blob: 69e96e269694787649a9026a5edc240f8c58a2b8 [file] [log] [blame]
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "textflag.h"
// This is a port of the s390x asm implementation.
// to ppc64le.
// Some changes were needed due to differences in
// the Go opcodes and/or available instructions
// between s390x and ppc64le.
// 1. There were operand order differences in the
// VSUBUQM, VSUBCUQ, and VSEL instructions.
// 2. ppc64 does not have a multiply high and low
// like s390x, so those were implemented using
// macros to compute the equivalent values.
// 3. The LVX, STVX instructions on ppc64 require
// 16 byte alignment of the data. To avoid that
// requirement, data is loaded using LXVD2X and
// STXVD2X with VPERM to reorder bytes correctly.
// I have identified some areas where I believe
// changes would be needed to make this work for big
// endian; however additional changes beyond what I
// have noted are most likely needed to make it work.
// - The string used with VPERM to swap the byte order
// for loads and stores.
// - The EXTRACT_HI and EXTRACT_LO strings.
// - The constants that are loaded from CPOOL.
//
// Permute string used by VPERM to reorder bytes
// loaded or stored using LXVD2X or STXVD2X
// on little endian.
DATA byteswap<>+0(SB)/8, $0x08090a0b0c0d0e0f
DATA byteswap<>+8(SB)/8, $0x0001020304050607
// The following constants are defined in an order
// that is correct for use with LXVD2X/STXVD2X
// on little endian.
DATA p256<>+0x00(SB)/8, $0xffffffff00000001 // P256
DATA p256<>+0x08(SB)/8, $0x0000000000000000 // P256
DATA p256<>+0x10(SB)/8, $0x00000000ffffffff // P256
DATA p256<>+0x18(SB)/8, $0xffffffffffffffff // P256
DATA p256<>+0x20(SB)/8, $0x0c0d0e0f1c1d1e1f // SEL d1 d0 d1 d0
DATA p256<>+0x28(SB)/8, $0x0c0d0e0f1c1d1e1f // SEL d1 d0 d1 d0
DATA p256<>+0x30(SB)/8, $0x0000000010111213 // SEL 0 d1 d0 0
DATA p256<>+0x38(SB)/8, $0x1415161700000000 // SEL 0 d1 d0 0
DATA p256<>+0x40(SB)/8, $0x18191a1b1c1d1e1f // SEL d1 d0 d1 d0
DATA p256<>+0x48(SB)/8, $0x18191a1b1c1d1e1f // SEL d1 d0 d1 d0
DATA p256mul<>+0x00(SB)/8, $0x00000000ffffffff // P256 original
DATA p256mul<>+0x08(SB)/8, $0xffffffffffffffff // P256
DATA p256mul<>+0x10(SB)/8, $0xffffffff00000001 // P256 original
DATA p256mul<>+0x18(SB)/8, $0x0000000000000000 // P256
DATA p256mul<>+0x20(SB)/8, $0x1c1d1e1f00000000 // SEL d0 0 0 d0
DATA p256mul<>+0x28(SB)/8, $0x000000001c1d1e1f // SEL d0 0 0 d0
DATA p256mul<>+0x30(SB)/8, $0x0001020304050607 // SEL d0 0 d1 d0
DATA p256mul<>+0x38(SB)/8, $0x1c1d1e1f0c0d0e0f // SEL d0 0 d1 d0
DATA p256mul<>+0x40(SB)/8, $0x040506071c1d1e1f // SEL 0 d1 d0 d1
DATA p256mul<>+0x48(SB)/8, $0x0c0d0e0f1c1d1e1f // SEL 0 d1 d0 d1
DATA p256mul<>+0x50(SB)/8, $0x0405060704050607 // SEL 0 0 d1 d0
DATA p256mul<>+0x58(SB)/8, $0x1c1d1e1f0c0d0e0f // SEL 0 0 d1 d0
DATA p256mul<>+0x60(SB)/8, $0x0c0d0e0f1c1d1e1f // SEL d1 d0 d1 d0
DATA p256mul<>+0x68(SB)/8, $0x0c0d0e0f1c1d1e1f // SEL d1 d0 d1 d0
DATA p256mul<>+0x70(SB)/8, $0x141516170c0d0e0f // SEL 0 d1 d0 0
DATA p256mul<>+0x78(SB)/8, $0x1c1d1e1f14151617 // SEL 0 d1 d0 0
DATA p256mul<>+0x80(SB)/8, $0xffffffff00000000 // (1*2^256)%P256
DATA p256mul<>+0x88(SB)/8, $0x0000000000000001 // (1*2^256)%P256
DATA p256mul<>+0x90(SB)/8, $0x00000000fffffffe // (1*2^256)%P256
DATA p256mul<>+0x98(SB)/8, $0xffffffffffffffff // (1*2^256)%P256
// The following are used with VPERM to extract the high and low
// values from the intermediate results of a vector multiply.
// They are used in the VMULTxxx macros. These have been tested
// only on little endian, I think they would have to be different
// for big endian.
DATA p256permhilo<>+0x00(SB)/8, $0x0405060714151617 // least significant
DATA p256permhilo<>+0x08(SB)/8, $0x0c0d0e0f1c1d1e1f
DATA p256permhilo<>+0x10(SB)/8, $0x0001020310111213 // most significant
DATA p256permhilo<>+0x18(SB)/8, $0x08090a0b18191A1B
// External declarations for constants
GLOBL p256ord<>(SB), 8, $32
GLOBL p256<>(SB), 8, $80
GLOBL p256mul<>(SB), 8, $160
GLOBL p256permhilo<>(SB), 8, $32
GLOBL byteswap<>+0(SB), RODATA, $16
// The following macros are used to implement the ppc64le
// equivalent function from the corresponding s390x
// instruction for vector multiply high, low, and add,
// since there aren't exact equivalent instructions.
// The corresponding s390x instructions appear in the
// comments.
// Implementation for big endian would have to be
// investigated, I think it would be different.
//
// Vector multiply low word
//
// VMLF x0, x1, out_low
#define VMULT_LOW(x1, x2, out_low) \
VMULUWM x1, x2, out_low
//
// Vector multiply high word
//
// VMLHF x0, x1, out_hi
#define VMULT_HI(x1, x2, out_hi) \
VMULEUW x1, x2, TMP1; \
VMULOUW x1, x2, TMP2; \
VPERM TMP1, TMP2, EXTRACT_HI, out_hi
//
// Vector multiply word
//
// VMLF x0, x1, out_low
// VMLHF x0, x1, out_hi
#define VMULT(x1, x2, out_low, out_hi) \
VMULEUW x1, x2, TMP1; \
VMULOUW x1, x2, TMP2; \
VPERM TMP1, TMP2, EXTRACT_LO, out_low; \
VPERM TMP1, TMP2, EXTRACT_HI, out_hi
//
// Vector multiply add word
//
// VMALF x0, x1, y, out_low
// VMALHF x0, x1, y, out_hi
#define VMULT_ADD(x1, x2, y, out_low, out_hi) \
VSPLTISW $1, TMP1; \
VMULEUW y, TMP1, TMP2; \
VMULOUW y, TMP1, TMP1; \
VMULEUW x1, x2, out_low; \
VMULOUW x1, x2, out_hi; \
VADDUDM TMP1, out_hi, TMP1; \
VADDUDM TMP2, out_low, TMP2; \
VPERM TMP2, TMP1, EXTRACT_LO, out_low; \
VPERM TMP2, TMP1, EXTRACT_HI, out_hi
//
// Vector multiply add high word
//
// VMALF x0, x1, y, out_low
// VMALHF x0, x1, y, out_hi
#define VMULT_ADD_HI(x1, x2, y, out_low, out_hi) \
VSPLTISW $1, TMP1; \
VMULOUW y, TMP1, TMP2; \
VMULEUW y, TMP1, TMP1; \
VMULEUW x1, x2, out_hi; \
VMULOUW x1, x2, out_low; \
VADDUDM TMP1, out_hi, TMP1; \
VADDUDM TMP2, out_low, TMP2; \
VPERM TMP2, TMP1, EXTRACT_HI, out_hi
//
// Vector multiply add low word
//
// VMALF s0, x1, y, out_low
#define VMULT_ADD_LOW(x1, x2, y, out_low) \
VMULUWM x1, x2, out_low; \
VADDUWM out_low, y, out_low
#define res_ptr R3
#define a_ptr R4
#undef res_ptr
#undef a_ptr
// func p256NegCond(val *p256Point, cond int)
#define P1ptr R3
#define CPOOL R7
#define Y1L V0
#define Y1L_ VS32
#define Y1H V1
#define Y1H_ VS33
#define T1L V2
#define T1L_ VS34
#define T1H V3
#define T1H_ VS35
#define SWAP V28
#define SWAP_ VS60
#define PL V30
#define PL_ VS62
#define PH V31
#define PH_ VS63
#define SEL1 V5
#define SEL1_ VS37
#define CAR1 V6
//
// iff cond == 1 val <- -val
//
TEXT ·p256NegCond(SB), NOSPLIT, $0-16
MOVD val+0(FP), P1ptr
MOVD $16, R16
MOVD $32, R17
MOVD $48, R18
MOVD $40, R19
MOVD cond+8(FP), R6
CMP $0, R6
BC 12, 2, LR // just return if cond == 0
MOVD $p256mul<>+0x00(SB), CPOOL
MOVD $byteswap<>+0x00(SB), R8
LXVD2X (R8)(R0), SWAP_
LXVD2X (P1ptr)(R17), Y1L_
LXVD2X (P1ptr)(R18), Y1H_
VPERM Y1H, Y1H, SWAP, Y1H
VPERM Y1L, Y1L, SWAP, Y1L
LXVD2X (CPOOL)(R0), PL_
LXVD2X (CPOOL)(R16), PH_
VSUBCUQ PL, Y1L, CAR1 // subtract part2 giving carry
VSUBUQM PL, Y1L, T1L // subtract part2 giving result
VSUBEUQM PH, Y1H, CAR1, T1H // subtract part1 using carry from part2
VPERM T1H, T1H, SWAP, T1H
VPERM T1L, T1L, SWAP, T1L
STXVD2X T1L_, (R17+P1ptr)
STXVD2X T1H_, (R18+P1ptr)
RET
#undef P1ptr
#undef CPOOL
#undef Y1L
#undef Y1L_
#undef Y1H
#undef Y1H_
#undef T1L
#undef T1L_
#undef T1H
#undef T1H_
#undef PL
#undef PL_
#undef PH
#undef PH_
#undef SEL1
#undef SEL1_
#undef CAR1
//
// if cond == 0 res <-b else res <-a
//
// func p256MovCond(res, a, b *p256Point, cond int)
#define P3ptr R3
#define P1ptr R4
#define P2ptr R5
#define FROMptr R7
#define X1L V0
#define X1H V1
#define Y1L V2
#define Y1H V3
#define Z1L V4
#define Z1H V5
#define X1L_ VS32
#define X1H_ VS33
#define Y1L_ VS34
#define Y1H_ VS35
#define Z1L_ VS36
#define Z1H_ VS37
// This function uses LXVD2X and STXVD2X to avoid the
// data alignment requirement for LVX, STVX. Since
// this code is just moving bytes and not doing arithmetic,
// order of the bytes doesn't matter.
//
TEXT ·p256MovCond(SB), NOSPLIT, $0-32
MOVD res+0(FP), P3ptr
MOVD a+8(FP), P1ptr
MOVD b+16(FP), P2ptr
MOVD cond+24(FP), R6
MOVD $16, R16
MOVD $32, R17
MOVD $48, R18
MOVD $56, R21
MOVD $64, R19
MOVD $80, R20
// Check the condition
CMP $0, R6
// If 0, use b as the source
BEQ FROMB
// Not 0, use a as the source
MOVD P1ptr, FROMptr
BR LOADVALS
FROMB:
MOVD P2ptr, FROMptr
LOADVALS:
// Load from a or b depending on the setting
// of FROMptr
LXVW4X (FROMptr+R0), X1H_
LXVW4X (FROMptr+R16), X1L_
LXVW4X (FROMptr+R17), Y1H_
LXVW4X (FROMptr+R18), Y1L_
LXVW4X (FROMptr+R19), Z1H_
LXVW4X (FROMptr+R20), Z1L_
STXVW4X X1H_, (P3ptr+R0)
STXVW4X X1L_, (P3ptr+R16)
STXVW4X Y1H_, (P3ptr+R17)
STXVW4X Y1L_, (P3ptr+R18)
STXVW4X Z1H_, (P3ptr+R19)
STXVW4X Z1L_, (P3ptr+R20)
RET
#undef P3ptr
#undef P1ptr
#undef P2ptr
#undef FROMptr
#undef X1L
#undef X1H
#undef Y1L
#undef Y1H
#undef Z1L
#undef Z1H
#undef X1L_
#undef X1H_
#undef Y1L_
#undef Y1H_
#undef Z1L_
#undef Z1H_
//
// Select the point from the table for idx
//
// func p256Select(point *p256Point, table []p256Point, idx int)
#define P3ptr R3
#define P1ptr R4
#define COUNT R5
#define X1L V0
#define X1H V1
#define Y1L V2
#define Y1H V3
#define Z1L V4
#define Z1H V5
#define X1L_ VS32
#define X1H_ VS33
#define Y1L_ VS34
#define Y1H_ VS35
#define Z1L_ VS36
#define Z1H_ VS37
#define X2L V6
#define X2H V7
#define Y2L V8
#define Y2H V9
#define Z2L V10
#define Z2H V11
#define X2L_ VS38
#define X2H_ VS39
#define Y2L_ VS40
#define Y2H_ VS41
#define Z2L_ VS42
#define Z2H_ VS43
#define ONE V18
#define IDX V19
#define SEL1 V20
#define SEL1_ VS52
#define SEL2 V21
//
TEXT ·p256Select(SB), NOSPLIT, $0-40
MOVD point+0(FP), P3ptr
MOVD table+8(FP), P1ptr
MOVD $16, R16
MOVD $32, R17
MOVD $48, R18
MOVD $64, R19
MOVD $80, R20
LXVDSX (R1)(R19), SEL1_ // VLREPG idx+32(FP), SEL1
VSPLTB $7, SEL1, IDX // splat byte
VSPLTISB $1, ONE // VREPIB $1, ONE
VSPLTISB $1, SEL2 // VREPIB $1, SEL2
MOVD $17, COUNT
MOVD COUNT, CTR // set up ctr
VSPLTISB $0, X1H // VZERO X1H
VSPLTISB $0, X1L // VZERO X1L
VSPLTISB $0, Y1H // VZERO Y1H
VSPLTISB $0, Y1L // VZERO Y1L
VSPLTISB $0, Z1H // VZERO Z1H
VSPLTISB $0, Z1L // VZERO Z1L
loop_select:
// LVXD2X is used here since data alignment doesn't
// matter.
LXVD2X (P1ptr+R0), X2H_
LXVD2X (P1ptr+R16), X2L_
LXVD2X (P1ptr+R17), Y2H_
LXVD2X (P1ptr+R18), Y2L_
LXVD2X (P1ptr+R19), Z2H_
LXVD2X (P1ptr+R20), Z2L_
VCMPEQUD SEL2, IDX, SEL1 // VCEQG SEL2, IDX, SEL1 OK
// This will result in SEL1 being all 0s or 1s, meaning
// the result is either X1L or X2L, no individual byte
// selection.
VSEL X1L, X2L, SEL1, X1L
VSEL X1H, X2H, SEL1, X1H
VSEL Y1L, Y2L, SEL1, Y1L
VSEL Y1H, Y2H, SEL1, Y1H
VSEL Z1L, Z2L, SEL1, Z1L
VSEL Z1H, Z2H, SEL1, Z1H
// Add 1 to all bytes in SEL2
VADDUBM SEL2, ONE, SEL2 // VAB SEL2, ONE, SEL2 OK
ADD $96, P1ptr
BC 16, 0, loop_select
// STXVD2X is used here so that alignment doesn't
// need to be verified. Since values were loaded
// using LXVD2X this is OK.
STXVD2X X1H_, (P3ptr+R0)
STXVD2X X1L_, (P3ptr+R16)
STXVD2X Y1H_, (P3ptr+R17)
STXVD2X Y1L_, (P3ptr+R18)
STXVD2X Z1H_, (P3ptr+R19)
STXVD2X Z1L_, (P3ptr+R20)
RET
#undef P3ptr
#undef P1ptr
#undef COUNT
#undef X1L
#undef X1H
#undef Y1L
#undef Y1H
#undef Z1L
#undef Z1H
#undef X2L
#undef X2H
#undef Y2L
#undef Y2H
#undef Z2L
#undef Z2H
#undef X2L_
#undef X2H_
#undef Y2L_
#undef Y2H_
#undef Z2L_
#undef Z2H_
#undef ONE
#undef IDX
#undef SEL1
#undef SEL1_
#undef SEL2
// func p256SelectBase(point, table []uint64, idx int)
#define P3ptr R3
#define P1ptr R4
#define COUNT R5
#define X1L V0
#define X1H V1
#define Y1L V2
#define Y1H V3
#define Z1L V4
#define Z1H V5
#define X2L V6
#define X2H V7
#define Y2L V8
#define Y2H V9
#define Z2L V10
#define Z2H V11
#define X2L_ VS38
#define X2H_ VS39
#define Y2L_ VS40
#define Y2H_ VS41
#define Z2L_ VS42
#define Z2H_ VS43
#define ONE V18
#define IDX V19
#define SEL1 V20
#define SEL1_ VS52
#define SEL2 V21
TEXT ·p256SelectBase(SB), NOSPLIT, $0-40
MOVD point+0(FP), P3ptr
MOVD table+8(FP), P1ptr
MOVD $16, R16
MOVD $32, R17
MOVD $48, R18
MOVD $64, R19
MOVD $80, R20
MOVD $56, R21
LXVDSX (R1)(R19), SEL1_
VSPLTB $7, SEL1, IDX // splat byte
VSPLTISB $1, ONE // Vector with byte 1s
VSPLTISB $1, SEL2 // Vector with byte 1s
MOVD $65, COUNT
MOVD COUNT, CTR // loop count
VSPLTISB $0, X1H // VZERO X1H
VSPLTISB $0, X1L // VZERO X1L
VSPLTISB $0, Y1H // VZERO Y1H
VSPLTISB $0, Y1L // VZERO Y1L
VSPLTISB $0, Z1H // VZERO Z1H
VSPLTISB $0, Z1L // VZERO Z1L
loop_select:
LXVD2X (P1ptr+R0), X2H_
LXVD2X (P1ptr+R16), X2L_
LXVD2X (P1ptr+R17), Y2H_
LXVD2X (P1ptr+R18), Y2L_
LXVD2X (P1ptr+R19), Z2H_
LXVD2X (P1ptr+R20), Z2L_
VCMPEQUD SEL2, IDX, SEL1 // Compare against idx
VSEL X1L, X2L, SEL1, X1L // Select if idx matched
VSEL X1H, X2H, SEL1, X1H
VSEL Y1L, Y2L, SEL1, Y1L
VSEL Y1H, Y2H, SEL1, Y1H
VSEL Z1L, Z2L, SEL1, Z1L
VSEL Z1H, Z2H, SEL1, Z1H
VADDUBM SEL2, ONE, SEL2 // Increment SEL2 bytes by 1
ADD $96, P1ptr // Next chunk
BC 16, 0, loop_select
STXVD2X X1H_, (P3ptr+R0)
STXVD2X X1L_, (P3ptr+R16)
STXVD2X Y1H_, (P3ptr+R17)
STXVD2X Y1L_, (P3ptr+R18)
STXVD2X Z1H_, (P3ptr+R19)
STXVD2X Z1L_, (P3ptr+R20)
RET
#undef P3ptr
#undef P1ptr
#undef COUNT
#undef X1L
#undef X1H
#undef Y1L
#undef Y1H
#undef Z1L
#undef Z1H
#undef X2L
#undef X2H
#undef Y2L
#undef Y2H
#undef Z2L
#undef Z2H
#undef X1L_
#undef X1H_
#undef X2L_
#undef X2H_
#undef Y1L_
#undef Y1H_
#undef Y2L_
#undef Y2H_
#undef Z1L_
#undef Z1H_
#undef Z2L_
#undef Z2H_
#undef ONE
#undef IDX
#undef SEL1
#undef SEL1_
#undef SEL2
#undef SWAP
#undef SWAP_
// ---------------------------------------
// func p256FromMont(res, in []byte)
#define res_ptr R3
#define x_ptr R4
#define CPOOL R7
#define T0 V0
#define T0_ VS32
#define T1 V1
#define T1_ VS33
#define T2 V2
#define TT0 V3
#define TT1 V4
#define TT0_ VS35
#define TT1_ VS36
#define ZER V6
#define SEL1 V7
#define SEL1_ VS39
#define SEL2 V8
#define SEL2_ VS40
#define CAR1 V9
#define CAR2 V10
#define RED1 V11
#define RED2 V12
#define PL V13
#define PL_ VS45
#define PH V14
#define PH_ VS46
#define SWAP V28
#define SWAP_ VS57
TEXT ·p256FromMont(SB), NOSPLIT, $0-48
MOVD res+0(FP), res_ptr
MOVD in+24(FP), x_ptr
MOVD $16, R16
MOVD $32, R17
MOVD $48, R18
MOVD $64, R19
MOVD $p256<>+0x00(SB), CPOOL
MOVD $byteswap<>+0x00(SB), R15
VSPLTISB $0, T2 // VZERO T2
VSPLTISB $0, ZER // VZERO ZER
// Constants are defined so that the LXVD2X is correct
LXVD2X (CPOOL+R0), PH_
LXVD2X (CPOOL+R16), PL_
// VPERM byte selections
LXVD2X (CPOOL+R18), SEL2_
LXVD2X (CPOOL+R19), SEL1_
LXVD2X (R15)(R0), SWAP_
LXVD2X (R16)(x_ptr), T1_
LXVD2X (R0)(x_ptr), T0_
// Put in true little endian order
VPERM T0, T0, SWAP, T0
VPERM T1, T1, SWAP, T1
// First round
VPERM T1, T0, SEL1, RED2 // d1 d0 d1 d0
VPERM ZER, RED2, SEL2, RED1 // 0 d1 d0 0
VSUBUQM RED2, RED1, RED2 // VSQ RED1, RED2, RED2 // Guaranteed not to underflow
VSLDOI $8, T1, T0, T0 // VSLDB $8, T1, T0, T0
VSLDOI $8, T2, T1, T1 // VSLDB $8, T2, T1, T1
VADDCUQ T0, RED1, CAR1 // VACCQ T0, RED1, CAR1
VADDUQM T0, RED1, T0 // VAQ T0, RED1, T0
VADDECUQ T1, RED2, CAR1, CAR2 // VACCCQ T1, RED2, CAR1, CAR2
VADDEUQM T1, RED2, CAR1, T1 // VACQ T1, RED2, CAR1, T1
VADDUQM T2, CAR2, T2 // VAQ T2, CAR2, T2
// Second round
VPERM T1, T0, SEL1, RED2 // d1 d0 d1 d0
VPERM ZER, RED2, SEL2, RED1 // 0 d1 d0 0
VSUBUQM RED2, RED1, RED2 // VSQ RED1, RED2, RED2 // Guaranteed not to underflow
VSLDOI $8, T1, T0, T0 // VSLDB $8, T1, T0, T0
VSLDOI $8, T2, T1, T1 // VSLDB $8, T2, T1, T1
VADDCUQ T0, RED1, CAR1 // VACCQ T0, RED1, CAR1
VADDUQM T0, RED1, T0 // VAQ T0, RED1, T0
VADDECUQ T1, RED2, CAR1, CAR2 // VACCCQ T1, RED2, CAR1, CAR2
VADDEUQM T1, RED2, CAR1, T1 // VACQ T1, RED2, CAR1, T1
VADDUQM T2, CAR2, T2 // VAQ T2, CAR2, T2
// Third round
VPERM T1, T0, SEL1, RED2 // d1 d0 d1 d0
VPERM ZER, RED2, SEL2, RED1 // 0 d1 d0 0
VSUBUQM RED2, RED1, RED2 // VSQ RED1, RED2, RED2 // Guaranteed not to underflow
VSLDOI $8, T1, T0, T0 // VSLDB $8, T1, T0, T0
VSLDOI $8, T2, T1, T1 // VSLDB $8, T2, T1, T1
VADDCUQ T0, RED1, CAR1 // VACCQ T0, RED1, CAR1
VADDUQM T0, RED1, T0 // VAQ T0, RED1, T0
VADDECUQ T1, RED2, CAR1, CAR2 // VACCCQ T1, RED2, CAR1, CAR2
VADDEUQM T1, RED2, CAR1, T1 // VACQ T1, RED2, CAR1, T1
VADDUQM T2, CAR2, T2 // VAQ T2, CAR2, T2
// Last round
VPERM T1, T0, SEL1, RED2 // d1 d0 d1 d0
VPERM ZER, RED2, SEL2, RED1 // 0 d1 d0 0
VSUBUQM RED2, RED1, RED2 // VSQ RED1, RED2, RED2 // Guaranteed not to underflow
VSLDOI $8, T1, T0, T0 // VSLDB $8, T1, T0, T0
VSLDOI $8, T2, T1, T1 // VSLDB $8, T2, T1, T1
VADDCUQ T0, RED1, CAR1 // VACCQ T0, RED1, CAR1
VADDUQM T0, RED1, T0 // VAQ T0, RED1, T0
VADDECUQ T1, RED2, CAR1, CAR2 // VACCCQ T1, RED2, CAR1, CAR2
VADDEUQM T1, RED2, CAR1, T1 // VACQ T1, RED2, CAR1, T1
VADDUQM T2, CAR2, T2 // VAQ T2, CAR2, T2
// ---------------------------------------------------
VSUBCUQ T0, PL, CAR1 // VSCBIQ PL, T0, CAR1
VSUBUQM T0, PL, TT0 // VSQ PL, T0, TT0
VSUBECUQ T1, PH, CAR1, CAR2 // VSBCBIQ T1, PH, CAR1, CAR2
VSUBEUQM T1, PH, CAR1, TT1 // VSBIQ T1, PH, CAR1, TT1
VSUBEUQM T2, ZER, CAR2, T2 // VSBIQ T2, ZER, CAR2, T2
VSEL TT0, T0, T2, T0
VSEL TT1, T1, T2, T1
// Reorder the bytes so STXVD2X can be used.
// TT0, TT1 used for VPERM result in case
// the caller expects T0, T1 to be good.
VPERM T0, T0, SWAP, TT0
VPERM T1, T1, SWAP, TT1
STXVD2X TT0_, (R0)(res_ptr)
STXVD2X TT1_, (R16)(res_ptr)
RET
#undef res_ptr
#undef x_ptr
#undef CPOOL
#undef T0
#undef T0_
#undef T1
#undef T1_
#undef T2
#undef TT0
#undef TT1
#undef ZER
#undef SEL1
#undef SEL1_
#undef SEL2
#undef SEL2_
#undef CAR1
#undef CAR2
#undef RED1
#undef RED2
#undef PL
#undef PL_
#undef PH
#undef PH_
#undef SWAP
#undef SWAP_
// ---------------------------------------
// p256MulInternal
// V0-V3 V30,V31 - Not Modified
// V4-V15 V27-V29 - Volatile
#define CPOOL R7
// Parameters
#define X0 V0 // Not modified
#define X1 V1 // Not modified
#define Y0 V2 // Not modified
#define Y1 V3 // Not modified
#define T0 V4 // Result
#define T1 V5 // Result
#define P0 V30 // Not modified
#define P1 V31 // Not modified
// Temporaries: lots of reused vector regs
#define YDIG V6 // Overloaded with CAR2
#define ADD1H V7 // Overloaded with ADD3H
#define ADD2H V8 // Overloaded with ADD4H
#define ADD3 V9 // Overloaded with SEL2,SEL5
#define ADD4 V10 // Overloaded with SEL3,SEL6
#define RED1 V11 // Overloaded with CAR2
#define RED2 V12
#define RED3 V13 // Overloaded with SEL1
#define T2 V14
// Overloaded temporaries
#define ADD1 V4 // Overloaded with T0
#define ADD2 V5 // Overloaded with T1
#define ADD3H V7 // Overloaded with ADD1H
#define ADD4H V8 // Overloaded with ADD2H
#define ZER V28 // Overloaded with TMP1
#define CAR1 V6 // Overloaded with YDIG
#define CAR2 V11 // Overloaded with RED1
// Constant Selects
#define SEL1 V13 // Overloaded with RED3
#define SEL2 V9 // Overloaded with ADD3,SEL5
#define SEL3 V10 // Overloaded with ADD4,SEL6
#define SEL4 V6 // Overloaded with YDIG,CAR1
#define SEL5 V9 // Overloaded with ADD3,SEL2
#define SEL6 V10 // Overloaded with ADD4,SEL3
#define SEL1_ VS45
#define SEL2_ VS41
#define SEL3_ VS42
#define SEL4_ VS38
#define SEL5_ VS41
#define SEL6_ VS42
// TMP1, TMP2, EXTRACT_LO, EXTRACT_HI used in
// VMULT macros
#define TMP1 V13 // Overloaded with RED3
#define TMP2 V27
#define EVENODD R5
#define EXTRACT_LO V28
#define EXTRACT_LO_ VS60
#define EXTRACT_HI V29
#define EXTRACT_HI_ VS61
/* *
* To follow the flow of bits, for your own sanity a stiff drink, need you shall.
* Of a single round, a 'helpful' picture, here is. Meaning, column position has.
* With you, SIMD be...
*
* +--------+--------+
* +--------| RED2 | RED1 |
* | +--------+--------+
* | ---+--------+--------+
* | +---- T2| T1 | T0 |--+
* | | ---+--------+--------+ |
* | | |
* | | ======================= |
* | | |
* | | +--------+--------+<-+
* | +-------| ADD2 | ADD1 |--|-----+
* | | +--------+--------+ | |
* | | +--------+--------+<---+ |
* | | | ADD2H | ADD1H |--+ |
* | | +--------+--------+ | |
* | | +--------+--------+<-+ |
* | | | ADD4 | ADD3 |--|-+ |
* | | +--------+--------+ | | |
* | | +--------+--------+<---+ | |
* | | | ADD4H | ADD3H |------|-+ |(+vzero)
* | | +--------+--------+ | | V
* | | ------------------------ | | +--------+
* | | | | | RED3 | [d0 0 0 d0]
* | | | | +--------+
* | +---->+--------+--------+ | | |
* (T2[1w]||ADD2[4w]||ADD1[3w]) +--------| T1 | T0 | | | |
* | +--------+--------+ | | |
* +---->---+--------+--------+ | | |
* T2| T1 | T0 |----+ | |
* ---+--------+--------+ | | |
* ---+--------+--------+<---+ | |
* +--- T2| T1 | T0 |----------+
* | ---+--------+--------+ | |
* | +--------+--------+<-------------+
* | | RED2 | RED1 |-----+ | | [0 d1 d0 d1] [d0 0 d1 d0]
* | +--------+--------+ | | |
* | +--------+<----------------------+
* | | RED3 |--------------+ | [0 0 d1 d0]
* | +--------+ | |
* +--->+--------+--------+ | |
* | T1 | T0 |--------+
* +--------+--------+ | |
* --------------------------- | |
* | |
* +--------+--------+<----+ |
* | RED2 | RED1 | |
* +--------+--------+ |
* ---+--------+--------+<-------+
* T2| T1 | T0 | (H1P-H1P-H00RRAY!)
* ---+--------+--------+
*
* *Mi obra de arte de siglo XXI @vpaprots
*
*
* First group is special, doesn't get the two inputs:
* +--------+--------+<-+
* +-------| ADD2 | ADD1 |--|-----+
* | +--------+--------+ | |
* | +--------+--------+<---+ |
* | | ADD2H | ADD1H |--+ |
* | +--------+--------+ | |
* | +--------+--------+<-+ |
* | | ADD4 | ADD3 |--|-+ |
* | +--------+--------+ | | |
* | +--------+--------+<---+ | |
* | | ADD4H | ADD3H |------|-+ |(+vzero)
* | +--------+--------+ | | V
* | ------------------------ | | +--------+
* | | | | RED3 | [d0 0 0 d0]
* | | | +--------+
* +---->+--------+--------+ | | |
* (T2[1w]||ADD2[4w]||ADD1[3w]) | T1 | T0 |----+ | |
* +--------+--------+ | | |
* ---+--------+--------+<---+ | |
* +--- T2| T1 | T0 |----------+
* | ---+--------+--------+ | |
* | +--------+--------+<-------------+
* | | RED2 | RED1 |-----+ | | [0 d1 d0 d1] [d0 0 d1 d0]
* | +--------+--------+ | | |
* | +--------+<----------------------+
* | | RED3 |--------------+ | [0 0 d1 d0]
* | +--------+ | |
* +--->+--------+--------+ | |
* | T1 | T0 |--------+
* +--------+--------+ | |
* --------------------------- | |
* | |
* +--------+--------+<----+ |
* | RED2 | RED1 | |
* +--------+--------+ |
* ---+--------+--------+<-------+
* T2| T1 | T0 | (H1P-H1P-H00RRAY!)
* ---+--------+--------+
*
* Last 'group' needs to RED2||RED1 shifted less
*/
TEXT p256MulInternal<>(SB), NOSPLIT, $0-16
// CPOOL loaded from caller
MOVD $16, R16
MOVD $32, R17
MOVD $48, R18
MOVD $64, R19
MOVD $80, R20
MOVD $96, R21
MOVD $112, R22
MOVD $p256permhilo<>+0x00(SB), EVENODD
// These values are used by the VMULTxxx macros to
// extract the high and low portions of the intermediate
// result.
LXVD2X (R0)(EVENODD), EXTRACT_LO_
LXVD2X (R16)(EVENODD), EXTRACT_HI_
// ---------------------------------------------------
VSPLTW $3, Y0, YDIG // VREPF Y0 is input
// VMLHF X0, YDIG, ADD1H
// VMLHF X1, YDIG, ADD2H
// VMLF X0, YDIG, ADD1
// VMLF X1, YDIG, ADD2
//
VMULT(X0, YDIG, ADD1, ADD1H)
VMULT(X1, YDIG, ADD2, ADD2H)
VSPLTW $2, Y0, YDIG // VREPF
// VMALF X0, YDIG, ADD1H, ADD3
// VMALF X1, YDIG, ADD2H, ADD4
// VMALHF X0, YDIG, ADD1H, ADD3H // ADD1H Free
// VMALHF X1, YDIG, ADD2H, ADD4H // ADD2H Free
VMULT_ADD(X0, YDIG, ADD1H, ADD3, ADD3H)
VMULT_ADD(X1, YDIG, ADD2H, ADD4, ADD4H)
LXVD2X (R17)(CPOOL), SEL1_
VSPLTISB $0, ZER // VZERO ZER
VPERM ZER, ADD1, SEL1, RED3 // [d0 0 0 d0]
VSLDOI $12, ADD2, ADD1, T0 // ADD1 Free // VSLDB
VSLDOI $12, ZER, ADD2, T1 // ADD2 Free // VSLDB
VADDCUQ T0, ADD3, CAR1 // VACCQ
VADDUQM T0, ADD3, T0 // ADD3 Free // VAQ
VADDECUQ T1, ADD4, CAR1, T2 // VACCCQ
VADDEUQM T1, ADD4, CAR1, T1 // ADD4 Free // VACQ
LXVD2X (R18)(CPOOL), SEL2_
LXVD2X (R19)(CPOOL), SEL3_
LXVD2X (R20)(CPOOL), SEL4_
VPERM RED3, T0, SEL2, RED1 // [d0 0 d1 d0]
VPERM RED3, T0, SEL3, RED2 // [ 0 d1 d0 d1]
VPERM RED3, T0, SEL4, RED3 // [ 0 0 d1 d0]
VSUBUQM RED2, RED3, RED2 // Guaranteed not to underflow -->? // VSQ
VSLDOI $12, T1, T0, T0 // VSLDB
VSLDOI $12, T2, T1, T1 // VSLDB
VADDCUQ T0, ADD3H, CAR1 // VACCQ
VADDUQM T0, ADD3H, T0 // VAQ
VADDECUQ T1, ADD4H, CAR1, T2 // VACCCQ
VADDEUQM T1, ADD4H, CAR1, T1 // VACQ
// ---------------------------------------------------
VSPLTW $1, Y0, YDIG // VREPF
LXVD2X (R0)(EVENODD), EXTRACT_LO_
LXVD2X (R16)(EVENODD), EXTRACT_HI_
// VMALHF X0, YDIG, T0, ADD1H
// VMALHF X1, YDIG, T1, ADD2H
// VMALF X0, YDIG, T0, ADD1 // T0 Free->ADD1
// VMALF X1, YDIG, T1, ADD2 // T1 Free->ADD2
VMULT_ADD(X0, YDIG, T0, ADD1, ADD1H)
VMULT_ADD(X1, YDIG, T1, ADD2, ADD2H)
VSPLTW $0, Y0, YDIG // VREPF
// VMALF X0, YDIG, ADD1H, ADD3
// VMALF X1, YDIG, ADD2H, ADD4
// VMALHF X0, YDIG, ADD1H, ADD3H // ADD1H Free->ADD3H
// VMALHF X1, YDIG, ADD2H, ADD4H // ADD2H Free->ADD4H , YDIG Free->ZER
VMULT_ADD(X0, YDIG, ADD1H, ADD3, ADD3H)
VMULT_ADD(X1, YDIG, ADD2H, ADD4, ADD4H)
VSPLTISB $0, ZER // VZERO ZER
LXVD2X (R17)(CPOOL), SEL1_
VPERM ZER, ADD1, SEL1, RED3 // [d0 0 0 d0]
VSLDOI $12, ADD2, ADD1, T0 // ADD1 Free->T0 // VSLDB
VSLDOI $12, T2, ADD2, T1 // ADD2 Free->T1, T2 Free // VSLDB
VADDCUQ T0, RED1, CAR1 // VACCQ
VADDUQM T0, RED1, T0 // VAQ
VADDECUQ T1, RED2, CAR1, T2 // VACCCQ
VADDEUQM T1, RED2, CAR1, T1 // VACQ
VADDCUQ T0, ADD3, CAR1 // VACCQ
VADDUQM T0, ADD3, T0 // VAQ
VADDECUQ T1, ADD4, CAR1, CAR2 // VACCCQ
VADDEUQM T1, ADD4, CAR1, T1 // VACQ
VADDUQM T2, CAR2, T2 // VAQ
LXVD2X (R18)(CPOOL), SEL2_
LXVD2X (R19)(CPOOL), SEL3_
LXVD2X (R20)(CPOOL), SEL4_
VPERM RED3, T0, SEL2, RED1 // [d0 0 d1 d0]
VPERM RED3, T0, SEL3, RED2 // [ 0 d1 d0 d1]
VPERM RED3, T0, SEL4, RED3 // [ 0 0 d1 d0]
VSUBUQM RED2, RED3, RED2 // Guaranteed not to underflow // VSQ
VSLDOI $12, T1, T0, T0 // VSLDB
VSLDOI $12, T2, T1, T1 // VSLDB
VADDCUQ T0, ADD3H, CAR1 // VACCQ
VADDUQM T0, ADD3H, T0 // VAQ
VADDECUQ T1, ADD4H, CAR1, T2 // VACCCQ
VADDEUQM T1, ADD4H, CAR1, T1 // VACQ
// ---------------------------------------------------
VSPLTW $3, Y1, YDIG // VREPF
LXVD2X (R0)(EVENODD), EXTRACT_LO_
LXVD2X (R16)(EVENODD), EXTRACT_HI_
// VMALHF X0, YDIG, T0, ADD1H
// VMALHF X1, YDIG, T1, ADD2H
// VMALF X0, YDIG, T0, ADD1
// VMALF X1, YDIG, T1, ADD2
VMULT_ADD(X0, YDIG, T0, ADD1, ADD1H)
VMULT_ADD(X1, YDIG, T1, ADD2, ADD2H)
VSPLTW $2, Y1, YDIG // VREPF
// VMALF X0, YDIG, ADD1H, ADD3
// VMALF X1, YDIG, ADD2H, ADD4
// VMALHF X0, YDIG, ADD1H, ADD3H // ADD1H Free
// VMALHF X1, YDIG, ADD2H, ADD4H // ADD2H Free
VMULT_ADD(X0, YDIG, ADD1H, ADD3, ADD3H)
VMULT_ADD(X1, YDIG, ADD2H, ADD4, ADD4H)
LXVD2X (R17)(CPOOL), SEL1_
VSPLTISB $0, ZER // VZERO ZER
LXVD2X (R17)(CPOOL), SEL1_
VPERM ZER, ADD1, SEL1, RED3 // [d0 0 0 d0]
VSLDOI $12, ADD2, ADD1, T0 // ADD1 Free // VSLDB
VSLDOI $12, T2, ADD2, T1 // ADD2 Free // VSLDB
VADDCUQ T0, RED1, CAR1 // VACCQ
VADDUQM T0, RED1, T0 // VAQ
VADDECUQ T1, RED2, CAR1, T2 // VACCCQ
VADDEUQM T1, RED2, CAR1, T1 // VACQ
VADDCUQ T0, ADD3, CAR1 // VACCQ
VADDUQM T0, ADD3, T0 // VAQ
VADDECUQ T1, ADD4, CAR1, CAR2 // VACCCQ
VADDEUQM T1, ADD4, CAR1, T1 // VACQ
VADDUQM T2, CAR2, T2 // VAQ
LXVD2X (R18)(CPOOL), SEL2_
LXVD2X (R19)(CPOOL), SEL3_
LXVD2X (R20)(CPOOL), SEL4_
VPERM RED3, T0, SEL2, RED1 // [d0 0 d1 d0]
VPERM RED3, T0, SEL3, RED2 // [ 0 d1 d0 d1]
VPERM RED3, T0, SEL4, RED3 // [ 0 0 d1 d0]
VSUBUQM RED2, RED3, RED2 // Guaranteed not to underflow // VSQ
VSLDOI $12, T1, T0, T0 // VSLDB
VSLDOI $12, T2, T1, T1 // VSLDB
VADDCUQ T0, ADD3H, CAR1 // VACCQ
VADDUQM T0, ADD3H, T0 // VAQ
VADDECUQ T1, ADD4H, CAR1, T2 // VACCCQ
VADDEUQM T1, ADD4H, CAR1, T1 // VACQ
// ---------------------------------------------------
VSPLTW $1, Y1, YDIG // VREPF
LXVD2X (R0)(EVENODD), EXTRACT_LO_
LXVD2X (R16)(EVENODD), EXTRACT_HI_
// VMALHF X0, YDIG, T0, ADD1H
// VMALHF X1, YDIG, T1, ADD2H
// VMALF X0, YDIG, T0, ADD1
// VMALF X1, YDIG, T1, ADD2
VMULT_ADD(X0, YDIG, T0, ADD1, ADD1H)
VMULT_ADD(X1, YDIG, T1, ADD2, ADD2H)
VSPLTW $0, Y1, YDIG // VREPF
// VMALF X0, YDIG, ADD1H, ADD3
// VMALF X1, YDIG, ADD2H, ADD4
// VMALHF X0, YDIG, ADD1H, ADD3H
// VMALHF X1, YDIG, ADD2H, ADD4H
VMULT_ADD(X0, YDIG, ADD1H, ADD3, ADD3H)
VMULT_ADD(X1, YDIG, ADD2H, ADD4, ADD4H)
VSPLTISB $0, ZER // VZERO ZER
LXVD2X (R17)(CPOOL), SEL1_
VPERM ZER, ADD1, SEL1, RED3 // [d0 0 0 d0]
VSLDOI $12, ADD2, ADD1, T0 // VSLDB
VSLDOI $12, T2, ADD2, T1 // VSLDB
VADDCUQ T0, RED1, CAR1 // VACCQ
VADDUQM T0, RED1, T0 // VAQ
VADDECUQ T1, RED2, CAR1, T2 // VACCCQ
VADDEUQM T1, RED2, CAR1, T1 // VACQ
VADDCUQ T0, ADD3, CAR1 // VACCQ
VADDUQM T0, ADD3, T0 // VAQ
VADDECUQ T1, ADD4, CAR1, CAR2 // VACCCQ
VADDEUQM T1, ADD4, CAR1, T1 // VACQ
VADDUQM T2, CAR2, T2 // VAQ
LXVD2X (R21)(CPOOL), SEL5_
LXVD2X (R22)(CPOOL), SEL6_
VPERM T0, RED3, SEL5, RED2 // [d1 d0 d1 d0]
VPERM T0, RED3, SEL6, RED1 // [ 0 d1 d0 0]
VSUBUQM RED2, RED1, RED2 // Guaranteed not to underflow // VSQ
VSLDOI $12, T1, T0, T0 // VSLDB
VSLDOI $12, T2, T1, T1 // VSLDB
VADDCUQ T0, ADD3H, CAR1 // VACCQ
VADDUQM T0, ADD3H, T0 // VAQ
VADDECUQ T1, ADD4H, CAR1, T2 // VACCCQ
VADDEUQM T1, ADD4H, CAR1, T1 // VACQ
VADDCUQ T0, RED1, CAR1 // VACCQ
VADDUQM T0, RED1, T0 // VAQ
VADDECUQ T1, RED2, CAR1, CAR2 // VACCCQ
VADDEUQM T1, RED2, CAR1, T1 // VACQ
VADDUQM T2, CAR2, T2 // VAQ
// ---------------------------------------------------
VSPLTISB $0, RED3 // VZERO RED3
VSUBCUQ T0, P0, CAR1 // VSCBIQ
VSUBUQM T0, P0, ADD1H // VSQ
VSUBECUQ T1, P1, CAR1, CAR2 // VSBCBIQ
VSUBEUQM T1, P1, CAR1, ADD2H // VSBIQ
VSUBEUQM T2, RED3, CAR2, T2 // VSBIQ
// what output to use, ADD2H||ADD1H or T1||T0?
VSEL ADD1H, T0, T2, T0
VSEL ADD2H, T1, T2, T1
RET
#undef CPOOL
#undef X0
#undef X1
#undef Y0
#undef Y1
#undef T0
#undef T1
#undef P0
#undef P1
#undef SEL1
#undef SEL2
#undef SEL3
#undef SEL4
#undef SEL5
#undef SEL6
#undef SEL1_
#undef SEL2_
#undef SEL3_
#undef SEL4_
#undef SEL5_
#undef SEL6_
#undef YDIG
#undef ADD1H
#undef ADD2H
#undef ADD3
#undef ADD4
#undef RED1
#undef RED2
#undef RED3
#undef T2
#undef ADD1
#undef ADD2
#undef ADD3H
#undef ADD4H
#undef ZER
#undef CAR1
#undef CAR2
#undef TMP1
#undef TMP2
#undef EVENODD
#undef EXTRACT_HI
#undef EXTRACT_HI_
#undef EXTRACT_LO
#undef EXTRACT_LO_
#define p256SubInternal(T1, T0, X1, X0, Y1, Y0) \
VSPLTISB $0, ZER \ // VZERO
VSUBCUQ X0, Y0, CAR1 \
VSUBUQM X0, Y0, T0 \
VSUBECUQ X1, Y1, CAR1, SEL1 \
VSUBEUQM X1, Y1, CAR1, T1 \
VSUBUQM ZER, SEL1, SEL1 \ // VSQ
\
VADDCUQ T0, PL, CAR1 \ // VACCQ
VADDUQM T0, PL, TT0 \ // VAQ
VADDEUQM T1, PH, CAR1, TT1 \ // VACQ
\
VSEL TT0, T0, SEL1, T0 \
VSEL TT1, T1, SEL1, T1 \
#define p256AddInternal(T1, T0, X1, X0, Y1, Y0) \
VADDCUQ X0, Y0, CAR1 \
VADDUQM X0, Y0, T0 \
VADDECUQ X1, Y1, CAR1, T2 \ // VACCCQ
VADDEUQM X1, Y1, CAR1, T1 \
\
VSPLTISB $0, ZER \
VSUBCUQ T0, PL, CAR1 \ // VSCBIQ
VSUBUQM T0, PL, TT0 \
VSUBECUQ T1, PH, CAR1, CAR2 \ // VSBCBIQ
VSUBEUQM T1, PH, CAR1, TT1 \ // VSBIQ
VSUBEUQM T2, ZER, CAR2, SEL1 \
\
VSEL TT0, T0, SEL1, T0 \
VSEL TT1, T1, SEL1, T1
#define p256HalfInternal(T1, T0, X1, X0) \
VSPLTISB $0, ZER \
VSUBEUQM ZER, ZER, X0, SEL1 \
\
VADDCUQ X0, PL, CAR1 \
VADDUQM X0, PL, T0 \
VADDECUQ X1, PH, CAR1, T2 \
VADDEUQM X1, PH, CAR1, T1 \
\
VSEL T0, X0, SEL1, T0 \
VSEL T1, X1, SEL1, T1 \
VSEL T2, ZER, SEL1, T2 \
\
VSLDOI $15, T2, ZER, TT1 \
VSLDOI $15, T1, ZER, TT0 \
VSPLTISB $1, SEL1 \
VSR T0, SEL1, T0 \ // VSRL
VSR T1, SEL1, T1 \
VSPLTISB $7, SEL1 \ // VREPIB
VSL TT0, SEL1, TT0 \
VSL TT1, SEL1, TT1 \
VOR T0, TT0, T0 \
VOR T1, TT1, T1
// ---------------------------------------
// func p256MulAsm(res, in1, in2 []byte)
#define res_ptr R3
#define x_ptr R4
#define y_ptr R5
#define CPOOL R7
#define TEMP R8
// Parameters
#define X0 V0
#define X1 V1
#define Y0 V2
#define Y1 V3
#define T0 V4
#define T1 V5
#define X0_ VS32
#define X1_ VS33
#define Y0_ VS34
#define Y1_ VS35
#define T0_ VS36
#define T1_ VS37
#define SWAP V28
#define SWAP_ VS60
// Constants
#define P0 V30
#define P1 V31
#define P0_ VS62
#define P1_ VS63
//
// Montgomery multiplication modulo P256
//
TEXT ·p256MulAsm(SB), NOSPLIT, $0-72
MOVD res+0(FP), res_ptr
MOVD in1+24(FP), x_ptr
MOVD in2+48(FP), y_ptr
MOVD $16, R16
MOVD $32, R17
MOVD $p256mul<>+0x00(SB), CPOOL
MOVD $byteswap<>+0x00(SB), R8
LXVD2X (R8)(R0), SWAP_
LXVD2X (R0)(x_ptr), X0_
LXVD2X (R16)(x_ptr), X1_
VPERM X0, X0, SWAP, X0
VPERM X1, X1, SWAP, X1
LXVD2X (R0)(y_ptr), Y0_
LXVD2X (R16)(y_ptr), Y1_
VPERM Y0, Y0, SWAP, Y0
VPERM Y1, Y1, SWAP, Y1
LXVD2X (R16)(CPOOL), P1_
LXVD2X (R0)(CPOOL), P0_
CALL p256MulInternal<>(SB)
MOVD $p256mul<>+0x00(SB), CPOOL
MOVD $byteswap<>+0x00(SB), R8
LXVD2X (R8)(R0), SWAP_
VPERM T0, T0, SWAP, T0
VPERM T1, T1, SWAP, T1
STXVD2X T0_, (R0)(res_ptr)
STXVD2X T1_, (R16)(res_ptr)
RET
#undef res_ptr
#undef x_ptr
#undef y_ptr
#undef CPOOL
#undef X0
#undef X1
#undef Y0
#undef Y1
#undef T0
#undef T1
#undef P0
#undef P1
#undef X0_
#undef X1_
#undef Y0_
#undef Y1_
#undef T0_
#undef T1_
#undef P0_
#undef P1_
// Point add with P2 being affine point
// If sign == 1 -> P2 = -P2
// If sel == 0 -> P3 = P1
// if zero == 0 -> P3 = P2
// p256PointAddAffineAsm(P3, P1, P2 *p256Point, sign, sel, zero int)
#define P3ptr R3
#define P1ptr R4
#define P2ptr R5
#define CPOOL R7
// Temporaries in REGs
#define Y2L V15
#define Y2H V16
#define Y2L_ VS47
#define Y2H_ VS48
#define T1L V17
#define T1H V18
#define T2L V19
#define T2H V20
#define T3L V21
#define T3H V22
#define T4L V23
#define T4H V24
// Temps for Sub and Add
#define TT0 V11
#define TT1 V12
#define T2 V13
// p256MulAsm Parameters
#define X0 V0
#define X1 V1
#define X0_ VS32
#define X1_ VS33
#define Y0 V2
#define Y1 V3
#define Y0_ VS34
#define Y1_ VS35
#define T0 V4
#define T1 V5
#define PL V30
#define PH V31
#define PL_ VS62
#define PH_ VS63
// Names for zero/sel selects
#define X1L V0
#define X1H V1
#define X1L_ VS32
#define X1H_ VS33
#define Y1L V2 // p256MulAsmParmY
#define Y1H V3 // p256MulAsmParmY
#define Y1L_ VS34
#define Y1H_ VS35
#define Z1L V4
#define Z1H V5
#define Z1L_ VS36
#define Z1H_ VS37
#define X2L V0
#define X2H V1
#define X2L_ VS32
#define X2H_ VS33
#define Z2L V4
#define Z2H V5
#define Z2L_ VS36
#define Z2H_ VS37
#define X3L V17 // T1L
#define X3H V18 // T1H
#define Y3L V21 // T3L
#define Y3H V22 // T3H
#define Z3L V25
#define Z3H V26
#define X3L_ VS49
#define X3H_ VS50
#define Y3L_ VS53
#define Y3H_ VS54
#define Z3L_ VS57
#define Z3H_ VS58
#define ZER V6
#define SEL1 V7
#define SEL1_ VS39
#define CAR1 V8
#define CAR2 V9
/* *
* Three operand formula:
* Source: 2004 Hankerson–Menezes–Vanstone, page 91.
* T1 = Z1²
* T2 = T1*Z1
* T1 = T1*X2
* T2 = T2*Y2
* T1 = T1-X1
* T2 = T2-Y1
* Z3 = Z1*T1
* T3 = T1²
* T4 = T3*T1
* T3 = T3*X1
* T1 = 2*T3
* X3 = T2²
* X3 = X3-T1
* X3 = X3-T4
* T3 = T3-X3
* T3 = T3*T2
* T4 = T4*Y1
* Y3 = T3-T4
* Three operand formulas, but with MulInternal X,Y used to store temps
X=Z1; Y=Z1; MUL;T- // T1 = Z1² T1
X=T ; Y- ; MUL;T2=T // T2 = T1*Z1 T1 T2
X- ; Y=X2; MUL;T1=T // T1 = T1*X2 T1 T2
X=T2; Y=Y2; MUL;T- // T2 = T2*Y2 T1 T2
SUB(T2<T-Y1) // T2 = T2-Y1 T1 T2
SUB(Y<T1-X1) // T1 = T1-X1 T1 T2
X=Z1; Y- ; MUL;Z3:=T// Z3 = Z1*T1 T2
X=Y; Y- ; MUL;X=T // T3 = T1*T1 T2
X- ; Y- ; MUL;T4=T // T4 = T3*T1 T2 T4
X- ; Y=X1; MUL;T3=T // T3 = T3*X1 T2 T3 T4
ADD(T1<T+T) // T1 = T3+T3 T1 T2 T3 T4
X=T2; Y=T2; MUL;T- // X3 = T2*T2 T1 T2 T3 T4
SUB(T<T-T1) // X3 = X3-T1 T1 T2 T3 T4
SUB(T<T-T4) X3:=T // X3 = X3-T4 T2 T3 T4
SUB(X<T3-T) // T3 = T3-X3 T2 T3 T4
X- ; Y- ; MUL;T3=T // T3 = T3*T2 T2 T3 T4
X=T4; Y=Y1; MUL;T- // T4 = T4*Y1 T3 T4
SUB(T<T3-T) Y3:=T // Y3 = T3-T4 T3 T4
*/
//
// V27 is clobbered by p256MulInternal so must be
// saved in a temp.
//
TEXT ·p256PointAddAffineAsm(SB), NOSPLIT, $16-48
MOVD res+0(FP), P3ptr
MOVD in1+8(FP), P1ptr
MOVD in2+16(FP), P2ptr
MOVD $p256mul<>+0x00(SB), CPOOL
MOVD $16, R16
MOVD $32, R17
MOVD $48, R18
MOVD $64, R19
MOVD $80, R20
MOVD $96, R21
MOVD $112, R22
MOVD $128, R23
MOVD $144, R24
MOVD $160, R25
MOVD $104, R26 // offset of sign+24(FP)
MOVD $byteswap<>+0+00(SB), R8
LXVD2X (R16)(CPOOL), PH_
LXVD2X (R0)(CPOOL), PL_
// if (sign == 1) {
// Y2 = fromBig(new(big.Int).Mod(new(big.Int).Sub(p256.P, new(big.Int).SetBytes(Y2)), p256.P)) // Y2 = P-Y2
// }
LXVD2X (R8)(R0), SWAP_
LXVD2X (R17)(P2ptr), Y2L_
LXVD2X (R18)(P2ptr), Y2H_
VPERM Y2H, Y2H, SWAP, Y2H
VPERM Y2L, Y2L, SWAP, Y2L
// Equivalent of VLREPG sign+24(FP), SEL1
LXVDSX (R1)(R26), SEL1_
VSPLTISB $0, ZER
VCMPEQUD SEL1, ZER, SEL1
VSUBCUQ PL, Y2L, CAR1
VSUBUQM PL, Y2L, T1L
VSUBEUQM PH, Y2H, CAR1, T1H
VSEL T1L, Y2L, SEL1, Y2L
VSEL T1H, Y2H, SEL1, Y2H
/* *
* Three operand formula:
* Source: 2004 Hankerson–Menezes–Vanstone, page 91.
*/
// X=Z1; Y=Z1; MUL; T- // T1 = Z1² T1
LXVD2X (R8)(R0), SWAP_
LXVD2X (R19)(P1ptr), X0_ // Z1H
LXVD2X (R20)(P1ptr), X1_ // Z1L
VPERM X0, X0, SWAP, X0
VPERM X1, X1, SWAP, X1
VOR X0, X0, Y0
VOR X1, X1, Y1
CALL p256MulInternal<>(SB)
// X=T ; Y- ; MUL; T2=T // T2 = T1*Z1 T1 T2
VOR T0, T0, X0
VOR T1, T1, X1
CALL p256MulInternal<>(SB)
VOR T0, T0, T2L
VOR T1, T1, T2H
// X- ; Y=X2; MUL; T1=T // T1 = T1*X2 T1 T2
MOVD in2+16(FP), P2ptr
LXVD2X (R8)(R0), SWAP_
LXVD2X (R0)(P2ptr), Y0_ // X2H
LXVD2X (R16)(P2ptr), Y1_ // X2L
VPERM Y0, Y0, SWAP, Y0
VPERM Y1, Y1, SWAP, Y1
CALL p256MulInternal<>(SB)
VOR T0, T0, T1L
VOR T1, T1, T1H
// X=T2; Y=Y2; MUL; T- // T2 = T2*Y2 T1 T2
VOR T2L, T2L, X0
VOR T2H, T2H, X1
VOR Y2L, Y2L, Y0
VOR Y2H, Y2H, Y1
CALL p256MulInternal<>(SB)
// SUB(T2<T-Y1) // T2 = T2-Y1 T1 T2
MOVD in1+8(FP), P1ptr
LXVD2X (R8)(R0), SWAP_
LXVD2X (R17)(P1ptr), Y1L_
LXVD2X (R18)(P1ptr), Y1H_
VPERM Y1H, Y1H, SWAP, Y1H
VPERM Y1L, Y1L, SWAP, Y1L
p256SubInternal(T2H,T2L,T1,T0,Y1H,Y1L)
// SUB(Y<T1-X1) // T1 = T1-X1 T1 T2
LXVD2X (R0)(P1ptr), X1L_
LXVD2X (R16)(P1ptr), X1H_
VPERM X1H, X1H, SWAP, X1H
VPERM X1L, X1L, SWAP, X1L
p256SubInternal(Y1,Y0,T1H,T1L,X1H,X1L)
// X=Z1; Y- ; MUL; Z3:=T// Z3 = Z1*T1 T2
LXVD2X (R19)(P1ptr), X0_ // Z1H
LXVD2X (R20)(P1ptr), X1_ // Z1L
VPERM X0, X0, SWAP, X0
VPERM X1, X1, SWAP, X1
CALL p256MulInternal<>(SB)
VOR T0, T0, Z3L
VOR T1, T1, Z3H
// X=Y; Y- ; MUL; X=T // T3 = T1*T1 T2
VOR Y0, Y0, X0
VOR Y1, Y1, X1
CALL p256MulInternal<>(SB)
VOR T0, T0, X0
VOR T1, T1, X1
// X- ; Y- ; MUL; T4=T // T4 = T3*T1 T2 T4
CALL p256MulInternal<>(SB)
VOR T0, T0, T4L
VOR T1, T1, T4H
// X- ; Y=X1; MUL; T3=T // T3 = T3*X1 T2 T3 T4
MOVD in1+8(FP), P1ptr
LXVD2X (R8)(R0), SWAP_
LXVD2X (R0)(P1ptr), Y0_ // X1H
LXVD2X (R16)(P1ptr), Y1_ // X1L
VPERM Y1, Y1, SWAP, Y1
VPERM Y0, Y0, SWAP, Y0
CALL p256MulInternal<>(SB)
VOR T0, T0, T3L
VOR T1, T1, T3H
// ADD(T1<T+T) // T1 = T3+T3 T1 T2 T3 T4
p256AddInternal(T1H,T1L, T1,T0,T1,T0)
// X=T2; Y=T2; MUL; T- // X3 = T2*T2 T1 T2 T3 T4
VOR T2L, T2L, X0
VOR T2H, T2H, X1
VOR T2L, T2L, Y0
VOR T2H, T2H, Y1
CALL p256MulInternal<>(SB)
// SUB(T<T-T1) // X3 = X3-T1 T1 T2 T3 T4 (T1 = X3)
p256SubInternal(T1,T0,T1,T0,T1H,T1L)
// SUB(T<T-T4) X3:=T // X3 = X3-T4 T2 T3 T4
p256SubInternal(T1,T0,T1,T0,T4H,T4L)
VOR T0, T0, X3L
VOR T1, T1, X3H
// SUB(X<T3-T) // T3 = T3-X3 T2 T3 T4
p256SubInternal(X1,X0,T3H,T3L,T1,T0)
// X- ; Y- ; MUL; T3=T // T3 = T3*T2 T2 T3 T4
CALL p256MulInternal<>(SB)
VOR T0, T0, T3L
VOR T1, T1, T3H
// X=T4; Y=Y1; MUL; T- // T4 = T4*Y1 T3 T4
VOR T4L, T4L, X0
VOR T4H, T4H, X1
MOVD in1+8(FP), P1ptr
LXVD2X (R8)(R0), SWAP_
LXVD2X (R17)(P1ptr), Y0_ // Y1H
LXVD2X (R18)(P1ptr), Y1_ // Y1L
VPERM Y0, Y0, SWAP, Y0
VPERM Y1, Y1, SWAP, Y1
CALL p256MulInternal<>(SB)
// SUB(T<T3-T) Y3:=T // Y3 = T3-T4 T3 T4 (T3 = Y3)
p256SubInternal(Y3H,Y3L,T3H,T3L,T1,T0)
// if (sel == 0) {
// copy(P3.x[:], X1)
// copy(P3.y[:], Y1)
// copy(P3.z[:], Z1)
// }
LXVD2X (R8)(R0), SWAP_
LXVD2X (R0)(P1ptr), X1L_
LXVD2X (R16)(P1ptr), X1H_
VPERM X1H, X1H, SWAP, X1H
VPERM X1L, X1L, SWAP, X1L
// Y1 already loaded, left over from addition
LXVD2X (R19)(P1ptr), Z1L_
LXVD2X (R20)(P1ptr), Z1H_
VPERM Z1H, Z1H, SWAP, Z1H
VPERM Z1L, Z1L, SWAP, Z1L
MOVD $112, R26 // Get offset to sel+32
LXVDSX (R1)(R26), SEL1_
VSPLTISB $0, ZER
VCMPEQUD SEL1, ZER, SEL1
VSEL X3L, X1L, SEL1, X3L
VSEL X3H, X1H, SEL1, X3H
VSEL Y3L, Y1L, SEL1, Y3L
VSEL Y3H, Y1H, SEL1, Y3H
VSEL Z3L, Z1L, SEL1, Z3L
VSEL Z3H, Z1H, SEL1, Z3H
// if (zero == 0) {
// copy(P3.x[:], X2)
// copy(P3.y[:], Y2)
// copy(P3.z[:], []byte{0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
// 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}) //(p256.z*2^256)%p
// }
MOVD in2+16(FP), P2ptr
LXVD2X (R0)(P2ptr), X2L_
LXVD2X (R16)(P2ptr), X2H_
VPERM X2H, X2H, SWAP, X2H
VPERM X2L, X2L, SWAP, X2L
// Y2 already loaded
LXVD2X (R23)(CPOOL), Z2L_
LXVD2X (R24)(CPOOL), Z2H_
MOVD $120, R26 // Get the value from zero+40(FP)
LXVDSX (R1)(R26), SEL1_
VSPLTISB $0, ZER
VCMPEQUD SEL1, ZER, SEL1
VSEL X3L, X2L, SEL1, X3L
VSEL X3H, X2H, SEL1, X3H
VSEL Y3L, Y2L, SEL1, Y3L
VSEL Y3H, Y2H, SEL1, Y3H
VSEL Z3L, Z2L, SEL1, Z3L
VSEL Z3H, Z2H, SEL1, Z3H
// Reorder the bytes so they can be stored using STXVD2X.
MOVD res+0(FP), P3ptr
VPERM X3H, X3H, SWAP, X3H
VPERM X3L, X3L, SWAP, X3L
VPERM Y3H, Y3H, SWAP, Y3H
VPERM Y3L, Y3L, SWAP, Y3L
VPERM Z3H, Z3H, SWAP, Z3H
VPERM Z3L, Z3L, SWAP, Z3L
STXVD2X X3L_, (R0)(P3ptr)
STXVD2X X3H_, (R16)(P3ptr)
STXVD2X Y3L_, (R17)(P3ptr)
STXVD2X Y3H_, (R18)(P3ptr)
STXVD2X Z3L_, (R19)(P3ptr)
STXVD2X Z3H_, (R20)(P3ptr)
RET
#undef P3ptr
#undef P1ptr
#undef P2ptr
#undef CPOOL
#undef SWAP
#undef SWAP_
#undef Y2L
#undef Y2H
#undef Y2L_
#undef Y2H_
#undef T1L
#undef T1H
#undef T2L
#undef T2H
#undef T3L
#undef T3H
#undef T4L
#undef T4H
#undef TT0
#undef TT1
#undef TT0_
#undef TT1_
#undef T2
#undef X0
#undef X1
#undef X0_
#undef X1_
#undef Y0
#undef Y1
#undef Y0_
#undef Y1_
#undef T0
#undef T1
#undef PL
#undef PH
#undef PL_
#undef PH_
#undef X1L
#undef X1H
#undef X1L_
#undef X1H_
#undef Y1L
#undef Y1H
#undef Y1L_
#undef Y1H_
#undef Z1L
#undef Z1H
#undef Z1L_
#undef Z1H_
#undef X2L
#undef X2H
#undef X2L_
#undef X2H_
#undef Z2L
#undef Z2H
#undef Z2L_
#undef Z2H_
#undef X3L
#undef X3H
#undef X3L_
#undef X3H_
#undef Y3L
#undef Y3H
#undef Y3L_
#undef Y3H_
#undef Z3L
#undef Z3H
#undef Z3L_
#undef Z3H_
#undef ZER
#undef SEL1
#undef SEL1_
#undef CAR1
#undef CAR2
// p256PointDoubleAsm(P3, P1 *p256Point)
// http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-2007-bl
// http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html
// http://www.hyperelliptic.org/EFD/g1p/auto-shortw-projective-3.html
#define P3ptr R3
#define P1ptr R4
#define CPOOL R7
// Temporaries in REGs
#define X3L V15
#define X3H V16
#define X3L_ VS47
#define X3H_ VS48
#define Y3L V17
#define Y3H V18
#define Y3L_ VS49
#define Y3H_ VS50
#define T1L V19
#define T1H V20
#define T2L V21
#define T2H V22
#define T3L V23
#define T3H V24
#define X1L V6
#define X1H V7
#define X1L_ VS38
#define X1H_ VS39
#define Y1L V8
#define Y1H V9
#define Y1L_ VS40
#define Y1H_ VS41
#define Z1L V10
#define Z1H V11
// Temps for Sub and Add
#define TT0 V11
#define TT1 V12
#define TT0_ VS43
#define TT1_ VS44
#define T2 V13
// p256MulAsm Parameters
#define X0 V0
#define X1 V1
#define X0_ VS32
#define X1_ VS33
#define Y0 V2
#define Y1 V3
#define Y0_ VS34
#define Y1_ VS35
#define T0 V4
#define T1 V5
#define T0_ VS36
#define T1_ VS37
#define PL V30
#define PH V31
#define PL_ VS62
#define PH_ VS63
#define Z3L V23
#define Z3H V24
#define SWAP V25
#define SWAP_ VS57
#define ZER V26
#define SEL1 V27
#define CAR1 V28
#define CAR2 V29
/*
* http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2004-hmv
* Cost: 4M + 4S + 1*half + 5add + 2*2 + 1*3.
* Source: 2004 Hankerson–Menezes–Vanstone, page 91.
* A = 3(X₁-Z₁²)×(X₁+Z₁²)
* B = 2Y₁
* Z₃ = B×Z₁
* C = B²
* D = C×X₁
* X₃ = A²-2D
* Y₃ = (D-X₃)×A-C²/2
*
* Three-operand formula:
* T1 = Z1²
* T2 = X1-T1
* T1 = X1+T1
* T2 = T2*T1
* T2 = 3*T2
* Y3 = 2*Y1
* Z3 = Y3*Z1
* Y3 = Y3²
* T3 = Y3*X1
* Y3 = Y3²
* Y3 = half*Y3
* X3 = T2²
* T1 = 2*T3
* X3 = X3-T1
* T1 = T3-X3
* T1 = T1*T2
* Y3 = T1-Y3
*/
TEXT ·p256PointDoubleAsm(SB), NOSPLIT, $0-16
MOVD res+0(FP), P3ptr
MOVD in+8(FP), P1ptr
MOVD $p256mul<>+0x00(SB), CPOOL
MOVD $byteswap<>+0x00(SB), R15
MOVD $16, R16
MOVD $32, R17
MOVD $48, R18
MOVD $64, R19
MOVD $80, R20
LXVD2X (R16)(CPOOL), PH_
LXVD2X (R0)(CPOOL), PL_
LXVD2X (R15)(R0), SWAP_
// X=Z1; Y=Z1; MUL; T- // T1 = Z1²
LXVD2X (R19)(P1ptr), X0_ // Z1H
LXVD2X (R20)(P1ptr), X1_ // Z1L
VPERM X0, X0, SWAP, X0
VPERM X1, X1, SWAP, X1
VOR X0, X0, Y0
VOR X1, X1, Y1
CALL p256MulInternal<>(SB)
// SUB(X<X1-T) // T2 = X1-T1
LXVD2X (R0)(P1ptr), X1L_
LXVD2X (R16)(P1ptr), X1H_
VPERM X1L, X1L, SWAP, X1L
VPERM X1H, X1H, SWAP, X1H
p256SubInternal(X1,X0,X1H,X1L,T1,T0)
// ADD(Y<X1+T) // T1 = X1+T1
p256AddInternal(Y1,Y0,X1H,X1L,T1,T0)
// X- ; Y- ; MUL; T- // T2 = T2*T1
CALL p256MulInternal<>(SB)
// ADD(T2<T+T); ADD(T2<T2+T) // T2 = 3*T2
p256AddInternal(T2H,T2L,T1,T0,T1,T0)
p256AddInternal(T2H,T2L,T2H,T2L,T1,T0)
// ADD(X<Y1+Y1) // Y3 = 2*Y1
LXVD2X (R15)(R0), SWAP_
LXVD2X (R17)(P1ptr), Y1L_
LXVD2X (R18)(P1ptr), Y1H_
VPERM Y1L, Y1L, SWAP, Y1L
VPERM Y1H, Y1H, SWAP, Y1H
p256AddInternal(X1,X0,Y1H,Y1L,Y1H,Y1L)
// X- ; Y=Z1; MUL; Z3:=T // Z3 = Y3*Z1
LXVD2X (R15)(R0), SWAP_
LXVD2X (R19)(P1ptr), Y0_
LXVD2X (R20)(P1ptr), Y1_
VPERM Y0, Y0, SWAP, Y0
VPERM Y1, Y1, SWAP, Y1
CALL p256MulInternal<>(SB)
LXVD2X (R15)(R0), SWAP_
// Leave T0, T1 as is.
VPERM T0, T0, SWAP, TT0
VPERM T1, T1, SWAP, TT1
STXVD2X TT0_, (R19)(P3ptr)
STXVD2X TT1_, (R20)(P3ptr)
// X- ; Y=X ; MUL; T- // Y3 = Y3²
VOR X0, X0, Y0
VOR X1, X1, Y1
CALL p256MulInternal<>(SB)
// X=T ; Y=X1; MUL; T3=T // T3 = Y3*X1
VOR T0, T0, X0
VOR T1, T1, X1
LXVD2X (R15)(R0), SWAP_
LXVD2X (R0)(P1ptr), Y0_
LXVD2X (R16)(P1ptr), Y1_
VPERM Y0, Y0, SWAP, Y0
VPERM Y1, Y1, SWAP, Y1
CALL p256MulInternal<>(SB)
VOR T0, T0, T3L
VOR T1, T1, T3H
// X- ; Y=X ; MUL; T- // Y3 = Y3²
VOR X0, X0, Y0
VOR X1, X1, Y1
CALL p256MulInternal<>(SB)
// HAL(Y3<T) // Y3 = half*Y3
p256HalfInternal(Y3H,Y3L, T1,T0)
// X=T2; Y=T2; MUL; T- // X3 = T2²
VOR T2L, T2L, X0
VOR T2H, T2H, X1
VOR T2L, T2L, Y0
VOR T2H, T2H, Y1
CALL p256MulInternal<>(SB)
// ADD(T1<T3+T3) // T1 = 2*T3
p256AddInternal(T1H,T1L,T3H,T3L,T3H,T3L)
// SUB(X3<T-T1) X3:=X3 // X3 = X3-T1
p256SubInternal(X3H,X3L,T1,T0,T1H,T1L)
LXVD2X (R15)(R0), SWAP_
VPERM X3L, X3L, SWAP, TT0
VPERM X3H, X3H, SWAP, TT1
STXVD2X TT0_, (R0)(P3ptr)
STXVD2X TT1_, (R16)(P3ptr)
// SUB(X<T3-X3) // T1 = T3-X3
p256SubInternal(X1,X0,T3H,T3L,X3H,X3L)
// X- ; Y- ; MUL; T- // T1 = T1*T2
CALL p256MulInternal<>(SB)
// SUB(Y3<T-Y3) // Y3 = T1-Y3
p256SubInternal(Y3H,Y3L,T1,T0,Y3H,Y3L)
LXVD2X (R15)(R0), SWAP_
VPERM Y3L, Y3L, SWAP, Y3L
VPERM Y3H, Y3H, SWAP, Y3H
STXVD2X Y3L_, (R17)(P3ptr)
STXVD2X Y3H_, (R18)(P3ptr)
RET
#undef P3ptr
#undef P1ptr
#undef CPOOL
#undef X3L
#undef X3H
#undef X3L_
#undef X3H_
#undef Y3L
#undef Y3H
#undef Y3L_
#undef Y3H_
#undef T1L
#undef T1H
#undef T2L
#undef T2H
#undef T3L
#undef T3H
#undef X1L
#undef X1H
#undef X1L_
#undef X1H_
#undef Y1L
#undef Y1H
#undef Y1L_
#undef Y1H_
#undef Z1L
#undef Z1H
#undef TT0
#undef TT1
#undef TT0_
#undef TT1_
#undef T2
#undef X0
#undef X1
#undef X0_
#undef X1_
#undef Y0
#undef Y1
#undef Y0_
#undef Y1_
#undef T0
#undef T1
#undef T0_
#undef T1_
#undef PL
#undef PH
#undef PL_
#undef PH_
#undef Z3L
#undef Z3H
#undef ZER
#undef SEL1
#undef CAR1
#undef CAR2
#undef SWAP
#undef SWAP_
// p256PointAddAsm(P3, P1, P2 *p256Point)
#define P3ptr R3
#define P1ptr R4
#define P2ptr R5
#define CPOOL R7
#define TRUE R14
#define RES1 R9
#define RES2 R10
// Temporaries in REGs
#define T1L V16
#define T1H V17
#define T2L V18
#define T2H V19
#define U1L V20
#define U1H V21
#define S1L V22
#define S1H V23
#define HL V24
#define HH V25
#define RL V26
#define RH V27
#define RH_ VS59
// Temps for Sub and Add
#define ZER V6
#define SEL1 V7
#define CAR1 V8
#define CAR2 V9
#define TT0 V11
#define TT0_ VS43
#define TT1 V12
#define TT1_ VS44
#define T2 V13
#define SWAP V28
#define SWAP_ VS60
// p256MulAsm Parameters
#define X0 V0
#define X1 V1
#define X0_ VS32
#define X1_ VS33
#define Y0 V2
#define Y1 V3
#define Y0_ VS34
#define Y1_ VS35
#define T0 V4
#define T1 V5
#define T0_ VS36
#define T1_ VS37
#define PL V30
#define PH V31
#define PL_ VS62
#define PH_ VS63
/*
* https://choucroutage.com/Papers/SideChannelAttacks/ctrsa-2011-brown.pdf "Software Implementation of the NIST Elliptic Curves Over Prime Fields"
*
* A = X₁×Z₂²
* B = Y₁×Z₂³
* C = X₂×Z₁²-A
* D = Y₂×Z₁³-B
* X₃ = D² - 2A×C² - C³
* Y₃ = D×(A×C² - X₃) - B×C³
* Z₃ = Z₁×Z₂×C
*
* Three-operand formula (adopted): http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-1998-cmo-2
* Temp storage: T1,T2,U1,H,Z3=X3=Y3,S1,R
*
* T1 = Z1*Z1
* T2 = Z2*Z2
* U1 = X1*T2
* H = X2*T1
* H = H-U1
* Z3 = Z1*Z2
* Z3 = Z3*H << store-out Z3 result reg.. could override Z1, if slices have same backing array
*
* S1 = Z2*T2
* S1 = Y1*S1
* R = Z1*T1
* R = Y2*R
* R = R-S1
*
* T1 = H*H
* T2 = H*T1
* U1 = U1*T1
*
* X3 = R*R
* X3 = X3-T2
* T1 = 2*U1
* X3 = X3-T1 << store-out X3 result reg
*
* T2 = S1*T2
* Y3 = U1-X3
* Y3 = R*Y3
* Y3 = Y3-T2 << store-out Y3 result reg
// X=Z1; Y=Z1; MUL; T- // T1 = Z1*Z1
// X- ; Y=T ; MUL; R=T // R = Z1*T1
// X=X2; Y- ; MUL; H=T // H = X2*T1
// X=Z2; Y=Z2; MUL; T- // T2 = Z2*Z2
// X- ; Y=T ; MUL; S1=T // S1 = Z2*T2
// X=X1; Y- ; MUL; U1=T // U1 = X1*T2
// SUB(H<H-T) // H = H-U1
// X=Z1; Y=Z2; MUL; T- // Z3 = Z1*Z2
// X=T ; Y=H ; MUL; Z3:=T// Z3 = Z3*H << store-out Z3 result reg.. could override Z1, if slices have same backing array
// X=Y1; Y=S1; MUL; S1=T // S1 = Y1*S1
// X=Y2; Y=R ; MUL; T- // R = Y2*R
// SUB(R<T-S1) // R = R-S1
// X=H ; Y=H ; MUL; T- // T1 = H*H
// X- ; Y=T ; MUL; T2=T // T2 = H*T1
// X=U1; Y- ; MUL; U1=T // U1 = U1*T1
// X=R ; Y=R ; MUL; T- // X3 = R*R
// SUB(T<T-T2) // X3 = X3-T2
// ADD(X<U1+U1) // T1 = 2*U1
// SUB(T<T-X) X3:=T // X3 = X3-T1 << store-out X3 result reg
// SUB(Y<U1-T) // Y3 = U1-X3
// X=R ; Y- ; MUL; U1=T // Y3 = R*Y3
// X=S1; Y=T2; MUL; T- // T2 = S1*T2
// SUB(T<U1-T); Y3:=T // Y3 = Y3-T2 << store-out Y3 result reg
*/
TEXT ·p256PointAddAsm(SB), NOSPLIT, $16-32
MOVD res+0(FP), P3ptr
MOVD in1+8(FP), P1ptr
MOVD $p256mul<>+0x00(SB), CPOOL
MOVD $16, R16
MOVD $32, R17
MOVD $48, R18
MOVD $64, R19
MOVD $80, R20
MOVD $byteswap<>+0x00(SB), R8
LXVD2X (R16)(CPOOL), PH_
LXVD2X (R0)(CPOOL), PL_
// X=Z1; Y=Z1; MUL; T- // T1 = Z1*Z1
LXVD2X (R8)(R0), SWAP_
LXVD2X (R19)(P1ptr), X0_ // Z1L
LXVD2X (R20)(P1ptr), X1_ // Z1H
VPERM X0, X0, SWAP, X0
VPERM X1, X1, SWAP, X1
VOR X0, X0, Y0
VOR X1, X1, Y1
CALL p256MulInternal<>(SB)
// X- ; Y=T ; MUL; R=T // R = Z1*T1
VOR T0, T0, Y0
VOR T1, T1, Y1
CALL p256MulInternal<>(SB)
VOR T0, T0, RL // SAVE: RL
VOR T1, T1, RH // SAVE: RH
STXVD2X RH_, (R1)(R17) // V27 has to be saved
// X=X2; Y- ; MUL; H=T // H = X2*T1
MOVD in2+16(FP), P2ptr
LXVD2X (R8)(R0), SWAP_
LXVD2X (R0)(P2ptr), X0_ // X2L
LXVD2X (R16)(P2ptr), X1_ // X2H
VPERM X0, X0, SWAP, X0
VPERM X1, X1, SWAP, X1
CALL p256MulInternal<>(SB)
VOR T0, T0, HL // SAVE: HL
VOR T1, T1, HH // SAVE: HH
// X=Z2; Y=Z2; MUL; T- // T2 = Z2*Z2
MOVD in2+16(FP), P2ptr
LXVD2X (R8)(R0), SWAP_
LXVD2X (R19)(P2ptr), X0_ // Z2L
LXVD2X (R20)(P2ptr), X1_ // Z2H
VPERM X0, X0, SWAP, X0
VPERM X1, X1, SWAP, X1
VOR X0, X0, Y0
VOR X1, X1, Y1
CALL p256MulInternal<>(SB)
// X- ; Y=T ; MUL; S1=T // S1 = Z2*T2
VOR T0, T0, Y0
VOR T1, T1, Y1
CALL p256MulInternal<>(SB)
VOR T0, T0, S1L // SAVE: S1L
VOR T1, T1, S1H // SAVE: S1H
// X=X1; Y- ; MUL; U1=T // U1 = X1*T2
MOVD in1+8(FP), P1ptr
LXVD2X (R8)(R0), SWAP_
LXVD2X (R0)(P1ptr), X0_ // X1L
LXVD2X (R16)(P1ptr), X1_ // X1H
VPERM X0, X0, SWAP, X0
VPERM X1, X1, SWAP, X1
CALL p256MulInternal<>(SB)
VOR T0, T0, U1L // SAVE: U1L
VOR T1, T1, U1H // SAVE: U1H
// SUB(H<H-T) // H = H-U1
p256SubInternal(HH,HL,HH,HL,T1,T0)
// if H == 0 or H^P == 0 then ret=1 else ret=0
// clobbers T1H and T1L
MOVD $1, TRUE
VSPLTISB $0, ZER
VOR HL, HH, T1H
VCMPEQUDCC ZER, T1H, T1H
// 26 = CR6 NE
ISEL $26, R0, TRUE, RES1
VXOR HL, PL, T1L // SAVE: T1L
VXOR HH, PH, T1H // SAVE: T1H
VOR T1L, T1H, T1H
VCMPEQUDCC ZER, T1H, T1H
// 26 = CR6 NE
ISEL $26, R0, TRUE, RES2
OR RES2, RES1, RES1
MOVD RES1, ret+24(FP)
// X=Z1; Y=Z2; MUL; T- // Z3 = Z1*Z2
MOVD $byteswap<>+0x00(SB), R8
MOVD in1+8(FP), P1ptr
MOVD in2+16(FP), P2ptr
LXVD2X (R8)(R0), SWAP_
LXVD2X (R19)(P1ptr), X0_ // Z1L
LXVD2X (R20)(P1ptr), X1_ // Z1H
VPERM X0, X0, SWAP, X0
VPERM X1, X1, SWAP, X1
LXVD2X (R19)(P2ptr), Y0_ // Z2L
LXVD2X (R20)(P2ptr), Y1_ // Z2H
VPERM Y0, Y0, SWAP, Y0
VPERM Y1, Y1, SWAP, Y1
CALL p256MulInternal<>(SB)
// X=T ; Y=H ; MUL; Z3:=T// Z3 = Z3*H
VOR T0, T0, X0
VOR T1, T1, X1
VOR HL, HL, Y0
VOR HH, HH, Y1
CALL p256MulInternal<>(SB)
MOVD res+0(FP), P3ptr
LXVD2X (R8)(R0), SWAP_
VPERM T1, T1, SWAP, TT1
VPERM T0, T0, SWAP, TT0
STXVD2X TT0_, (R19)(P3ptr)
STXVD2X TT1_, (R20)(P3ptr)
// X=Y1; Y=S1; MUL; S1=T // S1 = Y1*S1
MOVD in1+8(FP), P1ptr
LXVD2X (R17)(P1ptr), X0_
LXVD2X (R18)(P1ptr), X1_
VPERM X0, X0, SWAP, X0
VPERM X1, X1, SWAP, X1
VOR S1L, S1L, Y0
VOR S1H, S1H, Y1
CALL p256MulInternal<>(SB)
VOR T0, T0, S1L
VOR T1, T1, S1H
// X=Y2; Y=R ; MUL; T- // R = Y2*R
MOVD in2+16(FP), P2ptr
LXVD2X (R8)(R0), SWAP_
LXVD2X (R17)(P2ptr), X0_
LXVD2X (R18)(P2ptr), X1_
VPERM X0, X0, SWAP, X0
VPERM X1, X1, SWAP, X1
VOR RL, RL, Y0
// VOR RH, RH, Y1 RH was saved above in D2X format
LXVD2X (R1)(R17), Y1_
CALL p256MulInternal<>(SB)
// SUB(R<T-S1) // R = T-S1
p256SubInternal(RH,RL,T1,T0,S1H,S1L)
STXVD2X RH_, (R1)(R17) // Save RH
// if R == 0 or R^P == 0 then ret=ret else ret=0
// clobbers T1H and T1L
// Redo this using ISEL??
MOVD $1, TRUE
VSPLTISB $0, ZER
VOR RL, RH, T1H
VCMPEQUDCC ZER, T1H, T1H
// 24 = CR6 NE
ISEL $26, R0, TRUE, RES1
VXOR RL, PL, T1L
VXOR RH, PH, T1H // SAVE: T1L
VOR T1L, T1H, T1H
VCMPEQUDCC ZER, T1H, T1H
// 26 = CR6 NE
ISEL $26, R0, TRUE, RES2
OR RES2, RES1, RES1
MOVD ret+24(FP), RES2
AND RES2, RES1, RES1
MOVD RES1, ret+24(FP)
// X=H ; Y=H ; MUL; T- // T1 = H*H
VOR HL, HL, X0
VOR HH, HH, X1
VOR HL, HL, Y0
VOR HH, HH, Y1
CALL p256MulInternal<>(SB)
// X- ; Y=T ; MUL; T2=T // T2 = H*T1
VOR T0, T0, Y0
VOR T1, T1, Y1
CALL p256MulInternal<>(SB)
VOR T0, T0, T2L
VOR T1, T1, T2H
// X=U1; Y- ; MUL; U1=T // U1 = U1*T1
VOR U1L, U1L, X0
VOR U1H, U1H, X1
CALL p256MulInternal<>(SB)
VOR T0, T0, U1L
VOR T1, T1, U1H
// X=R ; Y=R ; MUL; T- // X3 = R*R
VOR RL, RL, X0
// VOR RH, RH, X1
VOR RL, RL, Y0
// RH was saved above using STXVD2X
LXVD2X (R1)(R17), X1_
VOR X1, X1, Y1
// VOR RH, RH, Y1
CALL p256MulInternal<>(SB)
// SUB(T<T-T2) // X3 = X3-T2
p256SubInternal(T1,T0,T1,T0,T2H,T2L)
// ADD(X<U1+U1) // T1 = 2*U1
p256AddInternal(X1,X0,U1H,U1L,U1H,U1L)
// SUB(T<T-X) X3:=T // X3 = X3-T1 << store-out X3 result reg
p256SubInternal(T1,T0,T1,T0,X1,X0)
MOVD res+0(FP), P3ptr
LXVD2X (R8)(R0), SWAP_
VPERM T1, T1, SWAP, TT1
VPERM T0, T0, SWAP, TT0
STXVD2X TT0_, (R0)(P3ptr)
STXVD2X TT1_, (R16)(P3ptr)
// SUB(Y<U1-T) // Y3 = U1-X3
p256SubInternal(Y1,Y0,U1H,U1L,T1,T0)
// X=R ; Y- ; MUL; U1=T // Y3 = R*Y3
VOR RL, RL, X0
// VOR RH, RH, X1
LXVD2X (R1)(R17), X1_
CALL p256MulInternal<>(SB)
VOR T0, T0, U1L
VOR T1, T1, U1H
// X=S1; Y=T2; MUL; T- // T2 = S1*T2
VOR S1L, S1L, X0
VOR S1H, S1H, X1
VOR T2L, T2L, Y0
VOR T2H, T2H, Y1
CALL p256MulInternal<>(SB)
// SUB(T<U1-T); Y3:=T // Y3 = Y3-T2 << store-out Y3 result reg
p256SubInternal(T1,T0,U1H,U1L,T1,T0)
MOVD res+0(FP), P3ptr
LXVD2X (R8)(R0), SWAP_
VPERM T1, T1, SWAP, TT1
VPERM T0, T0, SWAP, TT0
STXVD2X TT0_, (R17)(P3ptr)
STXVD2X TT1_, (R18)(P3ptr)
RET