(valueSpec.Values) {
// Find the index in the list of names
var i int
for i = 0; i < len(valueSpec.Names); i++ {
if valueSpec.Names[i].Name == v.Name {
if lit, ok := valueSpec.Values[i].(*ast.BasicLit); ok {
return lit
}
return nil
}
}
}
}
return nil
}
// checkPrintf checks a call to a formatted print routine such as Printf.
// call.Args[formatIndex] is (well, should be) the format argument.
func (f *File) checkPrintf(call *ast.CallExpr, name string, formatIndex int) {
if formatIndex >= len(call.Args) {
return
}
lit := f.literal(call.Args[formatIndex])
if lit == nil {
if *verbose {
f.Warn(call.Pos(), "can't check non-literal format in call to", name)
}
return
}
if lit.Kind != token.STRING {
f.Badf(call.Pos(), "literal %v not a string in call to", lit.Value, name)
}
format, err := strconv.Unquote(lit.Value)
if err != nil {
// Shouldn't happen if parser returned no errors, but be safe.
f.Badf(call.Pos(), "invalid quoted string literal")
}
firstArg := formatIndex + 1 // Arguments are immediately after format string.
if !strings.Contains(format, "%") {
if len(call.Args) > firstArg {
f.Badf(call.Pos(), "no formatting directive in %s call", name)
}
return
}
// Hard part: check formats against args.
argNum := firstArg
for i, w := 0, 0; i < len(format); i += w {
w = 1
if format[i] == '%' {
verb, flags, nbytes, nargs := f.parsePrintfVerb(call, format[i:])
w = nbytes
if verb == '%' { // "%%" does nothing interesting.
continue
}
// If we've run out of args, print after loop will pick that up.
if argNum+nargs <= len(call.Args) {
f.checkPrintfArg(call, verb, flags, argNum, nargs)
}
argNum += nargs
}
}
// TODO: Dotdotdot is hard.
if call.Ellipsis.IsValid() && argNum != len(call.Args) {
return
}
if argNum != len(call.Args) {
expect := argNum - firstArg
numArgs := len(call.Args) - firstArg
f.Badf(call.Pos(), "wrong number of args for format in %s call: %d needed but %d args", name, expect, numArgs)
}
}
// parsePrintfVerb returns the verb that begins the format string, along with its flags,
// the number of bytes to advance the format to step past the verb, and number of
// arguments it consumes.
func (f *File) parsePrintfVerb(call *ast.CallExpr, format string) (verb rune, flags []byte, nbytes, nargs int) {
// There's guaranteed a percent sign.
flags = make([]byte, 0, 5)
nbytes = 1
end := len(format)
// There may be flags.
FlagLoop:
for nbytes < end {
switch format[nbytes] {
case '#', '0', '+', '-', ' ':
flags = append(flags, format[nbytes])
nbytes++
default:
break FlagLoop
}
}
getNum := func() {
if nbytes < end && format[nbytes] == '*' {
nbytes++
nargs++
} else {
for nbytes < end && '0' <= format[nbytes] && format[nbytes] <= '9' {
nbytes++
}
}
}
// There may be a width.
getNum()
// If there's a period, there may be a precision.
if nbytes < end && format[nbytes] == '.' {
flags = append(flags, '.') // Treat precision as a flag.
nbytes++
getNum()
}
// Now a verb.
c, w := utf8.DecodeRuneInString(format[nbytes:])
nbytes += w
verb = c
if c != '%' {
nargs++
}
return
}
// printfArgType encodes the types of expressions a printf verb accepts. It is a bitmask.
type printfArgType int
const (
argBool printfArgType = 1 << iota
argInt
argRune
argString
argFloat
argPointer
anyType printfArgType = ^0
)
type printVerb struct {
verb rune
flags string // known flags are all ASCII
typ printfArgType
}
// Common flag sets for printf verbs.
const (
numFlag = " -+.0"
sharpNumFlag = " -+.0#"
allFlags = " -+.0#"
)
// printVerbs identifies which flags are known to printf for each verb.
// TODO: A type that implements Formatter may do what it wants, and vet
// will complain incorrectly.
var printVerbs = []printVerb{
// '-' is a width modifier, always valid.
// '.' is a precision for float, max width for strings.
// '+' is required sign for numbers, Go format for %v.
// '#' is alternate format for several verbs.
// ' ' is spacer for numbers
{'b', numFlag, argInt},
{'c', "-", argRune | argInt},
{'d', numFlag, argInt},
{'e', numFlag, argFloat},
{'E', numFlag, argFloat},
{'f', numFlag, argFloat},
{'F', numFlag, argFloat},
{'g', numFlag, argFloat},
{'G', numFlag, argFloat},
{'o', sharpNumFlag, argInt},
{'p', "-#", argPointer},
{'q', " -+.0#", argRune | argInt | argString},
{'s', " -+.0", argString},
{'t', "-", argBool},
{'T', "-", anyType},
{'U', "-#", argRune | argInt},
{'v', allFlags, anyType},
{'x', sharpNumFlag, argRune | argInt | argString},
{'X', sharpNumFlag, argRune | argInt | argString},
}
const printfVerbs = "bcdeEfFgGopqstTvxUX"
func (f *File) checkPrintfArg(call *ast.CallExpr, verb rune, flags []byte, argNum, nargs int) {
// Linear scan is fast enough for a small list.
for _, v := range printVerbs {
if v.verb == verb {
for _, flag := range flags {
if !strings.ContainsRune(v.flags, rune(flag)) {
f.Badf(call.Pos(), "unrecognized printf flag for verb %q: %q", verb, flag)
return
}
}
// Verb is good. If nargs>1, we have something like %.*s and all but the final
// arg must be integer.
for i := 0; i < nargs-1; i++ {
if !f.matchArgType(argInt, call.Args[argNum+i]) {
f.Badf(call.Pos(), "arg for * in printf format not of type int")
}
}
for _, v := range printVerbs {
if v.verb == verb {
if !f.matchArgType(v.typ, call.Args[argNum+nargs-1]) {
f.Badf(call.Pos(), "arg for printf verb %%%c of wrong type", verb)
}
break
}
}
return
}
}
f.Badf(call.Pos(), "unrecognized printf verb %q", verb)
}
func (f *File) matchArgType(t printfArgType, arg ast.Expr) bool {
if f.pkg == nil {
return true // Don't know; assume OK.
}
// TODO: for now, we can only test builtin types and untyped constants.
typ := f.pkg.types[arg]
if typ == nil {
return true
}
basic, ok := typ.(*types.Basic)
if !ok {
return true
}
switch basic.Kind {
case types.Bool:
return t&argBool != 0
case types.Int, types.Int8, types.Int16, types.Int32, types.Int64:
fallthrough
case types.Uint, types.Uint8, types.Uint16, types.Uint32, types.Uint64, types.Uintptr:
return t&argInt != 0
case types.Float32, types.Float64, types.Complex64, types.Complex128:
return t&argFloat != 0
case types.String:
return t&argString != 0
case types.UnsafePointer:
return t&argPointer != 0
case types.UntypedBool:
return t&argBool != 0
case types.UntypedComplex:
return t&argFloat != 0
case types.UntypedFloat:
// If it's integral, we can use an int format.
switch f.pkg.values[arg].(type) {
case int, int8, int16, int32, int64:
return t&(argInt|argFloat) != 0
case uint, uint8, uint16, uint32, uint64:
return t&(argInt|argFloat) != 0
}
return t&argFloat != 0
case types.UntypedInt:
return t&(argInt|argFloat) != 0 // You might say Printf("%g", 1234)
case types.UntypedRune:
return t&(argInt|argRune) != 0
case types.UntypedString:
return t&argString != 0
case types.UntypedNil:
return t&argPointer != 0 // TODO?
}
return false
}
// checkPrint checks a call to an unformatted print routine such as Println.
// call.Args[firstArg] is the first argument to be printed.
func (f *File) checkPrint(call *ast.CallExpr, name string, firstArg int) {
isLn := strings.HasSuffix(name, "ln")
isF := strings.HasPrefix(name, "F")
args := call.Args
// check for Println(os.Stderr, ...)
if firstArg == 0 && !isF && len(args) > 0 {
if sel, ok := args[0].(*ast.SelectorExpr); ok {
if x, ok := sel.X.(*ast.Ident); ok {
if x.Name == "os" && strings.HasPrefix(sel.Sel.Name, "Std") {
f.Warnf(call.Pos(), "first argument to %s is %s.%s", name, x.Name, sel.Sel.Name)
}
}
}
}
if len(args) <= firstArg {
// If we have a call to a method called Error that satisfies the Error interface,
// then it's ok. Otherwise it's something like (*T).Error from the testing package
// and we need to check it.
if name == "Error" && f.pkg != nil && f.isErrorMethodCall(call) {
return
}
// If it's an Error call now, it's probably for printing errors.
if !isLn {
// Check the signature to be sure: there are niladic functions called "error".
if f.pkg == nil || firstArg != 0 || f.numArgsInSignature(call) != firstArg {
f.Badf(call.Pos(), "no args in %s call", name)
}
}
return
}
arg := args[firstArg]
if lit, ok := arg.(*ast.BasicLit); ok && lit.Kind == token.STRING {
if strings.Contains(lit.Value, "%") {
f.Badf(call.Pos(), "possible formatting directive in %s call", name)
}
}
if isLn {
// The last item, if a string, should not have a newline.
arg = args[len(call.Args)-1]
if lit, ok := arg.(*ast.BasicLit); ok && lit.Kind == token.STRING {
if strings.HasSuffix(lit.Value, `\n"`) {
f.Badf(call.Pos(), "%s call ends with newline", name)
}
}
}
}
// numArgsInSignature tells how many formal arguments the function type
// being called has. Assumes type checking is on (f.pkg != nil).
func (f *File) numArgsInSignature(call *ast.CallExpr) int {
// Check the type of the function or method declaration
typ := f.pkg.types[call.Fun]
if typ == nil {
return 0
}
// The type must be a signature, but be sure for safety.
sig, ok := typ.(*types.Signature)
if !ok {
return 0
}
return len(sig.Params)
}
// isErrorMethodCall reports whether the call is of a method with signature
// func Error() string
// where "string" is the universe's string type. We know the method is called "Error"
// and f.pkg is set.
func (f *File) isErrorMethodCall(call *ast.CallExpr) bool {
// Is it a selector expression? Otherwise it's a function call, not a method call.
sel, ok := call.Fun.(*ast.SelectorExpr)
if !ok {
return false
}
// The package is type-checked, so if there are no arguments, we're done.
if len(call.Args) > 0 {
return false
}
// Check the type of the method declaration
typ := f.pkg.types[sel]
if typ == nil {
return false
}
// The type must be a signature, but be sure for safety.
sig, ok := typ.(*types.Signature)
if !ok {
return false
}
// There must be a receiver for it to be a method call. Otherwise it is
// a function, not something that satisfies the error interface.
if sig.Recv == nil {
return false
}
// There must be no arguments. Already verified by type checking, but be thorough.
if len(sig.Params) > 0 {
return false
}
// Finally the real questions.
// There must be one result.
if len(sig.Results) != 1 {
return false
}
// It must have return type "string" from the universe.
result := sig.Results[0].Type
if types.IsIdentical(result, types.Typ[types.String]) {
return true
}
return false
}
// Error methods that do not satisfy the Error interface and should be checked.
type errorTest1 int
func (errorTest1) Error(...interface{}) string {
return "hi"
}
type errorTest2 int // Analogous to testing's *T type.
func (errorTest2) Error(...interface{}) {
}
type errorTest3 int
func (errorTest3) Error() { // No return value.
}
type errorTest4 int
func (errorTest4) Error() int { // Different return type.
return 3
}
type errorTest5 int
func (errorTest5) error() { // niladic; don't complain if no args (was bug)
}
// This function never executes, but it serves as a simple test for the program.
// Test with make test.
func BadFunctionUsedInTests() {
var b bool
var i int
var r rune
var s string
var x float64
var p *int
// Some good format/argtypes
fmt.Printf("")
fmt.Printf("%b %b", 3, i)
fmt.Printf("%c %c %c %c", 3, i, 'x', r)
fmt.Printf("%d %d", 3, i)
fmt.Printf("%e %e %e", 3, 3e9, x)
fmt.Printf("%E %E %E", 3, 3e9, x)
fmt.Printf("%f %f %f", 3, 3e9, x)
fmt.Printf("%F %F %F", 3, 3e9, x)
fmt.Printf("%g %g %g", 3, 3e9, x)
fmt.Printf("%G %G %G", 3, 3e9, x)
fmt.Printf("%o %o", 3, i)
fmt.Printf("%p %p", p, nil)
fmt.Printf("%q %q %q %q", 3, i, 'x', r)
fmt.Printf("%s %s", "hi", s)
fmt.Printf("%t %t", true, b)
fmt.Printf("%T %T", 3, i)
fmt.Printf("%U %U", 3, i)
fmt.Printf("%v %v", 3, i)
fmt.Printf("%x %x %x %x", 3, i, "hi", s)
fmt.Printf("%X %X %X %X", 3, i, "hi", s)
fmt.Printf("%.*s %d %g", 3, "hi", 23, 2.3)
// Some bad format/argTypes
fmt.Printf("%b", 2.3) // ERROR "arg for printf verb %b of wrong type"
fmt.Printf("%c", 2.3) // ERROR "arg for printf verb %c of wrong type"
fmt.Printf("%d", 2.3) // ERROR "arg for printf verb %d of wrong type"
fmt.Printf("%e", "hi") // ERROR "arg for printf verb %e of wrong type"
fmt.Printf("%E", true) // ERROR "arg for printf verb %E of wrong type"
fmt.Printf("%f", "hi") // ERROR "arg for printf verb %f of wrong type"
fmt.Printf("%F", 'x') // ERROR "arg for printf verb %F of wrong type"
fmt.Printf("%g", "hi") // ERROR "arg for printf verb %g of wrong type"
fmt.Printf("%G", i) // ERROR "arg for printf verb %G of wrong type"
fmt.Printf("%o", x) // ERROR "arg for printf verb %o of wrong type"
fmt.Printf("%p", 23) // ERROR "arg for printf verb %p of wrong type"
fmt.Printf("%q", x) // ERROR "arg for printf verb %q of wrong type"
fmt.Printf("%s", b) // ERROR "arg for printf verb %s of wrong type"
fmt.Printf("%t", 23) // ERROR "arg for printf verb %t of wrong type"
fmt.Printf("%U", x) // ERROR "arg for printf verb %U of wrong type"
fmt.Printf("%x", nil) // ERROR "arg for printf verb %x of wrong type"
fmt.Printf("%X", 2.3) // ERROR "arg for printf verb %X of wrong type"
fmt.Printf("%.*s %d %g", 3, "hi", 23, 'x') // ERROR "arg for printf verb %g of wrong type"
// TODO
fmt.Println() // not an error
fmt.Println("%s", "hi") // ERROR "possible formatting directive in Println call"
fmt.Printf("%s", "hi", 3) // ERROR "wrong number of args for format in Printf call"
fmt.Printf("%"+("s"), "hi", 3) // ERROR "wrong number of args for format in Printf call"
fmt.Printf("%s%%%d", "hi", 3) // correct
fmt.Printf("%08s", "woo") // correct
fmt.Printf("% 8s", "woo") // correct
fmt.Printf("%.*d", 3, 3) // correct
fmt.Printf("%.*d", 3, 3, 3) // ERROR "wrong number of args for format in Printf call"
fmt.Printf("%.*d", "hi", 3) // ERROR "arg for \* in printf format not of type int"
fmt.Printf("%.*d", i, 3) // correct
fmt.Printf("%.*d", s, 3) // ERROR "arg for \* in printf format not of type int"
fmt.Printf("%q %q", multi()...) // ok
fmt.Printf("%#q", `blah`) // ok
printf("now is the time", "buddy") // ERROR "no formatting directive"
Printf("now is the time", "buddy") // ERROR "no formatting directive"
Printf("hi") // ok
const format = "%s %s\n"
Printf(format, "hi", "there")
Printf(format, "hi") // ERROR "wrong number of args for format in Printf call"
f := new(File)
f.Warn(0, "%s", "hello", 3) // ERROR "possible formatting directive in Warn call"
f.Warnf(0, "%s", "hello", 3) // ERROR "wrong number of args for format in Warnf call"
f.Warnf(0, "%r", "hello") // ERROR "unrecognized printf verb"
f.Warnf(0, "%#s", "hello") // ERROR "unrecognized printf flag"
// Something that satisfies the error interface.
var e error
fmt.Println(e.Error()) // ok
// Something that looks like an error interface but isn't, such as the (*T).Error method
// in the testing package.
var et1 errorTest1
fmt.Println(et1.Error()) // ERROR "no args in Error call"
fmt.Println(et1.Error("hi")) // ok
fmt.Println(et1.Error("%d", 3)) // ERROR "possible formatting directive in Error call"
var et2 errorTest2
et2.Error() // ERROR "no args in Error call"
et2.Error("hi") // ok, not an error method.
et2.Error("%d", 3) // ERROR "possible formatting directive in Error call"
var et3 errorTest3
et3.Error() // ok, not an error method.
var et4 errorTest4
et4.Error() // ok, not an error method.
var et5 errorTest5
et5.error() // ok, not an error method.
}
// printf is used by the test.
func printf(format string, args ...interface{}) {
panic("don't call - testing only")
}
// multi is used by the test.
func multi() []interface{} {
panic("don't call - testing only")
}